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A finite volume method based on stabilized finite element for the two-dimensional stationary
Navier-Stokes equations is analyzed. For the P1–P0 element, we obtain the optimal L2 error
estimates of the finite volume solution uh and ph. We also provide some numerical examples to
confirm the efficiency of the FVM. Furthermore, the effect of initial value for iterative method is
analyzed carefully.

1. Introduction

In paper [1], G. He and Y. He introduce a finite volume method (FVM) based on the
stabilized finite element method for solving the stationary Navier-Stokes problem and obtain
the optimal H1 error estimates for discretization velocity, however, to our dismay, without
the optimal L2 error estimate. It is inspiring that the following further numerical examples
tell us that it has nearly second-order convergence rate. So, in this paper, we introduce a
new technique to prove the optimal L2 error of a generalized bilinear form and then gain the
optimal L2 error estimates of the stabilized finite volume method for the stationary Navier-
Stokes problem.

For the convenience of analysis, we introduce the following useful notations. Let Ω
be a bounded domain in R

2 assumed to have a Lipschitz continuous boundary ∂Ω and to
satisfy a further smooth condition to ensure the weak solution’s existence and regularity of
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Stokes problem. (For more information, see the A1 assumption stated in [1, 2].) We consider
the stationary Navier-Stokes equations

−νΔu + (u · ∇)u +∇p = f, div u = 0, x ∈ Ω,

u|∂Ω = 0,
(1.1)

where u = (u1(x), u2(x)) represents the velocity vector, p = p(x) the pressure, f = f(x) the
prescribed body force, and ν > 0 the viscosity.

For the mathematical setting of problem (1.1), we introduce the following Hilbert
spaces:

X =
(
H1

0(Ω)
)2
, Y =

(
L2(Ω)

)2
, M =

{
q ∈ L2(Ω) :

∫

Ω
q dx = 0

}
,

H =
{
v ∈ L2(Ω)2; div v = 0 in Ω, v · n|∂Ω = 0

}
.

(1.2)

The spaces (L2(Ω))m (m = 1, 2, 4) are endowed with the usual L2-scalar product (·, ·) and
norm ‖ · ‖0, as appropriate. The space X is equipped with the scalar product (∇u,∇v) and
norm ‖∇u‖0.

Define Au = −Δu, which is the operator associated with the Navier-Stokes equations.
It is positive self-adjoint operator fromD(A) = (H2(Ω))2∩X onto Y , so, for α ∈ R , the power
Aα of A is well defined. In particular, D(A1/2) = X, D(A0) = Y , and

(
A1/2u, A1/2v

)
= (∇u, ∇v),

∥∥∥A1/2u
∥∥∥
0
= (∇u, ∇u)1/2, (1.3)

for all u, v ∈ X.
We also introduce the following continuous bilinear forms a(·, ·) and d(·, ·) on X × X

and X ×M, respectively, by

a(u, v) = ν((u, v)) ∀u, v ∈ X, d
(
v, q

)
= −(v,∇q

)
=

(
q,divv

) ∀v ∈ X, q ∈ M, (1.4)

a generalized bilinear form on (X,M) × (X,M) by

B((
u, p

)
;
(
v, q

))
= a(u, v) − d

(
v, p

)
+ d

(
u, q

)
, (1.5)

and a trilinear form on X ×X ×X by

b(u, v,w) = ((u · ∇)v,w) +
1
2
((divu)v,w). (1.6)

Under the above notations, the variational formulation of the problem (1.1) reads as
follows: find (u, p) ∈ (X,M) such that for all (v, q) ∈ (X,M):

B((
u, p

)
;
(
v, q

))
+ b(u, u, v) =

(
f, v

)
. (1.7)

The following existence and uniqueness results are classical (see [3]).
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Theorem 1.1. Assume that ν and f ∈ Y satisfy the following uniqueness condition:

1 − N1

ν2
∥∥f∥∥−1 > 0, (1.8)

where

N1 = sup
u,v,w∈H1

0 (Ω)

b(u, v,w)∥∥A1/2u
∥∥
0

∥∥A1/2v
∥∥
0

∥∥A1/2w
∥∥
0

. (1.9)

Then the problem (1.7) admits a unique solution (u, p) ∈ (D(A) ∩X,H1(Ω) ∩M) such that

∥∥∥A1/2u
∥∥∥
1
≤ ν−1

∥∥f∥∥−1, ‖u‖2 +
∥∥p∥∥1 ≤ c

∥∥f∥∥0. (1.10)

2. FVM Based on Stabilized Finite Element Approximation

In this section, we consider the FVM for two-dimensional stationary incompressible Navier-
Stokes equations (1.1). Let h > 0 be a real positive parameter. The finite element subspace
(Xh,Mh) of (X,M) is characterized by Th = Th(Ω), a partition of Ω into triangles, assumed
to be regular in the usual sense (see [4–7]). The mesh parameter h is given by h = max{hK},
and the set of all interelement boundaries will be denoted by Γh. Besides, we also use the
configuration based on barycenter of element Ki ∈ Th to construct a dual partition T ∗

h
of Th,

which is shown in Figure 1.
Finite element subspaces of interest in this paper are defined as follows: the continuous

piecewise linear velocity subspace

Xh =
{
v ∈ X : v|K ∈ (P1(K))2, ∀K ∈ Th

}
, (2.1)

the piecewise constant pressure subspace

Mh =
{
q ∈ M : q|K ∈ P0(K), ∀K ∈ Th

}
, (2.2)

and the dual space of velocity subspace X∗
h

X∗
h =

{
v ∈

(
L2(Ω)

)2
: v|K∗ ∈ (P0(K∗))2, ∀K∗ ∈ T ∗

h

}
. (2.3)

Actually, this choice of X∗
h
is the span of the charaicteristic functions of the volume K∗. Note

that this mixed finite element method is unstable in the standard Babuška-Brezzi sense [8].
Define the interpolation operator I∗

h
: Xh → X∗

h
,

I∗huh =
∑

xi∈Nh

uh(xi)χi(x), (2.4)

where Nh = {Pi : Vertices of triangles in Th}.
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Figure 1: The partition and dual partition of a triangular.

Let us introduce the continuous bilinear forms ã(·, ·), d̃(·, ·), and d(·, ·) on Xh × Xh,
Xh ×Mh and Xh ×Mh as follows:

ã
(
uh, I

∗
hvh

)
= ν

((
uh, I

∗
hvh

))
= −ν

∑
K∗

i ∈T∗
h

∫

∂K∗
i

vh(xi)
∂uh

∂n
ds, ∀uh, vh ∈ Xh,

d̃
(
I∗hvh, ph

)
=

(
I∗hvh,∇ph

)
=

∑
K∗

i ∈T∗
h

∫

∂K∗
i

vh(xi)ph · nds, ∀uh ∈ Xh, ph ∈ Mh,

d
(
uh, qh

)
= −(uh,∇qh

)
=

(
qh,div uh

)
, ∀uh ∈ Xh, qh ∈ Mh,

(2.5)

where n is the out normal vector. We also define the trilinear forms b̃(·, ·, ·) on Xh ×Xh ×Xh by

b̃
(
uh, vh, I

∗
hwh

)
=

(
(uh · ∇)vh, I

∗
hwh

)
, (2.6)

for all uh, vh,wh ∈ Xh, the right side of term

(
f, I∗hvh

)
=

∑
K∗

i ∈T∗
h

∫

K∗
i

vh(xi)f dx, ∀vh ∈ Xh, (2.7)

and a generalized bilinear form on

B̃((
uh, ph

)
;
(
I∗hvh, qh

))
= ã

(
uh, I

∗
hvh

) − d̃
(
I∗hvh, ph

)
+ d

(
uh, qh

)
. (2.8)
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Based on the dual partition and bilinear forms defined above, this paper still
introduces the norms and seminorms [1, 9]:

‖uh‖0,h =

( ∑
K∈Th

‖uh‖20,h,K
)1/2

,

∥∥∥Ã1/2
h

uh

∥∥∥
0
=

( ∑
K∈Th

∥∥∥Ã1/2
h

uh

∥∥∥
2

0,h,K

)1/2

,

‖uh‖1,h =
(
‖uh‖20,h +

∥∥∥Ã1/2
h

uh

∥∥∥
2

0

)1/2

,

(2.9)

where

‖uh‖0,h,K =
[
Sv

3

(
u2
Pi
+ u2

Pj
+ u2

Pk

)]1/2
,

∥∥∥Ã1/2
h uh

∥∥∥
0,h,K

=

⎧
⎨
⎩

⎡
⎣
(

∂uh

(
p
)

∂x

)2

+

(
∂uh

(
p
)

∂y

)2
⎤
⎦Sv

⎫
⎬
⎭

1/2

,

(2.10)

with Sv the area of Δvivjvk (see Figure 1).
Formally, there are some differences between ‖uh‖0,h, ‖Ã1/2

h
uh‖0 and ‖uh‖0, ‖A1/2

h
uh‖0,

respectively, but we, actually, have the following results [9–12].

Lemma 2.1. There exist constants c1, c2, independent of h, such that

c1‖uh‖0,h ≤ ‖uh‖0 ≤ c2‖uh‖0,h, ∀uh ∈ Xh,
∥∥∥Ã1/2

h
uh

∥∥∥
0
=

∥∥∥A1/2
h

uh

∥∥∥
0
, ∀uh ∈ Xh.

(2.11)

So, for simplicity, we also denote ‖uh‖0,h and ‖uh‖1,h by ‖uh‖0 and ‖uh‖1, respectively,
without confusion. Below c (with or without a subscript) is a generic positive constant.

For the above finite element spaces Xh and Mh, it is well known that the following
approximation properties and inverse inequality

∥∥∥A1/2
h

v
∥∥∥
0
≤ ch−1‖v‖0, ∀v ∈ Xh,

‖v − Ihv‖0+ h
∥∥∥A1/2

h (v − Ihv)
∥∥∥
0
≤ ch2‖Ahv‖0, ∀v ∈ D(A),

∥∥v − I∗hv
∥∥
0 ≤ ch

∥∥∥A1/2
h

v
∥∥∥
0
, ∀v ∈ Xh,

∥∥q − Jhq
∥∥
0 ≤ ch

∥∥q∥∥1, ∀q ∈ H1(Ω) ∩M

(2.12)

hold (see [4, 13]), where Ih : D(A) → Xh is the interpolation operator and Jh : H1(Ω)∩M →
Mh is the L2-orthogonal projection.
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In order to define a locally stabilized formulation of the stationary Navier-Stokes
problem, we also need a macroelement partition Λh as follows: Given any subdivision Th, a
macroelement partitionΛh may be defined such that each macroelementK is a connected set
of adjoining elements from Th. Every element K must lie in exactly one macroelement. For
eachK, the set of interelement edges which are strictly in the interior ofKwill be denoted by
ΓK, and the length of an edge e ∈ ΓK is denoted by he. For a macroelement K the restricted
pressure space is given by

M0,h =
{
q ∈ L2

0(K) : q|K ∈ P0(K), ∀K ∈ K
}
. (2.13)

With the above choices of the velocity-pressure finite element spaces Xh, X∗
h
, Mh and

these additional definitions, a locally stabilized formulation of the Navier-Stokes problem
(1.1) can be stated as follows.

Definition 2.2 (locally stabilized FVM formulation). Find (uh, ph) ∈ (Xh,Mh), such that for all
(v, q) ∈ (Xh,Mh)

B̃h

((
uh, ph

)
;
(
I∗hv, q

))
+ b̃

(
uh, uh, I

∗
hvh

)
=

(
f, I∗hv

)
, (2.14)

where

B̃h

((
uh, ph

)
;
(
I∗hv, q

))
= B̃((

uh, ph
)
;
(
I∗hv, q

))
+ βCh

(
ph, q

)
, ∀(uh, ph

)
,
(
v, q

) ∈ (Xh,Mh),

Ch

(
p, q

)
=

∑
K∈Λh

∑
e∈ΓK

he

∫

e

[
p
]
e

[
q
]
eds,

(2.15)

for all p, q in the algebraic sum H1(Ω) +Mh, and [·]e is the jump operator across e ∈ ΓK and
β > 0 is the local stabilization parameter.

A general framework for analyzing the locally stabilized formulation (2.14) can be
developed using the notion of equivalence class of macroelements. As in Stenberg [14], each
equivalence class, denoted by EK̂, containsmacroelements which are topologically equivalent
to a reference macroelement K̂. See [1, 2] to get some examples.

The following stability results of these mixed methods for the macroelement partition
defined above were formally established by Kay and Silvester [6] and Kechkar and Silvester
[7]. Throughout the paper we will assume that β ≥ β0.

Theorem 2.3. Given a stabilization parameter β ≥ β0 > 0, suppose that every macroelement K ∈
Λh belongs to one of the equivalence classes EK̂, and that the following macroelement connectivity
condition is valid: for any two neighboring macroelementsK1 andK2 with

∫
K1∩K2

ds/= 0, there exists
v ∈ Xh such that

supp v ⊂ K1 ∪K2,

∫

K1∩K2

v · nds/= 0. (2.16)
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Then,

∥∥Ch

(
p, q

)∥∥
0 ≤ c

∑
K∈Th

(∫

K

(∥∥p∥∥2
0 + h2∥∥∇p

∥∥2
0

)
dx

)1/2(∫

K

(∥∥q∥∥2
0 + h2∥∥∇q

∥∥2
0

)
dx

)1/2

, (2.17)

for all p, q ∈ H1(Ω) +Mh, and

Ch

(
p, qh

)
= 0, Ch

(
ph, q

)
= 0, Ch

(
p, q

)
= 0 ∀p, q ∈ H1(Ω), ph, qh ∈ Mh, (2.18)

where c > 0 is a constant independent of h and β, and β0 is some fixed positive constant.

3. Error Estimates

In order to derive error estimates of (uh, ph) in the FVM, we need the existence and some
regularities of the variational problem (2.14) (see [1]).

Lemma 3.1. Under the assumptions of Theorem 2.3, there exist constants γ and α > 0 such that

ν
∥∥∥Ã1/2

h uh

∥∥∥
2

0
+ βCh

(
ph, ph

)
= B̃h

((
uh, ph

)
;
(
I∗huh, ph

))
, (3.1)

∣∣∣B̃h

((
uh, ph

)
;
(
I∗hvh, qh

))∣∣∣ ≤ γ
(∥∥∥Ã1/2

h
Auh

∥∥∥
0
+
∥∥ph

∥∥
0

)(∥∥∥Ã1/2
h

Avh

∥∥∥
0
+
∥∥qh

∥∥
0

)
, (3.2)

α
(∥∥∥Ã1/2

h
uh

∥∥∥
0
+
∥∥ph

∥∥
0

)
≤ sup

(vh,qh)∈(Xh,Mh)

B̃h

((
uh, ph

)
;
(
I∗
h
vh, qh

))
∥∥∥Ã1/2

h
vh

∥∥∥
0
+
∥∥qh

∥∥
0

(3.3)

hold for all (uh, ph) and (vh, qh) ∈ (Xh,Mh).

For the trilinear terms b̃(u, vh, I
∗
hwh) and b̃(vh, u, I

∗
hwh), the following properties are

useful [1, 2]. Set

N2 = sup
u,vh,wh∈H1

0 (Ω)

b̃
(
u, vh, I

∗
h
w

)
∥∥A1/2u

∥∥
0

∥∥∥Ã1/2
h v

∥∥∥
0

∥∥∥Ã1/2
h w

∥∥∥
0

,

N3 = sup
u,vh,wh∈H1

0 (Ω)

b̃
(
vh, u, I

∗
h
w

)
∥∥∥Ã1/2

h v
∥∥∥
0

∥∥A1/2u
∥∥
0

∥∥∥Ã1/2
h w

∥∥∥
0

,

N = max{N1,N2,N3}.

(3.4)

Lemma 3.2. The trilinear form b̃ satisfies

∣∣∣b̃(uh, vh, I
∗
hwh

)∣∣∣ ≤ c
∥∥∥Ãhuh

∥∥∥
1/2

0

∥∥∥Ã1/2
h

uh

∥∥∥
1/2

0

∥∥∥Ã1/2
h

vh

∥∥∥
0

∥∥∥Ãhwh

∥∥∥
1/2

0

∥∥∥Ã1/2
h

wh

∥∥∥
1/2

0
, (3.5)

for any uh, vh,wh ∈ Xh.
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Lemma 3.3. Suppose the assumptions of Theorem 2.3 and (3.4) hold, and the body force f satisfies
the following uniqueness condition:

1 − 4N
ν2

∥∥f∥∥−1 > 0. (3.6)

Then there exists a unique solution (uh, ph) of problem (2.14) satisfying the following estimate:

ν
∥∥∥Ã1/2

h uh

∥∥∥
2

0
+
∥∥ph

∥∥2
0 ≤ κ, (3.7)

∥∥∥Ã1/2
h (u − uh)

∥∥∥
0
+
∥∥p − ph

∥∥
0 ≤ κh. (3.8)

In order to derive error estimates of the stabilized finite volume solution (uh, ph), we
need the following Galerkin projection (R̃h, Q̃h) : (X,M) → (Xh,Mh) defined by

B̃h

((
R̃h

(
v, q

)
, Q̃h

(
v, q

))
;
(
I∗hvh, qh

))
= B̃((

v, q
)
;
(
I∗hvh, qh

)) ∀(vh, qh
) ∈ (Xh,Mh),

(3.9)

for each (v, q) ∈ (X,M).
Note that, due to Lemma 3.1, (R̃h, Q̃h) is well defined. Now, we derive the following

optimal L2 error estimate of uh and ph defined in (3.9). Using an argument similar to ones
used by Layton and Tobiska in [15], the following approximate properties can be obtained.

Lemma 3.4. Under the assumptions of Lemma 3.3, the projection (Rh,Qh) satisfies

∥∥∥Ã1/2
h

(
v − R̃h

(
v, q

))∥∥∥
0
+
∥∥∥q − Q̃h(v, q)

∥∥∥
0
≤ c

(∥∥∥A1/2v
∥∥∥
0
+
∥∥q∥∥0

)
, (3.10)

for all (v, q) ∈ (X,M),

∥∥∥Ã1/2
h

(
v − R̃h

(
v, q

))∥∥∥
0
+
∥∥∥q − Q̃h

(
v, q

)∥∥∥
0
≤ ch

(
‖Av‖0 +

∥∥∥A1/2q
∥∥∥
0

)
, (3.11)

for all (v, q) ∈ (D(A),H1(Ω) ∩M), and

∥∥∥v − R̃h

(
v, q

)∥∥∥
0
+ h

∥∥∥Ã1/2
h

(
v − R̃h

(
v, q

))∥∥∥ + h
∥∥∥q − Q̃h

(
v, q

)∥∥∥
0
≤ ch2(|Av|0 +

∥∥q∥∥1

)
, (3.12)

for all (v, q) ∈ (D(A),H1(Ω) ∩M).

Proof. Equations (3.10) and (3.11) is the directly from [1]. Next, let (v, q) ∈ (D(A),H1(Ω)∩M)
and introduce the dual Stokes problem: find (Φ,Ψ) ∈ (X,M) such that

B̃((w, r); (Φ,Ψ)) =
(
w, I∗h

(
v − R̃h

(
v, q

)))
, ∀(w, r) ∈ (X,M). (3.13)
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Using the regularity assumption of Stokes problem (See the A1 assumption in [1, 2]), there
holds

‖Φ‖2 + ‖Ψ‖1 ≤ c
∥∥∥v − R̃h

(
v, q

)∥∥∥
0
. (3.14)

Now, setting w = v − R̃h(v, q), r = q − Q̃h(v, q), using (2.18) and (3.9), we obtain that for
(Φh,Ψh) = (I∗

h
Φ, JhΨ) ∈ (Xh,Mh),

∥∥∥v − R̃h

(
v, q

)∥∥∥
2

0
= B̃

((
v − R̃h

(
v, q

)
, q − Q̃h

(
v, q

))
; (Φ,Ψ)

)

= B̃h

((
v − R̃h

(
v, q

)
, q − Q̃h

(
v, q

))
; (Φ,Ψ)

)

= B̃h

((
v − R̃h

(
v, q

)
, q − Q̃h

(
v, q

))
; (Φ −Φh,Ψ −Ψh)

)

= ã
(
v − R̃h

(
v, q

)
, I∗h(Φ −Φh)

)

− d̃
(
I∗h(Φ −Φh), q − Q̃h

(
v, q

))

+ d
(
v − R̃h

(
v, q

)
,Ψ −Ψh

)
.

(3.15)

For any vh ∈ Xh, we have [9–11]

ã
(
v − R̃h

(
v, q

)
, I∗h(Φ −Φh)

)
=

(
Δ
((

v − R̃h

(
v, q

)) − Ih
(
v − R̃h

(
v, q

)))
, I∗h(Φ −Φh)

)
,

∥∥∥d̃
(
I∗h(Φ −Φh), q − Q̃h

(
v, q

))∥∥∥
0
≤ c

∥∥∥d
(
(Φ −Φh), q − Q̃h

(
v, q

))∥∥∥
0
.

(3.16)

Since the dual partition is formed by the barycenter, similar calculation in [10, 11, 16]
allows us to have
∥∥∥ã

(
v − R̃h

(
v, q

)
, I∗h(Φ −Φh)

)∥∥∥
0
≤ κh2

∥∥∥v − R̃h

(
v, q

)∥∥∥
0

×
(∥∥∥Ã1/2

h uh

∥∥∥
0
+ ‖u‖2 +

∥∥f∥∥1 +
∥∥∥Ã1/2

h

(
v − R̃h

(
v, q

))∥∥∥
0

)
,

(3.17)
∥∥∥d̃

(
I∗h(Φ −Φh), q − Q̃h

(
v, q

))∥∥∥
0
≤ c

∥∥∥d
(
(Φ −Φh), q − Q̃h

(
v, q

))∥∥∥
0

≤ c‖∇(Φ −Φh)‖0
∥∥∥q − Q̃h

(
v, q

)∥∥∥
0
.

(3.18)

By (3.10), (3.11), and (3.14), we have

∥∥∥d̃
(
I∗h(Φ −Φh), q − Q̃h

(
v, q

))∥∥∥
0
≤ ch2‖AΦ‖0

(
‖Av‖0 +

∥∥∥A1/2q
∥∥∥
0

)

≤ ch2
∥∥∥v − R̃h

(
v, q

)∥∥∥
0

(
‖Av‖0 +

∥∥∥A1/2q
∥∥∥
0

)
.

(3.19)
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Since Ch(p, qh) = 0, for all p ∈ (H1(Ω) ∩M), for all qh ∈ Mh, similarly in [7], we have

∥∥∥
(
div

(
v − R̃h

(
v, q

))
,Ψ −Ψh

)∥∥∥
0
≤ ch

∥∥∥∇
(
v − R̃h

(
v, q

))∥∥∥
0
‖Ψ‖1

≤ κh2(‖u‖2 +
∥∥p∥∥1

)∥∥∥
(
v − R̃h

(
v, q

))∥∥∥
0
.

(3.20)

Finally, combining (3.10)with (3.17), (3.19), and (3.20) yields (3.12).

Next, wewill derive the following error estimates of the finite element solution (uh, ph)
defined in Section 2.

Theorem 3.5. Assume that the assumptions of Lemma 3.3 hold. Then the stabilized finite element
solution (uh, ph) satisfies the error estimates

‖u − uh‖0 + h
(∥∥∥Ã1/2

h (u − uh)
∥∥∥
0
+
∥∥p − ph

∥∥
0

)
≤ ch2. (3.21)

Proof. It is well known that the weak solutions (u, p) ∈ (D(A) ∩ V,H1(Ω) ∩ M). Hence, we
derive from (2.14) and (3.9) that for all (vh, qh) ∈ (Xh,Mh)

Bh

((
eh, ηh

)
;
(
I∗hvh, qh

))
+ b̃

(
u − uh, u, I

∗
hvh

)
+ b̃

(
uh, u − uh, I

∗
hvh

)
= 0, (3.22)

where eh = R̃h(u, p) − uh and ηh = Q̃h(u, p) − ph. Taking (v, q) = (eh, ηh) in (3.22), we obtain

ν
∥∥∥Ã1/2

h
eh

∥∥∥
2
+ β0Ch

(
ηh, ηh

)
+ b̃

(
eh, u, I

∗
heh

)
+ b̃

(
u, eh, I

∗
heh

)

≤
∣∣∣b

(
u − R̃h

(
u, p

)
, u, eh

)∣∣∣ +
∣∣∣b

(
uh, u − R̃h

(
u, p

)
, eh

)∣∣∣.
(3.23)

We find from (1.10), (3.1), (3.4), and (3.6) that

ν
∥∥∥Ã1/2

h
eh

∥∥∥
2

0
−
∣∣∣b̃(eh, u, I∗heh

)∣∣∣ −
∣∣∣b̃(u, eh, I∗heh

)∣∣∣ ≥ ν
∥∥∥Ã1/2

h
eh

∥∥∥
2

0
− 2N

∥∥∥A1/2
h

u
∥∥∥
0

∥∥∥Ã1/2
h

eh
∥∥∥
2

0

≥ ν
(
1 − 2

∥∥f∥∥0ν
−2
)∥∥∥Ã1/2

h
eh

∥∥∥
2

0
.

(3.24)
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Moreover, By (3.5), (3.11), and Poincaré’s estimate, we have

∥∥∥b̃
(
uh, u − R̃h

(
u, p

)
, eh

)∥∥∥
0
+
∥∥∥b̃

(
u − R̃h

(
u, p

)
, u, eh

)∥∥∥
0

≤
∥∥∥b̃

(
u, u − R̃h

(
u, p

)
, eh

)∥∥∥
0
+
∥∥∥b̃

(
u − R̃h

(
u, p

)
, u, eh

)∥∥∥
0

+
∥∥∥b̃

(
u − R̃h

(
u, p

)
, u − R̃h

(
u, p

)
, eh

)∥∥∥
0
+
∥∥∥b̃

(
eh, u − R̃h

(
u, p

)
, eh

)∥∥∥
0

≤ c1‖Au‖0
∥∥∥Ã1/2

h

(
u − R̃h

(
u, p

))∥∥∥
0

∥∥∥Ã1/2
h

eh
∥∥∥
0

+ c2
(∥∥∥Ã1/2

h

(
u − R̃h

(
u, p

))∥∥∥
0
+
∥∥∥Ã1/2

h
eh

∥∥∥
0

)∥∥∥Ã1/2
h

(
u − R̃h

(
u, p

))∥∥∥
0

∥∥∥Ã1/2
h

eh
∥∥∥
0

≤ ch2
∥∥∥Ã1/2

h
eh

∥∥∥
0
.

(3.25)

Combining the above estimates with (3.24) and using the uniqueness condition (3.4) yield

∥∥∥Ã1/2
h eh

∥∥∥
0
≤ ch2. (3.26)

Finally, one finds from (3.12) and (3.26) that

‖u − uh‖0 ≤ ‖eh‖0 +
∥∥u − Rh

(
u, p

)∥∥
0 ≤ c3

∥∥∥Ã1/2
h

eh
∥∥∥
0
+ ch2(‖Au‖0 +

∥∥p∥∥1

) ≤ ch2. (3.27)

Hence, combining the above estimates with (3.8) gives (3.21).

4. Numerical Example

For stationary Navier-Stokes problem, the iteration scheme, in general, is

νAv +N(v)v + Bp = f

−BTv + βC = 0.
(4.1)

The submatrices occurring in (4.1) correspond to differential operators as A ∼ −diag (νΔ),
N(v) ∼ v · ∇, B ∼ ∇, −BT ∼ div, and C ∼ Ch(·, ·). The right-hand side f contains information
from the source information.

In general, this problem can be solved by the following Newton method:

(1) R = f −
(
νAvold +N

(
vold

))
vold − Bpold, r = −BTvold;

(2)
(
νAvmid +N

(
vold

))
vmid +N

(
vmid

)
vold + Bpmid = R, BTvmid = r;

(3) vnew = vold + vmid, pnew = pold + pmid,

(4.2)
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whereR, r are the so-called nonlinear residual. Actually the difference between (4.2) and (4.1)
is that, in computing the corrections vmid and pmid from R, r, the quadratic termN(vmid)vmid

deduced from (4.1) is dropped and gives the linear problem (4.2).

4.1. Numeric Example I

Consider a unit square domain with an exact solution given by

u
(
x, y

)
=

(
u1

(
x, y

)
, u2

(
x, y

))
, p

(
x, y

)
= 10(2x − 1)

(
2y − 1

)
,

u1
(
x, y

)
= 10x2(x − 1)2y

(
y − 1

)(
2y − 1

)
, u2

(
x, y

)
= −10x(x − 1)(2x − 1)y2(y − 1

)2
.

(4.3)

f is determined by (1.1). After some computation using stretched gird, we have the following
results.

Figure 2 is the relative error and convergence rate of velocity and pressure when ν =
0.005, β = 10. Table 1 lists the different errors and convergence rates of numerical velocity
and pressure for the same ν and β. From the figure and table, we can see that the almost
second-order L2 convergence is obtained, which confirms our theoretical prediction.

Figure 3 is the L2 relative error of numerical velocity versus the number of iterate steps
for different ν. The figure tells us the numerical velocities, in general, converge very fast.
Moreover, the figure also tells the bigger the ν, the faster the convergence speed, which is
consistent with the really case. If ν is not too small, for example, ν ≥ 0.01, only several Newton
iterations are needed.

4.2. Numeric Example II

The second example is the classical lid-driven flow governed by stationary Navier-Stokes
equations in a square cavity. We impose watertight boundary conditions, that is, ux(0, 1) =
ux(1, 1) = 0 and ux = 1, for 0 < x < 1. From the streamlines in Figures 4–7, we can see there
are some different performances for different ν for the problem based on the stretched grid
[16, 17] (with 128 × 128 grid).

The left subplot in Figure 4 is the velocity solution of Stokes problem which serves
as the initial guess of Newton method; the right subplot in Figure 4 is the nonconvergence
numeric velocity with that initial guess and 9 times Newton iterations. From Figure 4, we can
see that there is a different performance from Numerical Example I for the lid-driven flow;
if the ν is smaller, the initial value needed in Newton iteration has to be nearer the exact
solution. The nonconvergence indicates that we must have a good initiate value for Newton
iteration. For the ν = 0.001, the usual Stokes initial value is not sufficient and a better initial
value is needed, which can be computed by the following Picard method:

(1) R = f −
(
νAvold +N

(
vold

))
vold − Bpold, r = −BTvold;

(2)
(
νAvmid +N

(
vold

))
vmid + Bpmid = R, BTvmid = r;

(3) vnew = vold + vmid, pnew = pold + pmid.

(4.4)
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Figure 2: The relative errors and convergence rates of velocity and pressure.

Table 1: Numerical results of the FVM (ν = 0.005, β = 10).

h ‖Ã1/2
h

(u − uh)‖0/‖Ã
1/2
h

u‖0 Con. rate ‖u − uh‖0/‖u‖0 Con. rate ‖p − ph‖0/‖p‖0 Con. rate
1/16 0.06316279 — 0.00391173 — 0.07127911 —
1/32 0.03204341 0.97904713 0.00099767 1.97116812 0.03572585 0.99651095
1/64 0.01627933 0.97698618 0.00025462 1.97021278 0.01790786 0.99637536
1/128 0.00827253 0.97664010 0.00006499 1.96996167 0.00897672 0.99633198

The difference between Picard method and Newton method is that the linear term
N(vmid)vold is also dropped from (4.2), and thus the Picard method commonly referred to as
the Oseen system.

The left subplot in Figure 5 is the initial velocity for the Newton iteration based on
two Picard iterations without Newton iteration, and the right subplot in Figure 5 is the
streamlines of the convergence numeric velocity evaluated at the 2 Picard iterations, using
4 times Newton iterations.

Figures 6 and 7 give the behavior of different iteration results for ν = 0.001 and
ν = 0.00033. From these figures, we can see that if ν is smaller, the initial value needed in
Newton method should be better. The initial value computed by one or two steps Picard
method is already insufficient and thus more Picard iterations are needed. In addition, we
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Figure 4: Nonconvergence streamlines for ν = 0.001, β = 10 ((a) Stokes, (b) N9).

can also see that the convergence speed of Picard is not as fast as Newton: if the initial value
is sufficient for Newton iteration, the convergence speed of Newton’s method is faster than
Picard’s method.

Actually, the Picard method corresponds to a simple fixed point iteration strategy for
solving (2.14)whose convection coefficient is evaluated at the current velocity. Thus, the rate
of convergence of Picard method is only linear in general; whereas, for the added more linear
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Figure 5: Streamlines for ν = 0.001, β = 10 ((a) P2N0, (b) P2N4).
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Figure 6: Nonlinear residual versus iteration steps ((a) ν = 0.001, β = 10 and (b) ν = 0.00033, β = 20).

term, if the initial value is sufficient close to a nonsingular solution, the Newton method is
locally convergence quadratic (For more information see [18]).

It is necessary to pay attention to the “finest” number of Picard iteration in the
computation of initial value for Newton iteration. Since the convergence radius of theNewton
method is proportional to Reynolds number (namely, 1/ν) in general, in these computations,
we roughly choose the times of Picard iteration to increase proportionately with Reynolds
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Figure 7: Streamlines for ν = 0.000333, β = 30 ((a) P5N10 (wrong result), (b) P10N5 (right result)).

number. Many numerical tests show that this strategy is good enough for the success of the
ensuing Newton iteration.

5. Conclusions

The main work in this paper is the demonstration of the optimal order in the L2 error of the
velocity and emphasis on some aspects of its associated numerical computation. Both the
theoretical analysis and numerical results indicate the efficiency of the FVM for stationary
Navier-Stokes equations.

Further, numerical computations show the convergence of Newton method is closely
related to the viscosity ν. Thus, as it is decreased, better and better initial values are needed,
whereas the advantage of Picard method is that, relative to Newton method, it has a much
large region of trust of convergence. As a result, a good choice is to combine the Newton
method with Picard method in computing, and thus more complicated problems can be
solved efficiently.
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