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We derive a family of eighth-order multipoint methods for the solution of nonlinear equations.
In terms of computational cost, the family requires evaluations of only three functions and one
first derivative per iteration. This implies that the efficiency index of the present methods is 1.682.
Kung and Traub (1974) conjectured that multipoint iteration methods without memory based on
n evaluations have optimal order 2n−1. Thus, the family agrees with Kung-Traub conjecture for the
case n = 4. Computational results demonstrate that the developedmethods are efficient and robust
as compared with many well-known methods.

1. Introduction

Solving nonlinear equations is one of themost important problems in science and engineering
[1, 2]. The boundary value problems arising in kinetic theory of gases, vibration analysis,
design of electric circuits, and many applied fields are reduced to solving such equations. In
the present era of advance computers, this problem has gained much importance than ever
before.

In this paper, we consider iterative methods to find a simple root r of the nonlinear
equation f(x) = 0, where f : R → R be the continuously differentiable real function.
Newton’s method [1] is probably the most widely used algorithm for solving such equations,
which starts with an initial approximation x0 closer to the root r and generates a sequence of
successive iterates {xi}∞0 converging quadratically to the root. It is given by the following:

xi+1 = xi −
f(xi)
f ′(xi)

, i = 0, 1, 2, 3, . . . . (1.1)
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In order to improve the local order of convergence, a number of ways are considered
by many researchers, see [3–26] and references therein. In particular, King [3] developed a
one-parameter family of fourth-order methods defined by

wi = xi −
f(xi)
f ′(xi)

,

xi+1 = wi −
f(xi) + βf(wi)

f(xi) +
(
β − 2

)
f(wi)

f(wi)
f ′(xi)

,

(1.2)

where wi is the Newton point and β is a constant.
This family requires two evaluations of the function f and one evaluation of first

derivative f ′ per iteration. The famous Ostrowski’s method [4, 5] is a member of this family
for the case β = 0. From practical point of view, the methods (1.2) are important because of
higher efficiency than Newton’s method (1.1).

Traub [5] has divided iterative methods into two classes, namely, one-point methods
and multipoint methods. Each class is further divided into two subclasses, namely, one-point
methods with and without memory, and multipoint methods with and without memory.
The important aspects related to these classes of methods are order of convergence and
computational efficiency. Order of convergence shows the speedwithwhich a given sequence
of iterates converges to the root while the computational efficiency concerns with the
economy of the entire process. Investigation of one-point methods with andwithout memory,
has demonstrated theoretical restrictions on the order and efficiency of these two categories
(see [5]). However, Kung and Traub [6] have conjectured that multipoint iteration methods
without memory based on n evaluations have optimal order 2n−1. In particular, with three
evaluations a method of fourth-order can be constructed. The King’s method (1.2) is a well-
known example of fourth-order multipoint methods without memory.

Recently, based on Ostrowski’s or King’s methods some higher-order multipoint
methods have been proposed and analyzed for solving nonlinear equations. For example,
Grau and Dı́az-Barrero [10], Sharma and Guha [11], and Chun andHam [12] have developed
sixth-order modified Ostrowski’s methods each requires three f and one f ′ evaluations
per iteration. Kou et al. [15] presented a family of variants of Ostrowski’s method with
seventh-order convergence requiring three fand one f ′ evaluations. With same number of
evaluations, Bi et al. [18] developed a seventh-order family of modified King’s methods. Bi
et al. [19] also presented an eighth-order family of modified King’s methods requiring four
evaluations which agrees with the Kung-Traub conjecture.

In this paper, we present a new family of eighth-order methods without using second
and higher derivatives. In terms of computational cost, it requires the evaluations of three
functions and one first derivative per iteration. Thus the present methods provide a new
example of multipoint methods without memory that with four evaluations a method of
optimum order eight can be achieved as conjectured by Kung and Traub. The performance
and effectiveness of the developed family of methods is tested and compared through some
test functions.

Contents of the paper are summarized as follows. Some basic definitions relevant
to the present work are presented in Section 2. In Section 3, we obtain new methods.
Convergence analysis, for establishing eighth-order convergence, is carried out in Section 4.
In Section 5, we provide some particular cases of the family. In Section 6, the method is
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tested and compared with other well-known methods on a number of problems. Concluding
remarks are given in Section 7.

2. Basic Definitions

Definition 2.1. Let f(x) be a real function with a simple root r and let {xi}i∈N be a sequence
of real numbers that converges towards r. Then, we say that the order of convergence of the
sequence is p, if there exits a number p ∈ R

+ such that

lim
i→∞

xi+1 − r

(xi − r)p
= C, (2.1)

for some C/= 0, C is known as the asymptotic error constant.
If p = 1, 2 or 3, the sequence is said to have linear convergence, quadratic convergence

or cubic convergence, respectively.

Definition 2.2. Let ei = xi − r be the error in the ith iteration, we call the relation

ei+1 = Ce
p

i +O
(
e
p+1
i

)
, (2.2)

the error equation.

Definition 2.3. Let n be the number of new pieces of information required by a method. A
“piece of information” typically is any evaluation of a function or one of its derivatives. The
efficiency of the method is measured by the concept of efficiency index [27] and is defined by
the following:

E = p1/n, (2.3)

where p is the order of the method.

Definition 2.4. Suppose that xi+1, xi and xi−1 are three successive iterations closer to the root
r. Then, the computational order of convergence ρ (see [24, 25, 28]) is approximated by using
(2.2) as follows:

ρ ∼= ln|(xi+1 − r)/xi − r|
ln|xi − r/xi−1 − r| . (2.4)
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3. The Method

We consider the iteration scheme of the form

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −ω(λi)
f(wi)
f ′(xi)

,

xi+1 = zi −W
(
μi

) f(zi)
f ′(zi)

,

(3.1)

where λi = f(wi)/f(xi), μi = f(zi)/f(xi), and ω(t) and W(t) represent the real-valued
functions (here onwards called weight functions). This scheme consists of three steps in
which the first step represents Newton’s method and last two are weighted-Newton steps.
It is quite obvious that formula (3.1) requires five evaluations per iteration. However, we
can reduce the number of evaluations to four by using some suitable approximation of the
derivative f ′(zi). We obtain this approximation by considering the approximation of f(x) by
a rational linear function of the form

y(x) − y(xi) =
(x − xi) + a

b(x − xi) + c
, (3.2)

where the parameters a, b, and c are determined by the condition that f and y coincide at xi,
wi and zi. That means y(x) satisfies the conditions

y(xi) = f(xi), y(wi) = f(wi), y(zi) = f(zi). (3.3)

From (3.2) and first condition of (3.3), it is easy to show that

a = 0. (3.4)

Substituting the value of a into (3.2) then using the last two conditions of (3.3), after
some simple calculations we obtain

b(wi − xi) + c =
1

f[xi,wi]
,

b(zi − xi) + c =
1

f[xi, zi]
,

(3.5)

where f[xi,wi] = (f(wi) − f(xi))/(wi − xi) and f[xi, zi] = (f(zi) − f(xi))/(zi − xi) are first-
divided differences.
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Solving these equations, we can obtain b and c as follows:

b =
1

wi − zi

(
1

f[xi,wi]
− 1
f[xi, zi]

)
,

c =
1

wi − zi

(
xi − zi

f[xi,wi]
− xi −wi

f[xi, zi]

)
.

(3.6)

Differentiation of (3.2) gives

y′(x) =
c

[b(x − xi) + c]2
. (3.7)

We can now approximate the derivative f ′(x) with the derivative y′(x) of rational
function (3.2) and obtain

f ′(zi) ≈ y′(zi). (3.8)

Substituting the values of b and c obtained in (3.6) into (3.7) then using (3.8), we get
after simplifications

f ′(zi) =
f[xi, zi]f[wi, zi]

f[xi,wi]
. (3.9)

Then the iteration scheme (3.1) in its final form is given by the following:

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −ω(λi)
f(wi)
f ′(xi)

,

xi+1 = zi −W
(
μi

) f[xi,wi]f(zi)
f[xi, zi]f[wi, zi]

,

(3.10)

where λi = f(wi)/f(xi), μi = f(zi)/f(xi), and ω(t) and W(t) are the weight functions.
Thus the scheme (3.10) defines a new family of multipoint methods with two weight

functions ω(t) and W(t). In the next section, we will see that both of these functions play an
important role in establishing eighth-order convergence of the methods.

4. Convergence of the Method

In order to examine the convergence property of the family (3.10), we prove the following
theorem.

Theorem 4.1. Let the function f : R → R be sufficiently smooth in R. If f(x) has a simple root r in
R and x0 is sufficiently close to r, then the sequence {xi} generated by any method of the family (3.10)
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converges to r with convergence order eight, provided the weight functions ω(t) and W(t) satisfy the
conditions ω(0) = 1, ω′(0) = 2, ω′′(0) = 8,W(0) = 1, W ′(0) = 1, and |ω′′′(0)| < ∞.

Proof. Let ei = xi − r be the error in the iterate xi. Using Taylor’s series expansion, we get

f(xi) = f ′(r)
[
ei +A2e

2
i +A3e

3
i +A4e

4
i +A5e

5
i +A6e

6
i +A7e

7
i +A8e

8
i +O

(
e9i

)]
,

f ′(xi) = f ′(r)
[
1 + 2A2ei + 3A3e

2
i + 4A4e

3
i + 5A5e

4
i + 6A6e

5
i + 7A7e

6
i + 8A8e

7
i +O

(
e8i

)]
,

(4.1)

where Ak = f (k)(r)/k!f ′(r) for k ∈ N,N is the set of natural numbers.
Now,

f(xi)
f ′(xi)

= ei −A2e
2
i − 2

(
−A2

2 +A3

)
e3i −

(
4A3

2 − 7A2A3 + 3A4

)
e4i −K1e

5
i −K2e

6
i −K3e

7
i

−K4e
8
i +O

(
e9i

)
,

(4.2)

Following are the expressions of Kn (n = 1, 2, 3, 4)

K1 = −8A4
2 + 20A2

2A3 − 6A2
3 − 10A2A4 + 4A5,

K2 = 16A5
2 − 52A3

2A3 + 33A2A
2
3 + 28A2

2A4 − 17A3A4 − 13A2A5 + 5A6,

K3 = − 32A6
2 + 128A4

2A3 − 126A2
2A

2
3 + 18A3

3 − 72A3
2A4 + 92A2A3A4 − 12A2

4 + 36A2
2A5

− 22A3A5 − 16A2A6 + 6A7,

K4 = 64A7
2 − 304A5

2A3 + 408A3
2A

2
3 − 135A2A

3
3 + 176A4

2A4 − 348A2
2A3A4 + 75A2

3A4 + 64A2A
2
4

− 92A3
2A5 + 118A2A3A5 − 31A4A5 + 44A2

2A6 − 27A3A6 − 19A2A7 + 7A8.

(4.3)

For the sake of brevity, we omit their specific forms. We will use the same means in the
following.

For

wi = xi −
f(xi)
f ′(xi)

= r +A2e
2
i + 2

(
−A2

2 +A3

)
e3i +

(
4A3

2 − 7A2A3 + 3A4

)
e4i +K1e

5
i +K2e

6
i +K3e

7
i

+K4e
8
i +O

(
e9i

)
.

ẽi = A2e
2
i + 2

(
−A2

2 +A3

)
e3i +

(
4A3

2 − 7A2A3 + 3A4

)
e4i +K1e

5
i +K2e

6
i +K3e

7
i

+K4e
8
i +O

(
e9i

)
.

(4.4)
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Using Taylor’s series expansion, we get

f(wi) = f ′(r)
[
ẽi +A2ẽ

2
i +A3ẽ

3
i +A4ẽ

4
i +O

(
e9i

)]
, (4.5)

therefore,

f(wi)
f ′(xi)

= ẽi − 2A2ẽiei +
[(

4A2
2 − 3A3

)
ẽie

2
i +A2ẽ

2
i

]

+
[
−2A2

2ẽ
2
i ei +

(
−8A3

2 + 12A2A3 − 4A4

)
ẽie

3
i

]
+M1e

6
i +M2e

7
i +M3e

8
i +O

(
e9i

)
,

M1 =
(
4A3

2 − 3A2A3

) ẽ2i
e4i

+
(
16A4

2 − 36A2
2A3 + 9A2

3 + 16A2A4 − 5A5

) ẽi

e2i
+A3

ẽ3i
e6i

,

M2 = − 2A2A3
ẽ3i
e6i

+
(
−8A4

2 + 12A2
2A3 − 4A2A4

) ẽ2i
e4i

+
(
−32A5

2 + 96A3
2A3 − 54A2A

2
3 − 48A2

2A4 + 24A3A4 + 20A2A5 − 6A6

) ẽi

e2i
,

M3 =
(
4A2

2A3 − 3A2
3

) ẽ3i
e6i

+
(
16A5

2 − 36A3
2A3 + 9A2A

2
3 + 16A2

2A4 − 5A2A5

) ẽ2i
e4i

+
(
64A6

2 − 240A4
2A3 + 216A2

2A
2
3 − 27A3

3 + 128A3
2A4 − 144A2A3A4

+16A2
4 − 60A2

2A5 + 30A3A5 + 24A2A6 − 7A7

) ẽi

e2i
+A3

ẽ4i
e8i

.

(4.6)

Also

λi =
f(wi)
f(xi)

=
ẽi
ei

−A2ẽi +

[

A2
ẽ2i
ei

+
(
A2

2 −A3

)
ẽiei

]

+
[(

−A3
2 + 2A2A3 −A4

)
ẽie

2
i −A2

2ẽ
2
i

]

+

[(
A4

2 − 3A2
2A3 +A2

3 + 2A2A4 −A5

)
ẽie

3
i +

(
A3

2 −A2A3

)
ẽ2i ei +A3

ẽ3i
ei

]

+
[(

−A5
2 + 4A3

2A3 − 3A2A
2
3 − 3A2

2A4 + 2A3A4 + 2A2A5 −A6

)
ẽie

4
i

+
(
−A4

2 + 2A2
2A3 −A2A4

)
ẽ2i e

2
i −A2A3ẽ

3
i

]
+O

(
e7i

)
.

(4.7)
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Thus, using the Taylor expansion, we get

ω(λi) = ω(0) +ω′(0)λi +
1
2!
ω′′(0)λ2i +

1
3!
ω′′′(0)λ3i +O

(
λ4i

)

= ω(0) +ω′(0)
ẽi
ei

+

[
1
2
ω′′(0)

ẽ2i
e2i

−A2ω
′(0)ẽi

]

+

[
1
6
ω′′′(0)

ẽ3i
e3i

+A2
(
ω′(0) −ω′′(0)

) ẽ2i
ei

+
(
A2

2 −A3

)
ω′(0)ẽiei

]

+ L1e
4
i + L2e

5
i + L3e

6
i +O

(
e7i

)
,

(4.8)

where

L1 =
1
24

ωiν(0)
ẽ4i
e8i

+
1
2
A2

(
2ω′′(0) −ω′′′(0)

) ẽ3i
e6i

+

(

−A3ω
′′(0) +A2

2

(
−ω′(0) +

3
2
ω′′(0)

)
ẽ2i
e4i

−
(
A3

2 + 2A2A3 −A4

)
ω′(0)

ẽi

e2i
,

L2 =
1

120
ων(0)

ẽ5i

e10i
+
1
6
A2

(
3ω′′′(0) −ω(iν)(0)

)

×
(
A3

(
ω′(0) − 1

2
ω′′′(0)

)
+A2

2
(−2ω′′(0) +ω′′′(0)

)
)
ẽ3i
e6i

+
(
−A2A3

(
ω′(0) − 3ω′′(0)

)
+A3

2

(
ω′(0) − 2ω′′(0)

) −A4 ω
′′(0)

) ẽ2i
e4i

+
(
A4

2 − 3A2
2A3 +A2

3 + 2A2A4 −A5

)
ω′(0)

ẽi

e2i
,

L3 =
1

720
ωνi(0)

ẽ6i
e12i

+
1
24

A2

(
4ωiν(0) −ων(0)

) ẽ5i

e10i

+
1
12

(
2A3

(
6ω′′(0) −ωiν(0)

)
+A2

2

(
6ω′′(0) − 18ω′′′(0) + 5ωiν(0)

)) ẽ4i
e8i

+
(
−A2A3

(
ω′(0) + 2ω′′(0) − 2ω′′′(0)

)
+A3

2

(
3ω′′(0) − 5

3
ω′′′(0)

)
− 1
2
A4 ω

′′′(0)
)
ẽ3i

+
(
2A2

2A3
(
ω′(0) − 3ω′′(0)

) −A2A4
(
ω′(0) − 3ω′′(0)

)
+
1
2

(
3A2

3 − 2A5

)
ω′′(0)

+A4
2

(
−ω′(0) +

5
2
ω′′(0)

))
ẽ2i
e4i

+
(
−A5

2 + 4A3
2A3 − 3A2A

2
3 − 3A2

2A4 + 2A3A4 + 2A2A5 −A6

)
ω′(0)

ẽi

e2i
.

(4.9)
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Using (4.6) and (4.8), we have

zi = wi − ω(λi)
f(wi)
f ′(xi)

= r + [1 −ω(0)]ẽi −
[

ω′(0)
ẽ2i
ei

− 2ω(0)A2ẽiei

]

−
[
1
2
ω′′(0)

ẽ3i
e2i

+A2
(
ω(0) − 3ω′(0)

)
ẽ2i +ω(0)

(
4A2

2 − 3A3

)
ẽie

2
i

]

−
[
1
2
ω′′(0)

ẽ3i
e2i

+A2
(
ω(0) − 3ω′(0)

)
ẽ2i +ω(0)

(
4A2

2 − 3A3

)
ẽie

2
i

]

e5i

−M6e
6
i −M7e

7
i −M8e

8
i +O

(
e9i

)
,

(4.10)

where Mn (n = 6, 7, 8) are the expression about An (n = 2, 3, . . . , 8).
If (0) = 1, ω′(0) = 2 and substituting the value of ẽi from (4.4), we get

êi = zi − r

=
[(

5 − 1
2
ω′′(0)

)
A3

2 −A2A3

]
e4i +

(
−36 + 5ω′′(0) − 1

6
ω′′′(0)

)
A4

2 +
(
32 − 3ω′′(0)

)
A2

2A3

−2A2
3 − 2A2A4

]
e5i +M6e

6
i +M7e

7
i +M8e

8
i +O

(
e9i

)
.

(4.11)

Using Taylor’s series expansion, we get

f(zi) = f ′(r)
[
êi +A2ê

2
i +O

(
e9i

)]
, (4.12)

furthermore,

f[xi,wi] =
f(wi) − f(xi)

wi − xi

= f ′(r)
[
1 +A2ei +

(
A2

2 +A3

)
e2i +

(
−2A3

2 + 3A2A3 +A4

)
e3i

+
(
4A4

2 − 8A2
2A3 + 2A2

3 + 4A2A4 +A5

)
e4i +O

(
e5i

)]
.
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f[xi, zi] =
f(zi) − f(xi)

zi − xi

= f ′(r)
[
1 +A2ei +A3e

2
i +A4e

3
i

+
((

5 − 1
2
ω′′(0)

)
A4

2 −A2
2A3 +A5

)
e4i +O

(
e5i

)]
.

f[wi, zi] =
f(zi) − f(wi)

zi −wi

= f ′(r)
[
1 +A2

2e
2
i − 2

(
A3

2 −A2A3

)
e3i

+
((

9 − 1
2
ω′′(0)

)
A4

2 − 7A2
2A3 + 3A2A4

)
e4i +O

(
e5i

)]
.

(4.13)

Using the above results, we obtain

f[xi,wi]
f[wi, zi]f[xi, zi]

=
1

f ′(r)

[
1 +

(
−A3

2 +A2A3

)
e3i

+
((−7 +ω′′(0)

)
A4

2 − 4A2
2A3 + 2A2

3 +A2A4

)
e4i +O

(
e5i

)]
.

(4.14)

Also

μi =
f(zi)
f(xi)

=
êi
ei

−A2êi +O
(
e5i

)
. (4.15)

Thus, using the Taylor expansion and |W ′′(0)| < ∞,we get

W
(
μi

)
= W(0) +W ′(0)μi +O

(
μ2
i

)
= W(0) +W ′(0)

(
êi
ei

−A2êi

)
+O

(
e5i

)
. (4.16)

Using these results in

xi+1 = zi −W
(
μi

) f[xi,wi]f(zi)
f[wi, zi] f[xi, zi]

, (4.17)
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we obtain

ei+1 = êi −
[
W(0) +W ′(0)

êi
ei

−W ′(0)A2êi + O
(
e5i

)][
êi +A2ê

2
i +O

(
ê3i

)]

×
[
1 +

(
−A3

2 +A2A3

)
e3i +

((−7 +ω′′(0)
)
A4

2 − 4A2
2A3 + 2A2

3 +A2A4

)
e4i +O

(
e5i

)]

= êi −
[
W(0) +W ′(0)

êi
ei

−W ′(0)A2êi

](
êi +A2ê

2
i

)

×
[
1 +

(
−A3

2 +A2A3

)
e3i +

((−7 +ω′′(0)
)
A4

2 − 4A2
2A3 + 2A2

3 +A2A4

)
e4i

]
+O

(
e9i

)

= [1 −W(0)]êi −
[
W(0)

(
−A3

2 +A2A3

)
e3i +W ′(0)

êi
ei

]
êi −

[
W(0) −W ′(0)

]
A2ê

2
i

−
[(−7 +ω′′(0)

)
A4

2 − 4A2
2A3 + 2A2

3 +A2A4

]
W(0)e4i êi +O

(
e9i

)

= [1 −W(0)]êi −
[
W(0)

(
−A3

2 +A2A3

)
+W ′(0)

(
5 − 1

2
ω′′(0)A3

2 −A2A3

)]
e3i êi

+
[
W ′(0) −W(0)

]
A2ê

2
i +

[
W(0)

((
7 −ω′′(0)

)
A4

2 + 4A2
2A3 − 2A2

3 −A2A4

)

−W ′(0)
((

−36 + 5ω′′(0) − 1
6
ω′′′(0)

)
A4

2 +
(
32 − 3ω′′(0)

)
A2

2A3 − 2A2
3 − 2A2A4

)]

× e4i êi +O
(
e9i

)
.

(4.18)

This means that convergence order of the family (3.10) is seventh-order with W(0) = 1 and
the error equation is

ei+1 =
[(

A3
2 −A2A3

)((
5 − 1

2
ω′′(0)A3

2 −A2A3

)

−W ′(0)

((
5 − 1

2
ω′′(0)A3

2 −A2A3

)2
]

e7i +O
(
e8i

)
,

(4.19)

and ifW is any function withW(0) = 1,W ′(0) = 1, andω′′(0) = 8, then the convergence order
of any method of the family (3.10) arrives to eight, and the error equation is

ei+1 = A2
2

(
A2

2 −A3

)[(
−5 + 1

6
ω′′′(0)

)
A3

2 − 4A2A3 +A4

]
e8i +O

(
e9i

)
. (4.20)

Thus if ω and Ware any functions with (0) = 1, ω′(0) = 2, ω′′(0) = 8,W(0) = 1, and W ′(0) = 1,
then the eighth-order convergence is established. This completes the proof of the theorem.

Note that per iteration every method of the family (3.10) uses four pieces of
information, namely, f(xi), f ′(xi), f(wi), f(zi) and has eighth-order convergence with the



12 Advances in Numerical Analysis

conditions ω(0) = 1, ω′(0) = 2, ω′′(0) = 8, W(0) = 1, and W ′(0) = 1, which is in accordance
with Kung-Traub conjecture for 4 evaluations.

5. Some Particular Forms

Here, we consider some forms of the functions ω(t) andW(t) satisfying the conditions of the
Theorem 4.1. Based on these forms some methods of the family (3.10) are also presented.

5.1. Forms of ω(t)

Form 1. For the function ω given by the following:

ω1(t) = 1 + 2t + 4t2 + αt3, (5.1)

where α ∈ R is a constant, it is clear that the conditions of Theorem 4.1 are satisfied.

Form 2. For the function ω defined by the following:

ω2(t) = 1 +
2t

1 − 2t + αt2
, (5.2)

where α ∈ R, it can be easily seen that this function satisfies the conditions of Theorem 4.1.

Form 3. For the function ω defined by the following:

ω3(t) =
(
1 + 2αt + βt2

)1/α
, β = 2α(α + 1), (5.3)

where α ∈ R−{0}, it can be seen that this function also satisfies the conditions of Theorem 4.1.

5.2. Forms of W(t)

Form 1. For the function W given by the following:

W1(t) = 1 + t + γt2, (5.4)

where γ ∈ R, it can be seen the function W1(t) satisfies the conditions of Theorem 4.1.

Form 2. For the function W defined by the following:

W2(t) = 1 +
t

1 + γt
, (5.5)

where γ ∈ R, it is simple to see that W2(t) satisfies the conditions of Theorem 4.1
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Form 3. For the function Wdefined by the following:

W3(t) =
(
1 + γt

)1/γ
, (5.6)

where γ ∈ R − {0}, again it can be seen that W3(t) satisfies the conditions of Theorem 4.1.

5.3. Forms of Methods

To form a concrete method we can take any combination of the above defined ω(t) andW(t).
For simplicity, we consider only three such combinations. For example, by taking ω2(t) with
Wi(t), i = 1, 2, 3 the following methods can be formed

Method 1. Taking ω2(t) and W1(t), we get a new two-parameter family of eighth-order
methods

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f2(xi) + αf2(wi)

f2(xi) − 2f(xi)f(wi) + αf2(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
[

1 +
f(zi)
f(xi)

+ γ
f2(zi)
f2(xi)

]
f[xi,wi] f(zi)
f[wi, zi]f[xi, zi]

.

(5.7)

Method 2. Considering ω2(t) andW2(t), we get another new two-parameter family of eighth-
order methods

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f2(xi) + αf2(wi)

f2(xi) − 2f(xi)f(wi) + αf2(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
[
f(xi) +

(
1 + γ

)
f(zi)

f(xi) + γf(zi)

]
f[xi,wi] f(zi)

f[wi, zi] f[xi, zi]
.

(5.8)
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Table 1: Test functions.

f(x) r

f1(x) = x5 + x4 + 4x2 − 15 1.3474280989683050
f2(x) = sin(x) − x/3 2.2788626600758283
f3(x) = 10xe−x

2 − 1 1.6796306104284499
f4(x) = cos(x) − x 0.7390851332151606
f5(x) = e−x

2+x+2 − 1 −1.0000000000000000
f6(x) = e−x + cos(x) 1.7461395304080124
f7(x) = ln(x2 + x + 2) − x + 1 4.1525907367571583
f8(x) = arcsin(x2 − 1) − x/2 + 1 0.5948109683983692
f9(x) = xex

2 − sin2x + 3 cosx + 5 −1.2076478271309189

Method 3. Considering now ω2(t) and W3(t), we get another new two-parameter family of
eighth-order methods

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f2(xi) + αf2(wi)

f2(xi) − 2f(xi)f(wi) + αf2(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
[
1 + γ

f(zi)
f(xi)

]1/γ f[xi,wi] f(zi)
f[wi, zi] f[xi, zi]

.

(5.9)

The proposed families require three evaluations of the function f and one evaluation of first
derivative f ′per iteration, and achieve eighth-order convergence. Thus the efficiency index
(E) defined by (2.3) of the present methods (3.10) is E = 4

√
8 ≈ 1.682 which is better than

E =
√
2 ≈ 1.414 of Newton’s method, E = 3

√
4 ≈ 1.587 of King’s [3] and Ostrowski’s [4]

methods, E = 4
√
6 ≈ 1.565 of sixth-order methods [10–12] and E = 4

√
7 ≈ 1.627 of seventh-

order methods [15, 18].

6. Numerical Examples

We employ the present methods (4.1), and (4.4) denoted by M81, M82 and M83, respectively
to solve some nonlinear equations and compare with Newton’s method (NM) defined by
(1.1), the eighth-order method developed by Cordero et al. [23] denoted by C8 and defined
as follows:

wi = xi −
f(xi)
f ′(xi)

,

zi = xi −
f(xi) − f(wi)
f(xi) − 2f(wi)

f(xi)
f ′(xi)

,

ui = zi −
(

f(xi) − f(wi)
f(xi) − 2f(wi)

+
1
2

f(zi)
f(wi) − 2f(zi)

)
f(zi)
f ′(xi)

,

xi+1 = ui −
3
(
β2 + β3

)
(ui − zi)

β1(ui − zi) + β2(wi − xi) + β3(zi − xi)
f(zi)
f ′(xi)

,

(6.1)
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where β1, β2, β3 ∈ R and β2 + β3 /= 0, eighth-order method developed by Liu and Wang [22]
denoted by L8 and defined as follows:

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f(xi)

f(xi) − 2f(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
[(

f(xi) − f(wi)
f(xi) − 2f(wi)

)2

+
f(zi)

f(wi) − α1f(zi)
+

4f(zi)
f(xi) + α2f(zi)

]
f(zi)
f ′(xi)

,

(6.2)

where α1, α2 ∈ R, eighth-order method developed by Petković et al. [20] denoted by P8 and
defined as follows:

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f(xi)

f(xi) − 2f(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
(1 + a4(zi − xi))2f(zi)

a2 − a1a4 + a3(zi − xi)(2 + a4(zi − xi))
,

(6.3)

where a1 = f(xi), a3 = (f ′(xi)f[wi, zi]−f[xi,wi]f[xi, zi])/((xif[wi, zi]+(wif(zi)−zif(wi))/
(wi − zi)) − f(xi)),

a4 =
a3

f[xi,wi]
+

f ′(xi) − f[xi,wi]
(wi − xi)f[xi,wi]

, a2 = f ′(xi) + a4f(xi), (6.4)

eighth-order method developed by Thukral and Petković [21] denoted by T8 and defined as
follows:

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f(xi)

f(xi) − 2f(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
[

f2(xi)
f2(xi) − 2f(xi)f(wi) − f2(wi)

+
f(zi)

f(wi) − αf(zi)
+
4f(zi)
f(xi)

]
f(zi)
f ′(xi)

,

(6.5)

where α ∈ R, eighth-order methods presented in Section 3 of [19] by Bi et al. denoted by B81,
B82 and B83.

The test functions and root r correct up to 16 decimal places are displayed in Table 1.
The first eight functionswe have selected are same as in [19]. The last function is selected from
[18]. In Table 2, we exhibit the absolute values of the difference of root r and its approximation
xi, where r is computed with 350 significant digits and xi is calculated by costing the same
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total number of function evaluations (TFE) for each method. The TFE is counted as sum
of the number of evaluations of the function itself plus the number of evaluations of the
derivatives. In the calculations, 12 TFE are used by each method. That means 6 iterations are
used for NM and 3 iterations for the remaining methods. The absolute values of the function
|f(xi)| and the computational order of convergence (ρ) are also displayed in Table 2. It can
be observed that the computed results, displayed in Table 2, overwhelmingly support the
theory of convergence and efficiency analyses discussed in the previous sections. From the
results, it can be concluded that the proposedmethods are competitive with existing methods
and possess quick convergence for good initial approximations. Among the eighth-order
methods, we are not able to select one as the best. For some initial guess one is better while
for other initial guess the another one would be appropriate. Thus the present methods can
be of practical interest.

7. Conclusions

In this work, we have obtained a new simple and elegant family of eighth-order multipoint
methods for solving nonlinear equations. Thus, one requires three evaluations of the function
f and one of its first-derivative f ′ per full step and therefore, the efficiency index of the
present methods is 1.682 which is better than the efficiency index of Newton method, fourth-
order methods, sixth-order methods, and seventh-order methods.

Many numerical applications use higher precision in their computations. In these
types of applications, numerical methods of higher-order are important. The numerical
results show that the methods associated with a multiprecision arithmetic floating point are
very useful, because these methods yield a clear reduction in number of iterations. Finally, we
conclude that the methods presented in this paper are preferable to other recognized efficient
methods, namely, Newton’s method, King’s methods, sixth-order methods [10–12], seventh-
order methods [15, 18], etc.
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