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We present two new families of Jarratt-type methods for solving nonlinear equations. It is proved
that the order of convergence of each familymember is improved from four to six by the addition of
one function evaluation. Per iteration, these new methods require two evaluations of the function
and two evaluations of the first-order derivatives. In fact, the efficiency index of these methods is
1.565. Numerical comparisons are made with other existing methods to show the performance of
the presented methods.

1. Introduction

Multipoint iterativemethods for solving nonlinear equations are of great practical importance
since they overcome theoretical limits of one-point methods concerning the convergence
order and computational efficiency. The new iterative methods are applied to find a simple
root α of the nonlinear equation

f(x) = 0, (1.1)

where f : D ⊂ R → R is a scalar function on an open interval D, and it is sufficiently
smooth in a neighbourhood of α. In this paper, we present new variants of the Jarratt
method, based on the composition of Jarratt and Newton-type methods instead of a two-
step Newton method. The new variants are formed by adding an evaluation of the function
at another point in the procedure iterated by the Jarratt method. Consequently, the order of
convergence of the new Jarratt-type method is improved from four to six. Per iteration, the
newmethods require two evaluations of the function and two of its first derivatives. Recently,
many variants of the Jarratt method with sixth-order convergence have been developed [1–
3], which improve the order of convergence of the Jarratt method by an additional evaluation
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of the function. Hence, the prime motive of this study is to develop a new class of efficient
Jarratt-type methods for solving nonlinear equations. In addition, these new sixth-order
Jarratt-type methods have an efficiency index equivalent to the recently established methods
presented in [1–3]. Consequently, we have found that the new Jarratt-type methods are
efficient and robust.

The paper is organized as follows. In Section 2, two new families of the Jarratt-
type method of sixth-order are developed. Convergence analysis is provided to establish
their sixth order of convergence. In Section 3, we briefly state the established methods in
order to compare the effectiveness of the new Jarratt-type methods. Finally, in Section 4,
several numerical examples are given to demonstrate the performance of the new Jarratt-type
methods presented in this contribution.

2. Development of the Methods and Convergence Analysis

In this section we define two new sixth-order Jarratt-type methods. The new scheme was
actually developed by using the classical Jarratt method and then squaring the weight
function in the third step. We begin with the classical Jarratt method and then show the
improvement in the third step.

Let

J(xn) =
3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)
, (2.1)

then a new improved Jarratt-type method is given as

yn = xn −
(
2
3

)(
f(xn)
f ′(xn)

)
,

zn = xn − J(xn)
(
f(xn)
f ′(xn)

)
,

xn+1 = zn − J(xn)2
(

f(zn)
f ′(xn)

)
.

(2.2)

We observe that the new Jarratt-type method (2.2) is simply formed to attain the sixth
order of convergence. Using this concept we developed three different families of sixth-order
methods.

In order to establish the order of convergence of these new Jarratt-type methods we
state the three essential definitions.

Definition 2.1. Let f(x) be a real function with a simple root α, and let {xn} be a sequence of
real numbers that converge towards α. The order of convergence m is given by

lim
n→∞

xn+1 − α

(xn − α)m
= ρ /= 0, (2.3)

where ρ is the asymptotic error constant andm ∈ R
+.
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Definition 2.2. Let λ be the number of function evaluations of the new method. The efficiency
of the new method is measured by the concept of efficiency index [4, 5] and defined as

μ1/λ, (2.4)

where μ is the order of the method.

Definition 2.3. Suppose that xn−1, xn, and xn+1 are three successive iterations closer to the root
α of (1.1). Then the computational order of convergence [6] may be approximated by

COC ≈
ln
∣
∣
∣(xn+1 − α)(xn − α)−1

∣
∣
∣

ln
∣
∣
∣(xn − α)(xn−1 − α)−1

∣
∣
∣
, (2.5)

where n ∈ N.

2.1. The Three-Point Jarratt-Type Methods

We consider the following iteration scheme:

yn = xn −
(
2
3

)(
f(xn)
f ′(xn)

)
,

zn = xn −
(

3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)

)(
f(xn)
f ′(xn)

)
,

xn+1 = zn −
(

βf ′(yn

)
+
(
4 − β

)
f ′(xn)

(
β + 3

)
f ′(yn

)
+
(
1 − β

)
f ′(xn)

)2(
f(zn)
f ′(xn)

)
.

(2.6)

The first two steps of (2.6) are the same as those of the classical fourth-order Jarratt
method [7], and the third step is constructed to achieve the sixth order of convergence. In
order to achieve the sixth order of convergence, we introduce a weight function in the third
step of (2.6). To obtain the solution of (1.1) by the new sixth-order Jarratt-type methods, we
must set a particular initial approximation x0, ideally close to the simple root and provided
that the denominators in (2.6) are not equal to zero. In numerical mathematics it is essential to
know the behaviour of an approximatemethod. Therefore, we prove the order of convergence
of the new sixth-order methods.

Theorem 2.4. Assume that the function f : D ⊂ R → R for an open interval D has a simple root
α ∈ D. If f(x) is sufficiently smooth in the neighbourhood of the root α, then the method defined by
(2.6) is of order six.

Proof. Let α be a simple root of f(x), that is, f(α) = 0 and f ′(α)/= 0, and the error is expressed
as

e = x − α. (2.7)
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Using Taylor expansion, we have

f(xn) = f(α) + f ′(α)en + 2−1f ′′(α)e2n + 6−1f ′′′(α)e3n + 24−1fiv(α)e4n + · · · . (2.8)

Taking f(α) = 0 and simplifying, expression (2.8) becomes

f(xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + · · ·

]
, (2.9)

where n ∈ N and

ck =
f (k)(α)
(k!)f ′(α)

for k ≥ 2. (2.10)

Furthermore, we have

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e2n + 4c4e3n + · · ·

]
. (2.11)

Dividing (2.9) by (2.11), we get

f(xn)
f ′(xn)

= en − c2e
2
n + 2

(
c22 − c3

)
e3n +

(
7c2c3 − 4c32 − 3c4

)
e4n + · · · , (2.12)

and, hence, we have

yn − α = en − 2
3
f(xn)
f ′(xn)

=
1
3
en +

2
3

[
c2e

2
n − 2

(
c22 − c3

)
e3n −

(
7c2c3 − 4c32 − 3c4

)
e4n

]
+ · · · . (2.13)

The expansion of f ′(yn) about α is given as

f ′(yn

)
= f ′(α)

[
1 +

2
3
c2en +

1
3

(
4c22 + c3

)
e2n −

(
8
3
c32 − 4c2c3 − 4

27
c4

)
e3n + · · ·

]
. (2.14)

From (2.11) and (2.14) we attain

3f ′(yn

)
+ f ′(xn) = 4f ′(α)

[
1 + c2en +

(
c22 + c3

)
e2n +

(
3c2c3 − 2c32 +

10
9
c4

)
e3n + · · ·

]
, (2.15)

6f ′(yn

) − 2f ′(xn) = 4f ′(α)
[
1 +

(
2c22 − c3

)
e2n +

(
6c2c3 − 4c32 −

16
9
c4

)
e3n + · · ·

]
. (2.16)

Dividing (2.15) by (2.16) gives us

J(xn) =
3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)
= 1 + c2en −

(
c22 − 2c3

)
e2n − 2

(
c2c3 − 13

9
c4

)
e3n + · · · , (2.17)
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From (2.12) and (2.17), we have

J(xn)
f(xn)
f ′(xn)

= en −
(
c32 − c2c3 +

1
9
c4

)
e4n + · · · . (2.18)

Thus from (2.6) and (2.18), we have

en − α = en − J(xn)
f(xn)
f ′(xn)

=
(
c32 − c2c3 +

1
9
c4

)
e4n + · · · . (2.19)

For the third step, we expand f(zn) about α, and we have

f(zn) = f ′(α)
[(

c32 − c2c3 +
1
9
c4

)
e4n + · · ·

]
. (2.20)

The expansion of the weight function used in the third step (2.6) is given as

[
βf ′(yn

)
+
(
4 − β

)
f ′(xn)

(
β + 3

)
f ′(yn

)
+
(
1 − β

)
f ′(xn)

]2

= 1 + 2c2en + 3−1
(
12c3 + 2βc22 − 9c22

)
e2n + · · · . (2.21)

Substituting appropriate expressions in the third step of (2.6), we obtain

en+1 = −3−3
(
c4 − 9c2c3 + 9c32

)(
3c3 − 9c22 + 2βc22

)
e6n + · · · . (2.22)

The expression (2.22) establishes the asymptotic error constant for the sixth order of
convergence for the new Jarratt-type method defined by (2.6).

2.2. Method 2

The second of the new three-step Jarratt-type method is given as

yn = xn −
(
2
3

)(
f(xn)
f ′(xn)

)
,

zn = xn −
(

3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)

)(
f(xn)
f ′(xn)

)
,

xn+1 = zn −
(

βf ′(yn

)2 +
(
4 − β

)
f ′(xn)2

(
β + 3

)
f ′(yn

)2 +
(
1 − β

)
f ′(xn)2

)(
f(zn)
f ′(xn)

)
.

(2.23)

x0 is the initial approximation and provided that the denominators of (2.23) are not equal to
zero.
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Theorem 2.5. Assume that the function f : D ⊂ R → R for an open interval D has a simple root
α ∈ D. If f(x) is sufficiently smooth in the neighbourhood of the root α, then the method defined by
(2.23) is of order six.

Proof. Using appropriate expressions in the proof of the Theorem 2.4 and substituting them
into (2.23), we obtain the asymptotic error constant

en+1 = −3−3
(
c4 − 9c2c3 + 9c32

)(
3c3 − 10c22 + 4βc22

)
e6n + · · · . (2.24)

The expression (2.24) establishes the asymptotic error constant for the sixth order of
convergence for the new Jarratt-type method defined by (2.23).

2.3. Method 3

The third of the new three-step Jarratt-type method is expressed as

yn = xn −
(
2
3

)(
f(xn)
f ′(xn)

)
,

zn = xn −
(

3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)

)(
f(xn)
f ′(xn)

)
,

xn+1 = zn −
((

2β + 1
)
f ′(yn

)2 +
(
2β + 3

)
f ′(xn)2

(
5β + 4

)
f ′(yn

)2 − βf ′(xn)2

)(
f(zn)
f ′(xn)

)
.

(2.25)

x0 is the initial approximation and provided that the denominators of (2.25) are not equal to
zero.

Theorem 2.6. Assume that the function f : D ⊂ R → R for an open interval D has a simple root
α ∈ D. If f(x) is sufficiently smooth in the neighbourhood of the root α, then the method defined by
(2.25) is of order six.

Proof. Using appropriate expressions in the proof of the Theorem 2.4 and substituting them
into (2.25), we obtain the asymptotic error constant

en+1 = −3−3(1 − β
)−1(

c4 − 9c2c3 + 9c32
)(

6c22 − 3c3 + 2βc22 − 3βc3
)
e6n + · · · . (2.26)

The expression (2.26) establishes the asymptotic error constant for the sixth order of
convergence for the new Jarratt-type method defined by (2.25).

3. The Established Jarratt-Type Sixth-Order Methods

For the purpose of comparison, we consider three sixth-order methods presented recently
in [1–3]. Since these methods are well established, we will state the essential expressions
used in order to calculate the approximate solution of the given nonlinear equations and thus
compare the effectiveness of the new sixth order Jarratt-type methods.
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3.1. Wang et al. Method

In [3], Wang et al. developed another three-step sixth order of convergence method, and the
particular expressions of the method are given as

yn = xn −
(
2
3

)(
f(xn)
f ′(xn)

)
,

zn = xn −
(

3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)

)(
f(xn)
f ′(xn)

)
,

xn+1 = zn −
(
f(zn)
2

)(
3

f ′(yn

) − 1
f ′(xn)

)

.

(3.1)

3.2. Wang et al. Method

In [2], Wang et al. developed a three-step sixth order of convergence method, as before we
state the essential expressions used in the method as follows:

yn = xn −
(
2
3

)(
f(xn)
f ′(xn)

)
,

zn = xn −
(

3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)

)(
f(xn)
f ′(xn)

)
,

xn+1 = zn −
((

5μ + β
)
f ′(yn

) − (
3μ + β

)
f ′(xn)

2μf ′(yn

)
+ 2βf ′(xn)

)(
f(zn)
f ′(xn)

)
.

(3.2)

3.3. Soleymani Method

In [1], Soleymani developed a three-step sixth order of convergence method. Since this
method is well known we state the essential expressions used in the method as follows:

yn = xn −
(
2
3

)(
f(xn)
f ′(xn)

)
,

zn = xn −
(

3f ′(yn

)
+ f ′(xn)

6f ′(yn

) − 2f ′(xn)

)(
f(xn)
f ′(xn)

)
,

xn+1 = zn −
(

f(zn)
f ′(yn

)
+ 2f[zn, xn, xn]

(
zn − yn

)

)

.

(3.3)

4. Application of the New Sixth-Order Jarratt-Type Iterative Methods

The present sixth-order methods given by (2.6), (2.23), and (2.25) are employed to solve
nonlinear equations and compare with the Soleymani, Wang et al. type 1, and type 2 methods
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Table 1: Test functions and their roots.

Functions Roots
f1(x) = exp(x) sin(x) + ln(1 + x2) α = 0
f2(x) = (x2 − 1)−1 − 1 α =

√
2

f3(x) = (x − 2)(x10 + x + 1) exp(−x − 1) α = 2
f4(x) = (x + 1) exp(sin(x)) − x2 exp(cos(x)) − 1 α = 0
f5(x) = sin(x)2 − x2 + 1 α = 1.40449165 . . .
f6(x) = exp(−x) − cos(x), α = −0.666273126 . . .
f7(x) = ln(x2 + x + 2) − x + 1 α = 4.15259074 . . .
f8(x) = x10 − 2x3 − x + 1 α = 0.591448093 . . .
f9(x) = cos (x)2 − 5−1x α = 1.08598268 . . .
f10(x) = sin(x) − 2−1x α = 0

Table 2: Comparison of various three-point iterative methods.

Functions (2.6) (2.23) (2.25) (3.1) (3.2) (3.3)
f1(x), x0 = 0.25 0.440e − 166 0.409e − 185 0.123e − 161 0.284e − 149 0.102e − 144 0.126e − 217
f2(x), x0 = 1.1 0.181e − 78 0.775e − 37 0.146e − 53 0.195e − 41 0.238e − 39 0.174e − 38
f3(x), x0 = 2.1 0.138e − 118 0.126e − 113 0.120e − 112 0.461e − 100 0.533e − 96 0.236e − 118
f4(x), x0 = −0.5 0.508e − 199 0.104e − 179 0.391e − 202 0.155e − 183 0.745e − 171 0.471e − 187
f5(x), x0 = 0.25 0.708e − 122 0.440e − 80 0.748e − 120 0.199e − 63 0.185e − 50 0.530e − 128
f6(x), x0 = 1.2 0.266e − 183 0.431e − 192 0.416e − 178 0.327e − 164 0.301e − 159 0.131e − 211
f7(x), x0 = 2 0.278e − 193 0.150e − 255 0.285e − 190 0.851e − 176 0.152e − 169 0.528e − 203
f8(x), x0 = 0.25 0.444e − 187 0.343e − 194 0.551e − 186 0.133e − 181 0.153e − 179 0.105e − 192
f9(x), x0 = 1.7 0.941e − 125 0.115e − 164 0.145e − 122 0.805e − 107 0.587e − 100 0.573e − 128
f10(x), x0 = 4.4 0.122e − 157 0.110e − 135 0.231e − 147 0.101e − 129 0.132e − 124 0.559e − 141

(3.3), (3.2), and (3.1), respectively. To demonstrate the performance of the new sixth-order
methods, we use ten particular nonlinear equations. We will determine the consistency and
stability of results by examining the convergence of the new Jarratt-type iterative methods.
The findings are generalised by illustrating the effectiveness of the sixth-order methods for
determining the simple root of a nonlinear equation. Consequently, we will give estimates of
the approximate solution produced by the sixth-order methods and list the errors obtained
by each of the methods. The numerical computations listed in the tables were performed
on an algebraic system called Maple. In fact, the errors displayed are of absolute value, and
insignificant approximations by the various methods have been omitted in Tables 1, 2, and 3.

The new three-step Jarratt-type methods require four function evaluations and have
the order of convergence six. To determine the efficiency index of these new Jarratt-type
methods, we will use Definition 2.2. Hence, the efficiency index of the sixth-order Jarratt-type
methods given is 4

√
6 ≈ 1.565, which is identical to other established three-point Jarratt-type

methods. The test functions and their exact root α are displayed in Table 1. The difference
between the root α and the approximation xn for test functions with initial approximation
x0, based on β = 1, are displayed in Table 2. In fact, xn is calculated by using the same
total number of function evaluations (TNFEs) for all methods. In the calculations, 12 TNFE
are used by each method. Furthermore, the computational order of convergence (COC) is
displayed in Table 3.
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Table 3: COC of various iterative methods.

Functions (2.6) (2.23) (2.25) (3.1) (3.2) (3.3)
f1(x), x0 = 0.25 6.000 6.000 6.000 6.000 6.000 6.000
f2(x), x0 = 1.1 6.010 5.622 6.010 6.001 5.997 5.665
f3(x), x0 = 2.1 6.000 6.000 6.000 6.000 6.000 5.012
f4(x), x0 = −0.5 6.000 5.982 6.000 5.983 5.980 5.984
f5(x), x0 = 0.25 5.962 6.002 5.960 5.996 5.988 5.965
f6(x), x0 = 1.2 6.000 6.000 6.000 6.000 6.000 6.000
f7(x), x0 = 2 6.000 5.991 6.000 6.000 6.000 6.000
f8(x), x0 = 0.25 6.000 5.985 6.000 6.000 6.000 6.000
f9(x), x0 = 1.7 6.000 5.979 6.000 5.999 5.998 6.000
f10(x), x0 = 4.4 6.000 6.000 6.000 6.000 6.000 6.000

5. Remarks and Conclusions

In this study, we have constructed new sixth-order Jarratt-type methods for solving nonlinear
equations. Convergence analysis proves that these new Jarratt-type methods preserve their
order of convergence. We have examined the effectiveness of the new Jarratt-type methods
by showing the accuracy of the simple root of a nonlinear equation. The main purpose of
demonstrating the new sixth-order Jarratt-typemethods formany different types of nonlinear
equations was purely to illustrate the accuracy of the approximate solution, the stability of
the convergence, the consistency of the results, and to determine the efficiency of the new
iterative methods. We conjecture that many other variants of Jarratt-type methods may be
constructed in a similar form to that presented in this paper. Finally, we conclude that the new
three-point methods may be considered a very good alternative to the classical methods.

References

[1] F. Soleymani, “Revisit of Jarratt method for solving nonlinear equations,” Numerical Algorithms, vol.
57, no. 3, pp. 377–388, 2011.

[2] X. Wang, J. Kou, and Y. Li, “A variant of Jarratt method with sixth-order convergence,” Applied
Mathematics and Computation, vol. 204, no. 1, pp. 14–19, 2008.

[3] X. Wang, J. Kou, and Y. Li, “Modified Jarratt method with sixth-order convergence,” Applied
Mathematics Letters, vol. 22, no. 12, pp. 1798–1802, 2009.

[4] W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser, Boston, Mass, USA, 1997.
[5] J. F. Traub, Iterative Methods For Solution of Equations, Chelsea Publishing Company, New York, NY,

USA, 1977.
[6] S. Weerakoon and T. G. I. Fernando, “A variant of Newton’s method with accelerated third-order

convergence,” Applied Mathematics Letters, vol. 13, no. 8, pp. 87–93, 2000.
[7] P. Jarratt, “Some efficient fourth order multipoint methods for solving equations,” BIT, vol. 9, pp. 119–

124, 1969.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


