
Hindawi Publishing Corporation
Advances in Numerical Analysis
Volume 2012, Article ID 579050, 15 pages
doi:10.1155/2012/579050

Research Article
Interpreting the Phase Spectrum in Fourier
Analysis of Partial Ranking Data

Ramakrishna Kakarala

School of Computer Engineering, Nanyang Technological University, Singapore 637665

Correspondence should be addressed to Ramakrishna Kakarala, ramakrishna@ntu.edu.sg

Received 28 September 2011; Revised 14 February 2012; Accepted 23 February 2012

Academic Editor: Mustapha Ait Rami

Copyright q 2012 Ramakrishna Kakarala. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Whenever ranking data are collected, such as in elections, surveys, and database searches, it is
frequently the case that partial rankings are available instead of, or sometimes in addition to, full
rankings. Statistical methods for partial rankings have been discussed in the literature. However,
there has been relatively little published on their Fourier analysis, perhaps because the abstract
nature of the transforms involved impede insight. This paper provides as its novel contributions
an analysis of the Fourier transform for partial rankings, with particular attention to the first
three ranks, while emphasizing on basic signal processing properties of transform magnitude and
phase. It shows that the transform and its magnitude satisfy a projection invariance and analyzes
the reconstruction of data from either magnitude or phase alone. The analysis is motivated by
appealing to corresponding properties of the familiar DFT and by application to two real-world
data sets.

1. Introduction

Ranking data, which arise in scenarios such as elections or database searches, describe how
many times a given ordering of objects is chosen. It is frequently the case that when, ranking
data are collected, partial ranking data are obtained in addition to, or perhaps instead of,
full rankings. A partial or incomplete ranking only specifies the ordering of the top k out
of n possibilities and usually indicates that the ranker is either unable to, or indifferent to,
the ordering of the remaining n − k items. Full ranking data are obviously a special case of
partial ranking data. A classic approach is to treat full ranking data for n items as a function
on the symmetric group Sn; for each permutation p ∈ Sn, the value of x(p) is the number of
times the ordering represented by that permutation is chosen [1]. For example, if 3 items are
ranked, then x([2, 1, 3]) is the number of times the survey respondents chose to rank item 2
first, item 1 second, followed by 3. As discussed in more detail below, partial ranking data
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also form functions on Sn that are piecewise constant over cosets of the subgroup fixing the
first k items.

The analysis of ranking data, including both full and partial rankings, is well estab-
lished. Statistical methods exist both for data in the “time domain” (using signal processing
terminology), which in this case is the permutation group Sn, and in the “frequency domain”
that is obtained through Fourier analysis on the group. Recent papers by Lebanon and Mao
[2] and Hall and Miller [3] explore, respectively, the nonparametric modeling and bootstrap
analysis of partial ranking data in the time domain. Time domain analysis does not allow
such interesting possibilities as using band-limited or “smooth” approximations to the data,
on analyzing the strength of various components. Diaconis [1, 4] and Diaconis and Sturmfels
[5] use the Fourier transform on Sn to analyze frequency components of both full and
partial ranking data. Those papers, while addressing the fundamentals of Fourier analysis
in terms of invariant subspaces, do not consider signal processing aspects as considered here.
Other papers using the Fourier transform on Sn include Huang et al. [6] for inference on
permutations of identities in tracking, and Kondor and Borgwardt [7] to provide labeling-
invariant matching of graphs. Kakarala [8] shows that the Fourier transform on Sn may be
interpreted in terms of signal processing concepts such as magnitude and phase, but the work
is limited to full rankings. In this paper, we take a similar approach to analyze the properties
of the Fourier transform on Sn for partial rankings, with particular emphasis on the role of
phase in forming the top three ranks, k ≤ 3.

Underlying our approach is the intuition that, in any frequency-domain approach,
whether on the symmetric group Sn or on the more familiar discrete domain ZN = {0, 1, . . . ,
N − 1}, the Fourier transform values may be separated into magnitudes, which indicate
component strengths, and phases, which indicate relative component locations. Such a
separation is basic to a signal processing approach, and is well understood in the ordinary
discrete Fourier transform (DFT) on ZN , and also in two dimensions in the case of images. A
familiar demonstration of the importance of phase is to combine the magnitude spectrum of
image X with the phase spectrum of image Y and observe that, after inverse transform, the
result appears very similar to Y [9]; in other words, phase is more important to our perception
of image structure. Therefore, it seems appropriate to ask the following question: what is the
role of phase in forming partial ranking data?

The problem of analyzing phase on Sn is not as straightforward as with the DFT
on ZN , because the Fourier transform on Sn has matrix-valued coefficients, not scalars as
with the DFT, making even such elementary concepts as “frequency” nonobvious. Though
various papers describe the Sn transform in detail [6] and, code for computing a fast Fourier
transform (FFT) on Sn has been published by Kondor [10], the level of abstraction required to
understand the Sn transform is high. Therefore, this paper makes a concerted effort to reason
from the familiar DFT to explore the relevant concepts on Sn. It shows that the coefficients of
the Fourier transform for top k choice partial ranking data are invariant under projections that
are determined by the subgroup Sn−k. The projection approach provides a relatively simple
explanation of the roles of magnitude and phase for partial ranking. The explanation is tested
on two real-world data sets.

It should be noted that the concept of partially measured ranking data has interpre-
tations other than the one explored in this paper, which is top k out n choices data. For
example, an “incomplete” ranking specifies a preference among a subset of the choices, not
which is most preferred. Among choices A, B, and C, an incomplete ranking might simply
say thatA is preferred to C, but nothing aboutA versus B, or B versus C; mathematically, this
may be modelled as a partial order on the choices [2]. Diaconis [4] describes other kinds of
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incomplete rankings: “committee selection,” where one chooses the top k out of n choices but
does not rank among the choices; “most and least desirable,” where one chooses the most
important and least important attributes among n choices but does not specify the order of
the middle elements. What is common mathematically to the previous types of data is that
they are constant on cosets of a suitably chosen subgroup H of Sn. The mathematical results
of this paper concerning magnitude and phase apply to every coset space Sn/H. However,
the results provided below on approximation by linear phase or unit-magnitude functions
are limited to top k-choice data, whose domain in Sn/Sn−k. Though mathematically a special
case of partially measured rankings, top k-choice data appears in sufficiently many scenarios
to be worth analysis on its own.

2. Background Material

Fourier analysis on the symmetric group Sn is normally described in abstract terms involving
group representation theory, which makes the subject difficult to understand for non-
specialists. As mentioned in the Introduction, we use analogy to the better known DFT on
ZN . The DFT is defined for data x by the familiar pair of equations for transform and inverse:

X[k] =
N−1∑

n=0

x[n]e−j2πkn/N, x[n] =
1
N

N−1∑

k=0

X[k]ej2πkn/N. (2.1)

Each complex-valued DFT coefficient is expressed in terms of magnitude and phase by
writing X[k] = |X[k]|ejφ(k), where the absolute value determines the magnitude, and the
angle φ(k) measures the starting value at n = 0 in the period of the constituent sinusoid
ej2πkn/N . The translation property of the DFT shows that the transform of the circularly
shifted function y[n] = x[n + t] has coefficients Y [k] = X[k]ej2πkt/N , which shows that the
magnitude does not change but the phase changes linearly, that is, φ(k) �→ φ(k) + 2πkt/N.
Hence, phase is closely connected with location.

Suppose now that the data x has the additional symmetry of having a subperiod, that
is, x[n + M] = x[n] where M divides N. Then, it is well known that the DFT coefficients
X[k] are zero unless k is a multiple of N/M. For example, if N = 128 and M = 4, then, of
the 128 possible DFT coefficients, only four are nonzero: X[0], X[32], X[64], and X[96]. It is
helpful to see the previous example in a different way to better understand the discussion of
the symmetric group below. Suppose that we define x̃ as the data within one period, that is,
x̃[n] = x[n] for n = 0, . . . , 3, and x̃[n] = 0 otherwise. Let τ denote the periodic pulse train of
Kronecker δ functions defined as follows:

τ[n] =
31∑

m=0

δ[n − 4m]. (2.2)

Then, x = x̃ ∗ τ , where ∗ denotes circular convolution over 128 points. We have, therefore,
by the convolution property of the DFT that X[k] = X̃[k]T[k], where both X̃ and T are the
respective DFTs on 128 points of x̃ and τ . It is easy to see that T[k] = 32 for k = 0, 32, 64, 96
but T[k] = 0 otherwise. We might consider the function P[k] = T[k]/32 a projection of
the DFT coefficients; the term projection is appropriate because P takes values of either 0
or 1, and therefore P[k]P[k] = P[k] for all k. With the projection so defined, we have that
X[k] = P[k]X[k], which shows that the data are invariant to the projection and therefore lie
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in its image. The projection approach helps considerably below in formulating the transform
for partial rankings on the symmetric group.

The symmetric group Sn is the collection of all n! possible permutations of the set
{1, 2, . . . , n}. If p and q represent two permutations in Sn, then the product pq denotes q
applied first followed by p. For example, if n = 4 and p = [2, 3, 4, 1], which indicates that
p(1) = 2, p(2) = 3, p(3) = 4, p(4) = 1, and similarly q = [3, 4, 1, 2], then pq = [4, 1, 3, 2].
With that product, Sn forms a group, with identity-denoted e and inverse p−1 being the
unique permutation that exactly undoes the action of p, that is, p−1p = pp−1 = [1, 2, . . . , n].
For example, the inverse of [2, 3, 4, 1] is [4, 1, 3, 2].

Data consisting of full rankings form functions on Sn in the manner described in the
Introduction. The same domain also serves for partial ranking data. If we have data where
only the first k of the n items is ranked, then, for each p ∈ Sn, let us define the value of x(p)
to be the number of times the first k elements of p is chosen. The definition leads to piecewise
constant functions on Sn. An example illustrates the approach. Suppose n = 3 items are to
be ranked in an election given to 600 voters, but the respondents give only their top choices
as follows: item 1 gets 100 votes, item 2 gets 200 votes, and item 3 gets 300 votes. Then, we
construct x on S3 by extending the votes to all permutations p based on first item, so that
x([1, 2, 3]) = x([1, 3, 2]) = 100, and similarly for the other 4 choices of p. If we were to view
the previous construction in group-theoretic terms, the function x is such that it is constant
on left cosets of the subgroup S2 fixing the first element, that is, x(p) = x(ps) for all s ∈ S2

where s(1) = 1 by definition, and p(1) = t for the item t being chosen. Though the constant
vote given to each coset is mathematically convenient, it does not capture certain effects that
may be interesting; for example, if I choose oranges as my favorite fruit, I may be more likely
to choose apples than durians as my next favorite, even if I am not required to state my next
favorite. Nevertheless, due to its convenience, we use the constant on cosets approach in the
remainder of this paper.

A detailed example helps to illustrate the model. In the famous American Psy-
chological Association (APA) election data [1], which is available online (http://www
.stat.ucla.edu/data/hand-daly-lunn-mcconway-ostrowski/ELECTION.DAT), 5,738 voters
provided full rankings of each of 5 candidates for president. The full rankings form a function
on S5 and are shown plotted in Figure 1(a) against the 5! = 120 elements of the group
arranged in lexicographic order. In the same election, many voters chose not to submit full
rankings but provided instead partial rankings. Specifically, 5,141 voters submitted only
their top choice, 2,462 voters submitted only the their first and second choices in order, and
2,108 voters submitted only their top three choices in order. Consequently, there were a total
of 9,711 voters giving only partial rankings, more than the 5,738 that gave full rankings.
After forming piecewise constant functions as described above, the partial ranking data are
displayed in Figures 1(b)–1(d).

An advantage of placing both full and partial rankings on the same domain is that
we may apply the same Fourier transform in both cases. The Fourier transform on Sn, which
is formally obtained from the theory of group representations, has important differences to
the DFT. We review some basic facts from the literature [4]. First, the Fourier coefficients
on Sn are matrix valued, unlike the scalar values of the DFT. Second, they are indexed
by arithmetic partitions of n with nonincreasing elements, which are roughly analogous
to the frequency index k of the DFT. For example, for n = 5, the seven such partitions
are (5), (4, 1), (3, 2), (3, 12) := (3, 1, 1), (22, 1), (2, 13), and (15). For every partition λ of n, the
Fourier basis elements belonging to it are collected into a square-matrix-denoted Dλ whose
dimensions nλ are calculated using standard formulas [4]. For S5, the seven partitions
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Figure 1: APA election data with both full and partial rankings are shown plotted in lexicographic order
on S5. The four subplots indicate as follows: (a) full ranking data; (b) votes where only the top candidate
was given; (c) votes where the top two candidates in order were given; (d) votes where the top three
were given. Note that, in each case, the votes peak at different locations: (a) the maximum votes (186)
go to the ordering 23154, that is, candidate 2 has top preference, 3 second, followed by 1, 5, and 4 in
decreasing preference; (b) the maximum votes (1,198) go to candidate 3; (c) the maximum votes (547) go
to the ordering 31; (d) the maximum votes (90) go to the ordering 451. Note that, in (d), the second most
popular ordering, getting 83 votes, is 312, which is more consistent with the result of (b) and (c).

described previously have square basis matrices D with respective dimensions 1, 4, 5, 6,
5, 4, 1, giving a total of 120 basis functions on S5, where the number 120 is obtained by
summing squares of dimensions. The basis may be constructed using real-valued functions,
using the Young orthogonal representation (YOR). The Fourier transform and its inverse are,
respectively, written

X(λ) =
∑

p∈Sn

x
(
p
)
Dλ

(
p
)�
, x

(
p
)
=
∑

λ�n

nλ

n!
Trace

[
X(λ)Dλ

(
p
)]
. (2.3)

The symbol λ � n on the right hand sum indicates a sum over all partitions for which Dλ

is defined. Algorithms for constructing the D matrices are given in Huang et al. [6, Algs
3,4] and are used in obtaining the experimental results of this paper. In particular, we have
Dn(p) = 1, so that X(n) is a scalar containing the “d.c” value of the signal, and D1n(p) is also
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scalar alternating between +1 and −1 in the manner similar to the Nyquist frequency k = N/2
in the DFT.

Two important properties of the Fourier transform are relevant to this paper: the
Fourier basis matrices Dλ that are obtained from the YOR are orthogonal, Dλ(p)Dλ(p)

� = I,
which mimics the exponential unitarity ejωe−jω = 1 in the DFT; under a left translation
of the data on Sn obtained by x(p) �→ x(sp), the coefficients undergo the transformation
X(λ) �→ X(λ)Dλ(s), and, under a right translation x(p) �→ x(sp), the coefficients transform
as X(λ) �→ Dλ(s)X(λ). Those two properties suggest an interpretation of the matrix-valued
Fourier coefficients in terms of magnitude and phase [8]. The Fourier coefficient may be
written using the matrix polar decomposition as X(λ) = X̂(λ)O(λ), where X̂ representing
magnitude is the positive semidefinite matrix obtained as the square root of XX�, and O
is an orthogonal matrix representing phase. A standard result in matrix theory [11, page
190] shows that the magnitude X̂ is unique, though the phase O needs not be unless X is
nonsingular. Under left translation by s, the magnitude remains invariant while the phase
changes byO(λ) �→ Dλ(s)O(λ), which is analogous to the phase shift φ(k) �→ 2πkt/N + φ(k)
for the DFT. Note that both magnitude and phase may be computed using the singular value
decomposition (SVD), X = USV �, by setting X̂ = USU� and O = UV �. Below, we use the
polar decomposition of magnitude and phase and analyze its properties for partial ranking
data.

3. Fourier Analysis of Partial Rankings

In the previous section, we saw that translational symmetry in the DFT domain results in a
projection invariance X[k] = P]k]X[k] for the DFT coefficients. Inspired by that result and
noting that our method of placing partial ranking data on Sn results in a kind of translational
symmetry, we look for the relevant projection characteristics of the Fourier coefficient
matrices on Sn. Finding the projection characteristics provides significant reduction in com-
putational complexity and also shows the role of phase for partial ranking data as discussed
below. For that purpose, define for each subgroup H of Sn and each λ � n the matrix

PH(λ) =
1
|H|

∑

h∈H
Dλ(h). (3.1)

Then, it is known [12, page 111] that PH = P�
H and PHPH = PH , so that PH is an orthogonal

projection. The main result of this paper is now stated.

Theorem 3.1. Let x denote a function on Sn that is piecewise constant with respect to a subgroup,
that is, x(p) = x(ph) for every p ∈ Sn and h in the subgroupH with |H| elements. Then, each Fourier
coefficient of x is invariant under the corresponding projection: X(λ) = PH(λ)X(λ), and that is true
of its magnitude as well X̂(λ) = PH(λ)X̂(λ).

Proof. The projection invariance ofX follows from the translational property of the Sn Fourier
transform, from which x(p) = x(ph) results in X = D(h)X, when averaged over all elements
of H result in X = PHX. (This fact has been shown in the literature; see [12] and Kondor
[13, Section 5]). To prove that X̂ is invariant, note that PH being a projection means that there
exists an orthogonal matrix U such that PH = UIrU

�, where Ir is the identity matrix up to
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the first r = Rank[PH] entries. Then, X̂′ = U�X̂U is the unique positive semidefinite square
root of X′ = U�XU. Since X′ = IrX

′, X̂′X̂′ = X′(X′)� implies that X̂′ = IrX̂
′Ir , so that X̂′ is zero

outside the upper left r × r subblock. Consequently, X̂′ = IrX̂
′, and, therefore, X̂ = PHX̂.

The theorem may be applied to partial ranking data consisting of k out of n elements
ranked by using the subgroup H = Sn−k that fixes the first k elements and varies the
remaining ones. Table 1 shows the ranks of the projections for the first three values of k.
The reader may note that Diaconis [1] provides essentially the same numbers as in Table 1,
though not obtained through projections. For k = 1, only two frequencies λ are involved,
each with rank 1. The dimension of the representation D(n−1,1) is n − 1, and consequently the
projection PHX has only n − 1 degrees of freedom. Therefore, the n degrees of freedom for
first-choice-only data (k = 1) are divided between the one-dimensional “d.c.” value obtained
for frequency λ = (n) and the n − 1 degrees of freedom for λ = (n − 1, 1).

The theorem and table are illustrated with examples in the next section.
We examine the roles that magnitude and phase play in partial ranking data by

appealing to the more familiar DFT for intuition. If X is the DFT of real-valued data x, with
magnitude-phase decompositionX = |X|ejφ, then the inverse DFT of the magnitude |X| alone
is the zero-phase signal

xzp[n] =
1
N

N−1∑

k=0

|X[k]|ej2πkn/N. (3.2)

The zero-phase signal has certain properties: its peak value occurs at the origin since xzp[0] ≥
|xzp[n]|; it is symmetric with respect to sign inversion, since xzp[−n] = xzp[n]. We may shift
the peak of xzp from 0 to any desired location q by applying the linear phase shift φ �→ φ −
2πkq/N. The resulting linear phase signal is

xlp[n] =
1
N

N−1∑

k=0

|X[k]|e−j2πkq/Nej2πkn/N. (3.3)

The properties of the linear phase signal xlp are now as follows: its peak value occurs at n = q;
it is symmetric about q since xlp[q−n] = xlp[q+n]. In other words, we see that, in the absence
of phase, the basic components add directly to peak at the starting point, and by shifting the
starting point to any given location produces a linear phase version of the signal. Analogous
to the zero-phase signal, we may define the unit-magnitude signal by applying the inverse
DFT to only the phase:

xum[n] =
1
N

N−1∑

k=0

ejφ(k)ej2πkn/N. (3.4)

For the DFT, magnitude, and phase, each contains half the degrees of freedom of the original
signal, and therefore both are equally important to exact numerical reconstruction. The
concepts discussed also apply for the symmetric group Sn as we now show.



8 Advances in Numerical Analysis

Table 1: Rank of projection matrices Pn−k(λ) for various k and λ. All of the required λ for k ≤ 3 are shown
[1].

k \ λ (n) (n − 1, 1) (n − 2, 2) (n − 2, 12) (n − 3, 3) (n − 3, 2, 1) (n − 3, 13)
1 1 1 0 0 0 0 0
2 1 2 1 1 0 0 0
3 1 3 3 3 1 2 1

Using the inverse transform (2.3), we define the zero-phase signal xzp on Sn corre-
sponding to the data x as

xzp

(
p
)
=
∑

λ�n

nλ

n!
Trace

[
X̂(λ)Dλ

(
p
)]
. (3.5)

Noting that Dλ(e) = I for the identity permutation, we see that the positive semidefiniteness
of X̂ implies that Trace[X̂U] ≤ Trace[X̂] for every orthogonal matrix U, as easily seen by
using the eigen-decomposition X̂ = VΛV � and applying the circular invariance of trace.
Consequently, xzp(e) ≥ xzp(p) for all p. Furthermore, there is inversion symmetry since
xzp(p−1) = xzp(p) due to the trace property Trace[X̂D�] = Trace[DX̂�] = Trace[X̂D]. The
properties of a zero-phase signal are formally similar to those of an “autocorrelation,” which
we define on Sn as follows:

ax(s) =
∑

p∈Sn

x
(
p
)
x
(
ps

)
. (3.6)

The connection between zero-phase signals and autocorrelations is made clear in a theorem
stated below.

Reasoning as above, we see that we may shift the peak of the zero-phase signal to
any given permutation q by the linear phase transformation X̂ �→ X̂Dλ(q−1), resulting in the
linear-phase signal

xlp

(
p
)
=
∑

λ�n

nλ

n!
Trace

[
X̂(λ)Dλ

(
q
)�
Dλ

(
p
)]
. (3.7)

Properties of the linear-phase signal are established in the following theorem, the proof of
which is given in an earlier paper [8].

Theorem 3.2. For every real-valued function x on Sn with Fourier transform X, we have the
following.

(a) The transformX is symmetric with respect to matrix transpose if and only if x is symmetric
with respect to inversion:

∀λ � n X(λ) = X(λ)� ⇐⇒ x
(
p
)
= x

(
p−1

)
∀p ∈ Sn. (3.8)

(b) X(λ) is positive semidefinite for all λ if and only if there exists a function y such that x is
the autocorrelation of y, that is, x = ay using the notation of (3.6).



Advances in Numerical Analysis 9

(c) Symmetric functions are precisely those with linear-phase transforms: there exists q ∈ Sn

such that X(λ) = S(λ)Dα(q−1) with S(λ) = S(λ)� if and only if x(pq) = x(p−1q) for all
p ∈ Sn.

The theorem shows that each linear-phase signal is inversion symmetric about its peak
location q, that is, xlp(qp) = xlp(qp−1). As above, we may define the unit-magnitude signal by
using only the phase O in the polar decomposition X = X̂O in the inverse DFT on Sn as
follows:

xum

(
p
)
=
∑

λ�n

nλ

n!
Trace

[
O(λ)Dλ

(
p
)]
. (3.9)

Noting that the polar decomposition X = X̂O of an m ×m matrix places m(m + 1)/2 degrees
of freedom in the positive definite matrix X̂ and m(m − 1)/2 in the orthogonal matrix O,
we see that magnitude is slightly more important (by m) to numerically reconstructing full
ranking data. However, the situation is much different when partial rank data is involved. By
examining Table 1 and using Theorem 3.1, we show that the unit-magnitude signal is nearly
complete in the case of first rank data.

Theorem 3.3. If x is top choice only data (k = 1) on Sn, then there exist constants α and β such that
x = αxum + β.

The proof follows after noting that, by Theorem 3.1 and Table 1, the magnitude X̂(n −
1, 1) is a scalar, so that α = X̂(n − 1, 1) and β = (n!)−1X(n)(1 − α/|X(n)|).

4. Examples

Consider the group S5 used for the APA data shown in Figure 1. For the top two choice data
(k = 2), the ranks of the projections in Table 1 show that the 5 × 4 = 20 degrees of freedom are
allocated as follows: 1 in the d.c. term X(5); 8 in the term X(4, 1); the remaining 11 degrees
of freedom allocated as 5 and 6, respectively, in each of the Fourier coefficients for (3, 2) and
(3, 12). By choosing a basis in which P(4, 1) = I2, we obtain the following for the nonzero
entries of the Fourier coefficient and its magnitude (rounded to integers):

X(4, 1) =
( −729 1452 986 505
−2808 237 −1885 −59

)
, X̂(4, 1) =

(
1964 94
94 3389

)
. (4.1)

Each matrix is actually 4 × 4, and the zero entries are not shown.
To illustrate the properties of phase for partial ranking data on Sn, we reconstruct each

of the partial rank signals in Figure 1 using only zero and linear phase and show the results
in Figure 2. In Figure 2(d), we see a strikingly good fit between the partial rank data with two
preferences and its linear phase approximation: numerically, we have ‖x − xlp‖ · ‖x + xlp‖−1 =
0.08, where ‖·‖ is the l2 norm. This suggests that the phase structure of the two-preference data
is relatively simple, and the inversion symmetry property indicates that voters are equally
content with transposing the order of the two top preferences moving away from the peak.
The result is made more interesting by noting that, of the 20 degrees of freedom in top-two
preference data, only 6 are constrained by the magnitude spectrum given by the X̂ matrices;
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Figure 2: Partial ranking data from the APA election shown plotted in lexicographic order on S5, with
comparisons to the zero-phase (magnitude only) approximations in the left column, and the linear-phase
approximations in the right. The linear-phase approximations are in each case adjusted so that the location
of their peak value q matches that of the original data. The six subplots indicate as follows: (a) first
preference only (blue) compared to zero phase (red dashed line); (b) first preference only with linear-
phase approximation; (c) and (d) the same for the top two preferences; (e) and (f) the same for the top
three preferences. Note that the two-preference data in (d) is well fit by the linear-phase approximation.

hence, adding only the linear phase term necessary to shift the peak should not be sufficient
to reconstruct 92% of the signal, but it is.

The different levels of fit between the partial rank data and its linear-phase approx-
imations may be understood also by considering the degrees of freedom involved. On the
domain S5 for the APA data, first preference data has 5 degrees of freedom. From Table 1, we
see that are two frequencies involved, both with rank 1. As discussed above, X̂(n − 1, 1) is a
scalar. Consequently, the magnitude spectrum constrains 2 out of the 5 degrees of freedom.
The case k = 2 is discussed above, and, for k = 3, we have that 24 out of the 60 degrees
of freedom are constrained by magnitudes. However, as n increases, the degrees of freedom
for the magnitude spectrum do not increase, because the ranks of the projection matrices are
independent of n. For example, for n = 50, the magnitude spectrum for top three choices
data (k = 3) constrains only 24 out of the 117,600 degrees of freedom. Consequently, for three
choices data with large n, the phase spectrum by far exceeds the magnitude component in
constraining data.
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To illustrate the role of phase for top-choice data for large n, we examine the college
rankings from 2009 by US News and World Report that is available online (http://sup-
portingadvancement.com/potpourri/us news and world report/us news rankings.htm).
In this data, n = 65 American universities are ranked on 17 numerical categories, including
acceptance rate, percentage of classes with fewer than 20 students, and alumni giving rate.
We consider each category as a voter giving a vote to only the university having the top
category value. In the event of ties, which happens only in one category—the percentage
of need met for full time students, where 23 universities met 100% of the need—all of the
universities having the top value were given a vote. Figure 3 shows the data is poorly fit by
with zero phase, as expected, but the shape of the data is well fit up to a scale factor by the
unit-magnitude signal as expected from Theorem 3.3.

5. Discussion

We have seen in the previous section that the fit between partial ranking data and its linear
phase approximation can be surprisingly good, especially in the case of the APA data for
k = 2. The quality of linear phase fit is not limited to partial rank data. Full ranking data,
which are discussed in [8], may also show a good linear phase approximation. Consider
the German survey data, which consists of full rankings of four items by 2,262 voters [14].
Figure 4(a) shows that the data is well reconstructed by a linear-phase approximation; in
fact, the linear-phase approximation reproduces 93% of the original signal as measured by
‖x − xlp‖ · ‖x + xlp‖−1. Similarly, Figure 4(b) shows that the full ranking data for the APA
election is well approximated (78%) by its linear-phase version. However, with full ranking
data, the magnitude spectrum dominates: on S4, as with the German survey data, we obtain
17 out of the 24 degrees of freedom in the full-ranking data from the magnitude spectrum,
while, on S5, we obtain 73 of the 120 or 62.5% of the d.o.f. from the magnitude spectrum of
full rankings. Therefore, with full ranking data, we should not be as surprised by the quality
of fit by linear-phase approximation as we might be with partial rank data.

It is reasonable to wonder what we gain by approximating data that we already have
in exact form. Diaconis [1] states a general principle in analyzing data: “if you’ve found
some structure, take it out, and look at what’s left.” The results in this and the previous
section show cases where linear-phase structure exists in full rank and, more surprisingly,
given the degrees of freedom argument, in partial-rank data. The high level of fit in the
cases we have analyzed suggest that, once we remove the linear phase structure, there is little
left. it would be interesting to apply linear phase approximation to a larger variety of data
sets to see whether such symmetry is common. Also, a potential application of the linear-
phase formulation is that it provides a way of reasoning about ranking data with reduced
complexity, where phase is essentially eliminated except for a single component. It would
be interesting to apply the linear phase approximation as a simplifying means to compare
graphs up to relabeling of data [7].

5.1. Complexity

One of the limitations of ranking data is that the size of the domain Sn increases as n!,
making it impractical to capture a complete set of fully ranked data for n much larger than
10. Furthermore, the complexity of the group theoretic FFT for Sn is O(n!log2n!), as shown
in Maslen [15, Theorem 1.1]. This is very difficult to compute for n > 10. However, partial
ranking data and their spectral analysis allow data for much larger n to be analyzed. For
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Figure 3: Top place votes for 65 American universities are shown plotted in the solid blue line. The dashed
red line shows the reconstruction using the zero-phase version xzp, and the solid red line shows the result
using xum, the unit-magnitude signal.

example, the number of data points for the top 3 out of n choices is n!/(n − 3)! ≈ n3, which
remains tractable for n up to 100. Maslen [15] showed that the group-theoretic FFT on Sn

when adapted for k = 3 has O(n4) complexity; in comparison, the ordinary FFT on Zm for
m = (100)4 can be completed in 3 seconds on a 2.6GHz quad-core Xeon processor. Therefore,
we see that processing only partial rank data allows a capability of roughly an order-of-
magnitude increase in n over fully-ranked data. If we restrict to only top choice data (k = 1),
then there is a linear-time algorithm for computing the Fourier transform [16].

Knowing the complexity of the transform helps to determine the complexity of either
the zero-phase (3.5) or the unit-magnitude (3.9) approximations. Each of those approxi-
mations requires the following three steps: computing the forward transform, separating
each coefficient matrix into magnitude and phase components, and computing the inverse
transform. The inverse transform has the same complexity as the forward transform. The
magnitude-phase separation requires performing an SVD of each matrix coefficient, followed
by two matrix multiplications for the magnitude, or one for the phase. The cost of each
SVD is O(n3

λ
), where nλ is the size of each representation λ. Unfortunately, there are no

simple, closed-form, expressions for nλ. However, when using partial rank data, the number
of coefficients involved is relatively small due to the projection property. From Table 1, we
see that there are only 7 coefficient matrices for top-three choices data (k = 3), the largest of
which has rank 3. Note that the ranks listed in the Table are independent of n. We may use
reduced SVDs for these 7 coefficients, resulting in efficient calculation of themagnitude-phase
separation due to their low ranks. Consequently, for large n, the cost of either the zero-phase
or the unit-magnitude approximation is dominated by the cost of the forward and inverse
transforms, which are each O(n4) for top-three choice data.

5.2. Approximation and Compression

It is reasonable to wonder whether we may obtain signal compression by approximating
partial rank data by either (3.5) or (3.9). Clearly, for large n and small k, the zero-phase
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(a) Full ranking German survey data (blue) and its linear phase ap-
proximation (dashed red)
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(b) Full ranking APA data (blue) and its linear phase approximation
(dashed red)

Figure 4: Two examples illustrating linear-phase approximation for full ranking data. Lexicographic
ordering is used for permutations on the horizontal axes of both graphs. Note that the data in (a) has
domain S4, while (b) has domain S5.

approximation (3.5) is poor because magnitude constrains only a small number of degrees
of freedom, as described in the previous section. Conversely, the phase spectrum constrains
much of the data; as discussed previously, phase constrains all but 24 of the 117,600 degrees of
freedom for n = 50, meaning that it is really a very minor compression. To summarize using
(3.5) to replace the signal is too much compression, while using (3.9) is too little compression.

The error in approximating data with either its zero-phase version (3.5) or unit-
magnitude (3.9) may be determined as follows. Considering the inverse transform on Sn is
determined by Fourier coefficientsX(λ), we see that the error in zero-phase approximation is
governed by ‖X(λ)−X̂(λ)‖2, where the normmeans the sum of squared entries. Consequently,
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due to the submultiplicative property of the matrix norm, we estimate a relative error at each
λ of

∥∥∥X(λ) − X̂(λ)
∥∥∥
2

‖X(λ)‖2
≤ ‖O(λ) − I‖2 ≤ 2nλ.

(5.1)

Here, nλ is the dimension ofO(λ), andwe used the identity ‖X̂‖2 = ‖X‖2. A similar calculation
for unit-magnitude approximation shows that the error at each λ is

‖X(λ) −O(λ)‖2
‖X(λ)‖2

≤ 2nλ. (5.2)

These are weak upper bounds, and it would be desirable to improve on them in future work.

6. Summary

This paper analyzes the properties of the Fourier spectrum for partial ranking data and
shows that the transform coefficients satisfy a projection invariance. The coefficients may be
converted to magnitude and phase components, with the magnitude also showing projection
invariance. We show that first rank data is essentially determined by its phase spectrum, but
that as n increases, the phase dominates magnitude in forming partial rank data.
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