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In this piece of work using only three grid points, we propose two sets of numerical methods
in a coupled manner for the solution of fourth-order ordinary differential equation uiv(x) =
f(x, u(x), u′(x), u′′(x), u′′′(x)), a < x < b, subject to boundary conditions u(a) = A0, u′(a) = A1,
u(b) = B0, and u′(b) = B1, where A0, A1, B0, and B1 are real constants. We do not require to
discretize the boundary conditions. The derivative of the solution is obtained as a byproduct of
the discretization procedure. We use block iterative method and tridiagonal solver to obtain the
solution in both cases. Convergence analysis is discussed and numerical results are provided to
show the accuracy and usefulness of the proposed methods.

1. Introduction

Consider the fourth-order boundary value problem

uiv(x) = f
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
, a < x < b, (1.1)

subject to the prescribed natural boundary conditions

u(0) = A0, u′(0) = A1, u(1) = B0, u′(1) = B1, (1.2)

or equivalently, for u′(x) = v(x),

uiv(x) = f
(
x, u(x), v(x), u′′(x), v′′(x)

)
, a < x < b, (1.3)
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subject to the natural boundary conditions

u(0) = A0, v(0) = A1, u(1) = B0, v(1) = B1, (1.4)

where A0, A1, B0, and B1 are real constants and −∞ < a ≤ x ≤ b <∞.
Fourth-order differential equations occur in a number of areas of applied mathematics,

such as in beam theory, viscoelastic and inelastic flows, and electric circuits. Some of them
describe certain phenomena related to the theory of elastic stability. A classical fourth-order
equation arising in the beam-column theory is the following (see Timoshenko [1]):

EI
d4u

dx4
+ P

d2u

dx2
= q, (1.5)

where u is the lateral deflection, q is the intensity of a distributed lateral load, P is the axial
compressive force applied to the beam, and EI represents the flexural rigidity in the plane
of bending. Various generalizations of the equation describing the deformation of an elastic
beam with different types of two-point boundary conditions have been extensively studied
via a broad range of methods.

The existence and uniqueness of solutions of boundary value problems are discussed
in the papers and book of Agarwal and Krishnamoorthy, Agarwal and Akrivis (see [2–5]).
Several authors have investigated solving fourth-order boundary value problem by some
numerical techniques, which include the cubic spline method, Ritz method, finite difference
method, multiderivative methods, and finite element methods (see [6–16]). In the 1980s,
Usmani et al. (see [17–19]) worked on finite difference methods for solving [p(x)y′′]′′ +
q(x)y = r(x) and finite difference methods for computing eigenvalues of fourth-order linear
boundary value problem. In 1984, Twizell and Tirmizi (see [20]) developed multi-derivative
methods for linear fourth-order boundary value problems. In 1984, Agarwal and Chow
(see [21]) developed iterative methods for a fourth-order boundary value problem. In 1991,
O’Regan (see [13]) worked on the solvability of some fourth-(and higher) order singular
boundary value problems. In 1994, Cabada (see [22]) developed the method of lower and
upper solutions for fourth- and higher-order boundary value problems. In 2005 Franco et
al. (see [23]) dealt with some fourth-order problems with nonlinear boundary conditions. In
2006, Noor and Mohyud-Din (see [12]) used the variational iteration method to solve fourth-
order boundary value problems and further developed the homotopy perturbation method
for solving fourth order boundary value problems. Some of these methods use transformation
in order to reduce the equation into more simple equation or system of equations and some
other methods give the solution in a series form which converges to the exact solution. Later,
Han and Li (see [24]) worked on some fourth-order boundary value problems.

In this paper we present the finite difference methods for the solution of fourth-order
boundary value problem. We discretize the interval [a, b] into N + 1 subintervals each of
width h = (b − a)/(N + 1), where N is a positive integer. We seek the solution of (la) or (2a)
at the grid points, xk = kh, k = 1, 2, . . . ,N. Let uk and u′k denote the approximate solutions,
and let Uk = u(xk) and U′

k = u′(xk) be the exact solution values of u(x) and u′(x) at the grid
point x = xk, respectively. Also, x0 = a and xN+1 = b.

Using the second-order central differences, we obtain a five-point difference formula
for (1.1), which requires the use of fictitious points outside [a, b]. The accuracy of the
numerical solution depends upon the boundary approximation used. The finite difference
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method discussed here is based only on three grid points for second-and fourth-order meth-
ods. Therefore, no fictitious points are required for incorporating the boundary conditions.
Here, we use a combination of the value of the solution u(x) and its derivative u′(x) to derive
the difference scheme using three grid points.

Since we need to solve a coupled system of equations at each mesh point, the block
successive overrelaxation (BSOR) iterative method is used.

2. The Finite Difference Method

The method is described as follows: for k = 1(1)N, let

u′′k =

(
u′k+1 − u′k−1

)

2h
,

u′′′k =

(
u′k+1 − 2u′k + u

′
k−1

)

h2
,

fk = f
(
xk, uk, u

′
k, u

′′
k, u

′′′
k

)
.

(2.1)

Then, the difference method of order two for the given differential (1.1) is given by,

−2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)
=
h4

6
fk, (2.2a)

and the corresponding difference method for the derivative u′(x) is given by

−3(uk+1 − uk−1) + h
(
u′k+1 + 4u′k + u

′
k−1

)
= 0. (2.2b)

Also, let

u′′k±1 =

(± 3u′k±1 ∓ 4u′k ± u′k∓1

)

2h
, (2.3)

u
′′′
k =

15(uk+1 − uk−1)
2h3

− 3
(
u′k+1 + 8u′k + u

′
k−1

)

2h2
, (2.4)

u
′′
k±1 =

−(11uk±1 − 16uk + 5uk∓1)
2h2

±
(
4u′k±1 − u′k∓1

)

h
, (2.5)

u
′′
k =

2(uk+1 − 2uk + uk−1)
h2

−
(
u′
k+1 − u′k−1

)

2h
, (2.6)

u′′′k±1 = ∓ (27uk±1 − 48uk + 21uk∓1)
2h3

+

(
15u′

k±1 − 9u′
k∓1

)

2h2
, (2.7)

u
′′′
k±1 = ∓ (99uk±1 − 48uk − 51uk∓1)

2h3
+

(
39u′

k±1 + 96u′
k
+ 15u′

k∓1

)

2h2
, (2.8)



4 Advances in Numerical Analysis

and set

fk±1 = f
(
xk±1, uk±1, u

′
k±1, u

′′
k±1, u

′′′
k±1
)
, (2.9a)

fk±1 = f
(
xk±1, uk±1, u

′
k±1, u

′′
k±1, u

′′′
k±1

)
, (2.9b)

fk = f
(
xk, uk, u

′
k, u

′′
k, u

′′′
k

)
. (2.9c)

Then, the difference method of order four for the differential equation and the corresponding
difference method for the derivative u′k are given by

−2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)
=
h4

90

(
fk+1 + fk−1 + 13fk

)
, (2.10)

−3(uk+1 − uk−1) + h
(
u′k+1 + 4u′k + u

′
k−1

)
=
h4

60

(
fk+1 − fk−1

)
. (2.11)

Note that u0, u′0, uN+1 and u′N+1, are prescribed. It is convenient to express the above
finite difference schemes in block tridiagonal matrix form. If the differential equation is linear,
the resulting block tridiagonal linear system can be solved using the block Gauss-Seidel
(BGS) iterative method. If the differential equation is nonlinear, the system can be solved
using the Newton nonlinear block successive overrelaxation (NBSOR) method (see [25, 26]).

3. Derivation of the Difference Scheme

For the derivation of the method we follow the approaches given by Chawla [27] and
Mohanty [10]. In this section we discuss the derivation of the difference methods and the
block iterative methods.

At the grid point xk, the given differential equation can be written as

uivk = f
(
xk, uk, u

′
k, u

′′
k, u

′′′
k

)
= fk, k = 1(1)N. (3.1a)

Similarly,

fk±1 = f
(
xk±1, uk±1, u

′
k±1, u

′′
k±1, u

′′′
k±1

)
, k = 1(1)N. (3.1b)

Using the Taylor expansion about the grid point xk, we first obtain

−2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)
=
h4

90
(
fk+1 + fk−1 + 13fk

)
+ T1, (3.2)

where T1 = O(h8).
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Now, we need the O(h2) approximation for u′′′k±1. Let

u′′′k+1 =
1
h3 [a10uk + a11uk+1 + a12uk−1] +

1
h2

[
b10u

′
k + b11u

′
k+1 + b12u

′
k−1

]
. (3.3)

Expanding each term on the right-hand side of (3.3) in the Taylor series about the point xk
and equating the coefficients of hp (p = −3,−2,−1, 0, and 1) to zero, we get

(a10, a11, a12, b10, b11, b12) =
(

24,
−27

2
,
−21

2
, 0,

15
2
,
−9
2

)
. (3.4)

Thus, we obtain

u′′′k+1 = − 1
2h3 [27uk+1 − 48uk + 21uk−1] +

1
2h2

[
15u′k+1 − 9u′k−1

]

= u′′′k+1 −
2h2

5
uvk +O

(
h3
)
.

(3.5a)

Similarly, we obtain

u′′′k−1 =
1

2h3 [27uk−1 − 48uk + 21uk+1] +
1

2h2

[
15u′k−1 − 9u′k+1

]

= u′′′k−1 −
2h2

5
uvk −O

(
h3
)
.

(3.5b)

Further, from (2.3) we obtain:

u′′k±1 = u′′k±1 −
h2

3
uivk ±O

(
h3
)
. (3.6)

Hence, we can verify that fk±1 = fk±1 +O(h2).
Next, we obtain the O(h4) approximation for u′′k. Let

u
′′
k =

1
h2 [a20uk + a21uk+1 + a22uk−1] +

1
h

[
b20u

′
k + b21u

′
k+1 + b22u

′
k−1

]
. (3.7)

Using the Taylor series expansion and equating the coefficients of hp (p = −2, −1, 0, 1, 2,
and 3) to zero, we get

(a20, a21, a22, b20, b21, b22) =
(
−4, 2, 2, 0,

−1
2
,

1
2

)
. (3.8)
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Therefore,

u
′′
k =

2
h2 [uk+1 − 2uk + uk−1] − 1

2h
[
u′k+1 − u′k−1

]
= u′′k +O

(
h4
)
. (3.9)

Similarly,

u
′′′
k =

15
2h3 [uk+1 − uk−1] − 3

2h2

[
u′k+1 + 8u′k + u

′
k−1

]
= u′′′k +O

(
h4
)
, (3.10)

u
′′
k±1 =

−1
2h2 [11uk±1 − 16uk + 5uk∓1] ± 1

h

[
4u′k±1 − u′k∓1

]
= u′′k±1 ∓

h3

15
uvk +O

(
h4
)
. (3.11)

Next, we obtain the O(h3) approximation for u′′′
k+1. Let

u
′′′
k+1 =

1
h3 [a30uk + a31uk+1 + a32uk−1] +

1
h2

[
b30u

′
k + b31u

′
k+1 + b32u

′
k−1

]
. (3.12)

Equating the coefficients of hp (p = −3,−2,−1, 0, 1, and 2) to zero, we get

(a30, a31, a32, b30, b31, b32) =
(

24,
−99

2
,

51
2
, 48,

39
2
,

15
2

)
. (3.13)

Thus, we obtain

u
′′′
k+1 =

−1
2h3 [99uk+1 − 48uk − 51uk−1] +

1
2h2

[
39u′k+1 + 96u′k + 15u′k−1

]

= u′′′k+1 −
h3

10
uvik +O

(
h4
)
.

(3.14)

Similarly,

u
′′′
k−1 =

1
2h3 [99uk−1 − 48uk − 51uk+1] +

1
2h2

[
39u′k−1 + 96u′k + 15u′k+1

]

= u′′′k−1 +
h3

10
uvik +O

(
h4
)
.

(3.15)

Let

αk =
∂f

∂u′′
k

, βk =
∂f

∂u′′′
k

. (3.16)
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From (3.5a), (3.5b), (3.6), and (2.9a) it follows that fk±1 provides the O(h2) appro-
ximation for fk±1 and

fk±1 = fk±1 − h2

3
uivk αk −

2h2

5
uvkβk ±O

(
h3
)
. (3.17)

Also, from (2.9b), (3.11), (3.14), and (3.15) we obtain the O(h3) approximation for fk±1:

fk±1 = fk±1 ∓ h3

15
uvkαk ∓

h3

10
uvik βk +O

(
h4
)
. (3.18)

From (2.9c), (3.9), and (3.10) it follows that fk provides an O(h4) approximation for fk

fk = fk +O
(
h4
)
. (3.19)

From (3.18) and (3.19) we get

fk+1 + fk−1 + 13fk = fk+1 + fk−1 + 13fk +O
(
h4
)
. (3.20)

With the help of (3.2) and (3.20), from (2.10), we obtain that the local truncation error as-
sociated with the difference scheme (2.10) is of O(h8). Similarly, we can verify that the local
truncation error associated with the difference scheme (2.11) is of O(h7).

Thus, we have the following result.

Theorem 3.1. Consider the fourth-order nonlinear ordinary differential equation (1.1) along with
the boundary conditions (1.2). Let u ∈ C8[a, b], and the function f is sufficiently differentiable with
respect to its arguments. Then, the difference methods (2.10) and (2.11) with the approximations of u′′

and u′′′ listed in (2.3)–(2.8) are of O(h4).

If the differential (1.1) is linear, then the difference method (2.10) and (2.11) in the
matrix form can be written as

[
A11 A12

A21 A22

][
u

u′

]

=

[
d1

d2

]

, (3.21)

where A11, A12, A21, and A22 are theNth-order tri-diagonal matrices and d1 and d2 are vectors
consisting of right-hand side functions and some boundary conditions associated with the
block system.

The block successive over relaxation (BSOR) method (See Mohanty and Evans [26,
28]) is given by

A11u(n+1) = ω
[
−A12

(
u′)(n) + d1

]
+ (1 −ω)A11u(n), n = 0, 1, 2, . . . ,

A22
(
u′)(n+1) = ω

[
−A21u(n+1) + d2

]
+ (1 −ω)A22

(
u′)(n), n = 0, 1, 2, . . . ,

(3.22)
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where ω is a parameter known as relaxation parameter. With ω = 1, the BSOR method
reduces to block Gauss-Seidel (BGS) method. If ω > 1 or ω < 1, we have overrelaxation
or underrelaxation, respectively.

If f(x, u(x), v(x), u′(x), v′(x)) is nonlinear, the difference equations (2.2a), (2.2b) or
(2.10), (2.11) form a coupled nonlinear system. To solve the coupled nonlinear system we
apply the Newton NBSOR method.

We first write the difference equations (2.2a), (2.2b) or (2.10), (2.11) as

Φ(u,v) = 0,

Ψ(u,v) = 0,
(3.23)

where

u =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u1

u2

...

uN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, v =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

v1

v2

...

vN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Φ(u,v) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

φ1(u,v)

φ2(u,v)

...

φN(u,v)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Ψ(u,v) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ψ1(u,v)

ψ2(u,v)

...

ψN(u,v)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(3.24)

Let

J =

⎡

⎣
T11 T12

T21 T22

⎤

⎦ (3.25)

be the Jacobian of Φ and Ψ, which is the 2Nth-order block tridiagonal matrix, where

T11 =
∂
(
φ1, φ2, . . . , φN

)

∂(u1, u2, . . . , uN)
=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

∂φ1

∂u1

∂φ1

∂u2

∂φ2

∂u1

∂φ2

∂u2

∂φ2

∂u3

0

0
∂φN
∂uN−1

∂φN
∂uN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

T12 =
∂
(
φ1, φ2, . . . , φN

)

∂(v1, v2, . . . , vN)
,
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T21 =
∂
(
ψ1, ψ2, . . . , ψN

)

∂(u1, u2, . . . , uN)
,

T22 =
∂
(
ψ1, ψ2, . . . , ψN

)

∂(v1, v2, . . . , vN)

(3.26)

are the Nth-order tridiagonal matrices.
In the NBSOR method starting with any initial approximation (u(0),v(0)) of (u(k),v(k)),

k = 1(1)N, we define

u(n+1) = u(n) + Δu(n), n = 0, 1, 2, . . . ,

v(n+1) = v(n) + Δv(n), n = 0, 1, 2, . . . ,
(3.27)

where Δu and Δv are intermediate values obtained by solving the matrix equation for
NBSOR method given by

[
T11 T12

T21 T22

][
Δu

Δv

]

=

[−Φ
−Ψ

]

. (3.28)

The above system can be solved for Δu(n) and Δv(n) by using the block SOR method (inner
iterative method) as follows:

T11Δu(n+1) = ω
[
−Φ
(
u(n),v(n)

)
− T12Δv(n)

]
+ (1 −ω)T11Δu(n), n = 0, 1, 2, . . . ,

T22Δv(n+1) = ω
[
−Ψ
(
u(n),v(n)

)
− T21Δu(n+1)

]
+ (1 −ω)T22Δv(n), n = 0, 1, 2, . . . ,

(3.29)

where ω ∈ (0, 2) is a relaxation parameter and n = 0, 1, 2, . . .. The above system of equations
can be solved by using the tridiagonal solver. In order for this method to converge it is
sufficient that the initial approximation (u(0),v(0)) be close to the solution.

4. Convergence and Stability Analysis

Consider the model problem uiv = f(x), where f is a function of x only. Applying the fourth-
order difference methods (2.10) and (2.11) to the above equation, we get

(uk−1 − 2uk + uk+1) +
h

2
(vk−1 − vk+1) =

−h4

180
(
fk+1 + fk−1 + 13fk

)
,

3
h
(uk−1 − uk+1) + (vk−1 + 4vk + vk+1) =

h3

60
(
fk+1 − fk−1

)
,

(4.1)

where we denote u′ = v.
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Let us denote by P = [1, 0, 1], L = [1, 1, 1], and M = [1, 0,−1] theNth-order tridiagonal
matrices.

The system of (4.1) can be written in the block form as

⎡

⎢
⎣
(L − 3I)

h
2
M

3
h
M (L + 3I)

⎤

⎥
⎦

[
u

v

]

=

[
d1

d2

]

, (4.2)

where u and v are two N-dimensional solution vectors and d1, d2 are vectors consisting of
right-hand side functions and some boundary values associated with (4.1). The BSOR method
for the scheme is

u(n+1) = (1 −ω)u(n) − ωh

2
(L − 3I)−1M(v)(n) +ω(L − 3I)−1d1,

(v)(n+1) = (1 −ω)(v)(n) − 3ω
h

(L + 3I)−1Mu(n+1) +ω(L + 3I)−1d2,

(4.3)

The associated block SOR and block Jacobi iteration matrices are given by

Lω =

⎡

⎢
⎣

(1 −ω)I −ωh
2

(L − 3I)−1M

−3ω
h

(L + 3I)−1M (1 −ω)I

⎤

⎥
⎦,

B =

⎡

⎢
⎣

0
−h
2
(L − 3I)−1M

−3
h
(L + 3I)−1M 0

⎤

⎥
⎦,

(4.4)

and λ and η are the eigenvalues associated with the corresponding matrices Lω and B, which
are related by the equation

(λ +ω − 1)2 = λω2η2. (4.5)

Let [ v1
v2 ] be the eigenvector associated with the eigenvalue η so that

⎡

⎢
⎣

0
−h
2
(L − 3I)−1M

−3
h
(L + 3I)−1M 0

⎤

⎥
⎦

[
v1

v2

]

=

[
v1

v2

]

η. (4.6)

That is,

−h
2
(L − 3I)−1Mv2 = ηv1,

−3
h
(L + 3I)−1Mv1 = ηv2.

(4.7)
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On eliminating v2, we obtain

3
2
(L − 3I)−1M(L+3I)−1Mv1 = η2v1. (4.8)

The rate of convergence of the BSOR method is given by −log(ρ(Lω)).
The rate of convergence of the BSOR method is dependent on the eigenvalues of B

(through relation (4.5)), which are given by (3τ/2) = η2, where τ are the eigenvalues of
(L − 3I)−1M(L + 3I)−1M.

Hence, we can determine the optimal parameter as

ω0 =
2

1 +
√

1 − (3/2)τ
, (4.9)

where τ = S((L − 3I)−1M(L + 3I)−1M).
Thus, we can determine the convergence factor

λ = ω0 − 1 =
1 −
√

1 − (3/2)τ

1 +
√

1 − (3/2)τ
. (4.10)

For convergence, we must have |λ| < 1 to give the range

0 < τ <
2
3

(4.11)

Hence, we get the convergence.
Thus, we have the following result.

Theorem 4.1. The iteration method of the form (4.3) for the solution of uiv = f(x) converges if
0 < τ < 2/3, where τ = S((L − 3I)−1M(L + 3I)−1M), L = [1, 1, 1], and M = [1, 0,−1] are the
N ×N tridiagonal matrices.

Now, we discuss the stability analysis.
An iterative method for (4.1) can be written as

u(k+1) =
1
2
Pu(k) +

h

4
Mv(k) + RHU,

v(k+1) =
−3
4h

Mu(k) − 1
4
Pv(k) + RHV,

(4.12)

where u(k), v(k) are solution vectors at the kth iteration and RHU, RHV are right-hand side
vectors consisting of boundary and homogenous function values.

The above iterative method in matrix form can be written as

[
u(k+1)

v(k+1)

]

= G

[
u(k)

v(k)

]

+ RH, (4.13)
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where

G =

⎡

⎢
⎣

1
2
P

h

4
M

−3
4h

M
−1
4
P

⎤

⎥
⎦, RH =

[
RHU

RHV

]

. (4.14)

The eigenvalues of P and M are 2 cos kπ/(N + 1) and 2i cos kπ/(N + 1), respectively,
where k = 1, 2, . . . ,N. The characteristic equation of the matrix G is given by

det

⎡

⎢
⎣

1
2
P − ξIN h

4
M

−3
4h

M
−1
4
P − ξIN

⎤

⎥
⎦ = 0. (4.15)

Thus the eigenvalues of G are given by

det
[−1

4
P − ξIN

]
× det

[(
1
2
P − ξIN

)
+

3
16

M
(−1

4
P − ξIN

)−1

M

]

= 0. (4.16)

The proposed iterative method (4.13) is stable as long as the maximum absolute eigenvalues
of the iteration matrix are less than or equal to one. It has been verified computationally that
all eigenvalues of the system (4.16) are less than one. Hence, the iterative method (4.1) is
stable.

5. Application to Singular Equation

Consider a singular fourth-order linear ordinary differential equation of the form

Δ4u ≡
(

d2

dr2
+

1
r

d

dr

)2

u = f(r), 0 < r < 1, (5.1)

or equivalently

uiv = b(r)u′′′ + c(r)u′′ + d(r)u′ + f(r), 0 < r < 1, (5.2)

where

b(r) = −2/r, c(r) = 1/r2, d(r) = −1/r3. (5.3)

The above equation represents fourth-order ordinary differential equation in cylindri-
cal polar coordinates.

The boundary conditions are given by

u(0) = A0, u′(0) = A1, u(1) = B0, u′(1) = B1, (5.4)

where A0, A1, B0, and B1 are constants.



Advances in Numerical Analysis 13

Applying the difference scheme (2.2a), (2.2b) to the singular equation (5.2), we obtain
a second-order difference method

−2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)
=
h4

6
(
bku

′′′
k + cku

′′
k + dku

′
k + fk

)
,

−3(uk+1 − uk−1) + h
(
u′k+1 + 4u′k + u

′
k−1

)
= 0, k = 1(1)N.

(5.5)

Applying the fourth-order difference scheme (2.10) to the singular equation (5.2), we obtain

− 2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)

=
h4

90

[(
bk+1u

′′′
k+1 + ck+1u

′′
k+1 + dk+1u

′
k+1 + fk+1

)

+
(
bk−1u

′′′
k−1 + ck−1u

′′
k−1 + dk−1u

′
k−1 + fk−1

)

+
(

13bku
′′′
k + 13cku

′′
k + 13dku′k + 13fk

)]
, k = 1(1)N,

(5.6)

where

bk±1 = b(rk±1), ck±1 = c(rk±1), dk±1 = d(rk±1), fk±1 = f(rk±1). (5.7)

Note that the scheme fails when the solution is to be determined at k = 1. We overcome
the difficulty by modifying the method in such a way that the solutions retain the order and
accuracy even in the vicinity of the singularity r = 0 (see [29]). We consider the following
approximations:

bk±1 = bk ± hb′k +
h2

2!
b′′k +O

(
±h3
)
,

ck±1 = ck ± hc′k +
h2

2!
c′′k +O

(
±h3
)
,

dk±1 = dk ± hd′
k +

h2

2!
d′′
k +O

(
±h3
)
,

fk±1 = fk ± hf ′
k +

h2

2!
f ′′
k +O

(
±h3
)
.

(5.8)

Using the approximation (5.8) in (5.6) and neglecting higher-order terms, we can
rewrite (5.6) in compact operator form as

− 2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)

=
h2

90

(
−24b′k + 18ck − 4h2c′′k

)
δ2
xuk
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+
h

180

(
45bk − 75h2b′′k − 6h2c′k

)(
2μxδx

)
uk

+
h4

90

(−45bk
h2

+ 75b′′k + 6c′k + 15dk + h2d′′
k

)
u′k

+
h2

180

(
15bk + 27h2b′′k + 6h2c′k + 2h2dk

)(
2μxδx

)
u′k

+
h3

180

(
24b′k − 3ck + 5h2c′′k + 2h2d′

k

)(
2μxδx

)
uk

+
h4

90

(
15fk + h2f ′′

k

)
, k = 1(1)N.

(5.9)

Similarly, using the difference scheme (2.11), a fourth-order approximation for the de-
rivative u′ for the singular equation (5.2) in the compact form may be written as

− 3(uk+1 − uk−1) + h
(
u′k+1 + 4u′k + u

′
k−1

)

=
h

60
(−24bk)δ2

xuk +
h2

60
(−3b′k

)(
2μxδx

)
uk +

h3

60
(
2ck + 3b′k

)
δ2
xu

′
k

+
h2

60

(
12bk + h2(c′k + dk

))(
2μxδx

)
u′k +

h3

60

(
6b′k + 2h2d′

k

)
u′k +

h4

60
(
2hf ′

k

)
, k = 1(1)N,

(5.10)

where δruk = uk+1/2 − uk−1/2, μruk = (uk+1/2 + uk−1/2)/2.
Finite difference equations (5.9) and (5.10) along with the boundary conditions (5.4)

gives a 2N × 2N linear system of equations for the unknowns u1, u2, . . . , uN, u
′
1, u

′
2, . . . , u

′
N .

The resulting block tri-diagonal system can be solved using the BGS method. The schemes
(5.9) and (5.10) are free from the terms 1/(k ± 1), hence very easily solved for k = 1(1)N in
the region (0,1).

Consider the coupled nonlinear singular equations

uIV = a(r)
[
u′v′′ + v′u′′

]
+ f(r), 0 < r < 1,

vIV = −a(r)u′u′′ + g(r), 0 < r < 1,
(5.11)

where a(r) = 1/r, with known boundary conditions u(0), v(0), u′(0), v′(0), u(1), v(1),
u′(1), and v′(1). The coupled equations represent model equations of equilibrium for a load
symmetrical about the centre (see [30]).

The second-order difference scheme for solving the system (5.11) is given by

−2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)
=
h4

6
[
ak
(
u′kv

′′
k + v

′
ku

′′
k

)
+ fk
]
,

−2(vk+1 − 2vk + vk−1) + h
(
v′
k+1 − v′

k−1

)
=
h4

6
[−aku′ku′′k + gk

]
,
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−3(uk+1 − uk−1) + h
(
u′k+1 + 4u′k + u

′
k−1

)
= 0,

−3(vk+1 − vk−1) + h
(
v′
k+1 + 4v′

k + v
′
k−1

)
= 0,

(5.12)

where ak = a(rk), fk = f(rk), and gk = g(rk).
The fourth-order difference scheme for solving the system (5.11) for u, v, u′, and v′ is

given by

− 2(uk+1 − 2uk + uk−1) + h
(
u′k+1 − u′k−1

)

= H1

[
15fk + h2f ′′

k

]

+H1a11

[
u′k+1

{ −1
2h2 (11vk+1 − 16vk + 5vk−1) +

1
h

(
4v′

k+1 − v′
k−1

)
}

+v′
k+1

{ −1
2h2 (11uk+1 − 16uk + 5uk−1) +

1
h

(
4u′k+1 − u′k−1

)
}]

+H1a12

[
u′k−1

{ −1
2h2 (11vk−1 − 16vk + 5vk+1) − 1

h

(
4v′

k−1 − v′
k+1

)
}

+v′
k−1

{ −1
2h2 (11uk−1 − 16uk + 5uk+1) − 1

h

(
4u′k−1 − u′k+1

)
}]

+H1a10

[
u′k

{
2
h2 (vk+1 − 2vk + vk−1) − 1

2h
(
v′
k+1 − v′

k−1

)
}

+v′
k

{
2
h2 (uk+1 − 2uk + uk−1) − 1

2h
(
u′k+1 − u′k−1

)
}]

,

− 2(vk+1 − 2vk + vk−1) + h
(
v′
k+1 − v′

k−1

)

= H1

[
15gk + h2g ′′

k

]
−H1a11u

′
k+1

[ −1
2h2 (11uk+1 − 16uk + 5uk−1) +

1
h

(
4u′k+1 − u′k−1

)
]

−H1a12u
′
k−1

[ −1
2h2 (11uk−1 − 16uk + 5uk+1) − 1

h

(
4u′k−1 − u′k+1

)
]

− 13H1a10u
′
k

[
2
h2 (uk+1 − 2uk + uk−1) − 1

2h
(
u′k+1 − u′k−1

)
]
,

− 3(uk+1 − uk−1) + h
(
u′k+1 + 4u′k + u

′
k−1

)

= H2
(
2hf ′

k

)
+H2a11

[

u′k+1

{
3v′

k+1 − 4v′
k + v

′
k−1

2h

}

+ v′
k+1

{
3u′k+1 − 4u′k + u

′
k−1

2h

}]

−H2a12

[

u′k−1

{−3v′
k−1 + 4v′

k − v′
k+1

2h

}

+ v′
k−1

{−3u′k−1 + 4u′k − u′k+1

2h

}]

,
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− 3(vk+1 − vk−1) + h
(
v′
k+1 + 4v′

k + v
′
k−1

)

= H2
(
2hg ′

k

) −H2a11u
′
k+1

{
3u′

k+1 − 4u′k + u′k−1

2h

}

−H2a12u
′
k−1

{−3u′
k−1 + 4u′k − u′k+1

2h

}

,

(5.13)

where

ak = a(rk), fk = f(rk), gk = g(rk),

a11 = ak + ha′k +
h2

2
a′′k, a12 = ak − ha′k +

h2

2
a′′k, a10 = ak.

(5.14)

The scheme (5.13) is free from the terms 1/k±1, hence very easily solved for k = 1(1)N
in the region (0,1). The system (5.13) can be solved using the NBSOR method.

Consider the boundary value problem [31]

yiv − λyy′′ = f(x),

y(0) = V0, y(1) = V1, y′(0) = 0, y′(1) = 0.
(5.15)

This arises from the time-dependent Navier-Strokes equations for axisymmetric flow
of an incompressible fluid contained between infinite disks that occupy the planes z = −d
and z = d. The disks are porous and the fluid is injected or extracted normally with velocity
V0 at z = −d and V1 at z = d. Here, =d/ν, where ν is the kinematic viscosity.

6. Numerical Illustrations

To illustrate our method and to demonstrate computationally its convergence, we have
solved the following linear problem using the BGS method (See [25, 32–35]), whose exact
solution is known to us. We have taken [0, 1] as our region of integration. The right-hand side
functions and the boundary conditions are obtained using the exact solution. The iterations
were stopped when the absolute error tolerance became ≤10−12. All computations were per-
formed using double length arithmetic.

Problem 1. The problem is to solve (5.2) subject to the boundary conditions (5.4). The exact
solution is u = r4 sin r. The root mean square errors (RMSEs) are tabulated in Table 1. The
graph of the errors for N = 32 is given in Figure 1.

Problem 2. The boundary value problem is to solve (5.15). The exact solution is (1−x2) exp(x).
The maximum absolute errors (MAE) and RMSE are tabulated in Table 2.

Problem 3. The system of nonlinear equation (5.11) is to be solved subject to the natural
boundary conditions. The exact solutions are u = cos(r) and v = exp(r). The MAE and RMSE
are tabulated in Table 3.



Advances in Numerical Analysis 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

or

x axis

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Error at the grid point

×10−6
Graph of the errors for N = 32, for problem 1

Figure 1

Table 1: The RMSE.

2nd-order method 4th-order method
h MAE RMSE MAE RMSE

1/8 u 0.9512 (−03) 0.6737 (−03) 0.6018 (−03) 0.4089 (−03)
u′ 0.3162 (−02) 0.2137 (−02) 0.2961 (−02) 0.1402 (−02)

1/16 u 0.2212 (−03) 0.1501 (−03) 0.3799 (−04) 0.2502 (−04)
u′ 0.7021 (−03) 0.4995 (−03) 0.3022 (−03) 0.9846 (−04)

1/32 u 0.5410 (−04) 0.3576 (−04) 0.1989 (−05) 0.1304 (−05)
u′ 0.1729 (−03) 0.1206 (−03) 0.2302 (−05) 0.5629 (−05)

1/64 u 0.1339 (−04) 0.8769 (−05) 0.9996 (−07) 0.6578 (−07)
u′ 0.4298 (−04) 0.2972 (−04) 0.1562 (−05) 0.2983 (−06)

1/128 u 0.3363 (−05) 0.2174 (−05) 0.4198 (−08) 0.3345 (−08)
u′ 0.1072 (−04) 0.7383 (−05) 0.9892 (−07) 0.1538 (−07)

Observe that for the linear singular problem for α = 1, h1 = 1/64, h2 = 1/128,
log(eh1/eh2)/ log(h1/h2) = log(0.6578(−07)/0.3345(−08))/ log 2 ≈ 4. Thus, we obtain fourth-
order convergence for u. Similarly, we get fourth-order convergence for u′.

7. Concluding Remarks

The numerical results confirm that the proposed finite difference methods yield second- and
fourth-order convergence for the solution and its derivative for the fourth-order ordinary
differential equation. Difference formulas for mesh points near the boundary are obtained
without using the fictitious points. The proposed method is applicable to problems in polar
coordinates and the derivative of the solution is obtained as the by-product of the method. We
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Table 2: The MAE and RMSE.

2nd-order method 4th-order method
h MAE RMSE MAE RMSE
λ = 1.0

1/8 u 0.8435 (−04) 0.5652 (−04) 0.2744 (−05) 0.1880 (−05)
u′ 0.3552 (−03) 0.2322 (−03) 0.1058 (−04) 0.7178 (−05)

1/16 u 0.2292 (−04) 0.1499 (−04) 0.1854 (−06) 0.1217 (−06)
u′ 0.7762 (−04) 0.5391 (−04) 0.6695 (−06) 0.4351 (−06)

1/32 u 0.5844 (−05) 0.3771 (−05) 0.1151 (−07) 0.7446 (−08)
u′ 0.1885 (−04) 0.1322 (−04) 0.4115 (−07) 0.2618 (−07)

λ = 100

1/8 u 0.1961 (−02) 0.1401 (−02) 0.5662 (−04) 0.3877 (−04)
u′ 0.6514 (−02) 0.4687 (−02) 0.3824 (−03) 0.1910 (−03)

1/16 u 0.4808 (−03) 0.3312 (−03) 0.3821 (−05) 0.2558 (−05)
u′ 0.1597 (−02) 0.1110 (−02) 0.1929 (−04) 0.9922 (−05)

1/32 u 0.1197 (−03) 0.8103 (−04) 0.2435 (−06) 0.1609 (−06)
u′ 0.4023 (−03) 0.2714 (−03) 0.1135 (−05) 0.5843 (−06)

Table 3: The MAE and RMSE.

2nd-order method 4th-order method
h MAE RMSE MAE RMSE

1/10

u 0.7141 (−05) 0.4859 (−05) 0.2673 (−05) 0.1818 (−05)
v 0.3339 (−05) 0.2240 (−05) 0.6974 (−06) 0.4745 (−06)
u′ 0.2488 (−04) 0.1683 (−04) 0.1266 (−04) 0.6538 (−05)
v′ 0.1126 (−04) 0.8137 (−05) 0.2548 (−05) 0.1656 (−05)

1/20

u 0.1806 (−05) 0.1182 (−05) 0.2467 (−06) 0.1639 (−06)
v 0.8550 (−06) 0.5595 (−06) 0.4846 (−07) 0.3212 (−07)
u′ 0.6486 (−05) 0.4128 (−05) 0.1167 (−05) 0.5946 (−06)
v′ 0.2659 (−05) 0.1957 (−05) 0.1795 (−06) 0.1119 (−06)

1/40

u 0.4514 (−06) 0.2917 (−06) 0.2048 (−07) 0.1346 (−07)
v 0.2152 (−06) 0.1391 (−06) 0.3315 (−08) 0.2161 (−08)
u′ 0.1620 (−05) 0.1020 (−05) 0.1027 (−06) 0.4911 (−07)
v′ 0.6757 (−06) 0.4828 (−06) 0.1222 (−07) 0.7515 (−08)

1/80

u 0.1125 (−06) 0.7216 (−07) 0.1510 (−08) 0.9836 (−09)
v 0.5307 (−07) 0.3442 (−07) 0.2931 (−09) 0.1883 (−09)
u′ 0.4038 (−06) 0.2525 (−06) 0.8190 (−08) 0.3662 (−08)
v′ 0.1686 (−06) 0.1192 (−06) 0.9925 (−09) 0.6537 (−09)

1/160

u 0.3050 (−07) 0.1946 (−07) 0.1213 (−09) 0.7945 (−10)
v 0.1461 (−07) 0.9331 (−08) 0.1358 (−10) 0.8769 (−11)
u′ 0.1076 (−06) 0.6812 (−07) 0.6420 (−09) 0.2913 (−09)
v′ 0.4591 (−07) 0.3237 (−07) 0.5009 (−10) 0.3048 (−10)

employ the BGS method to solve the block matrix systems of the linear singular problem and
the BSOR method to solve the nonlinear singular problem. We have solved here a physical
problem that arises in the axisymmetric flow of an incompressible fluid.
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