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Image denoising processes often lead to significant loss of fine structures such as edges and
textures. This paper studies various innovative mathematical and numerical methods applicable
for conventional PDE-based denoising models. The method of diffusion modulation is considered
to effectively minimize regions of undesired excessive dissipation. Then we introduce a novel
numerical technique for residual-driven constraint parameterization, in order for the resulting
algorithm to produce clear images whose corresponding residual is as free of image textures
as possible. A linearized Crank-Nicolson alternating direction implicit time-stepping procedure
is adopted to simulate the resulting model efficiently. Various examples are presented to show
efficiency and reliability of the suggested methods in image denoising.

1. Introduction

During the last two decades, as the field of image processing requires higher reliability and
efficiency, mathematical techniques have become important components of image processing.
Various mathematical frameworks employing powerful tools of partial differential equations
(PDEs) and functional analysis have emerged and successfully applied to various image
processing tasks, particularly for image denoising and restoration [1–9], see also [10, 11].
Those PDE-based denoising techniques have allowed researchers and practitioners not only
to introduce effective new models but also to improve traditional algorithms.

However, most PDE-based models tend to either converge to a piecewise constant
image or introduce image blur (undesired dissipation), partially because the models are
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derived by minimizing a functional of the image gradient. As a consequence, the conven-
tional PDE-based models may lose interesting image fine structures during the denoising. In
order to reduce the artifact, researchers have studied various mathematical and numerical
techniques which either incorporate more effective constraint terms and iterative refinement
[5, 12–14] or minimize a functional of second derivatives of the image [15–18]. These new
mathematical models may preserve fine structures better than conventional ones; however,
more advanced models and appropriate numerical procedures are yet to be developed.

Most image denoising models incorporate parameters which are closely related to the
noise level. Since it is often the case that the noise level is unknown, the problem of choosing
parameters occasionally becomes a difficult task and, as a result, the resulting algorithm may
produce unsatisfactory images.

This paper suggests the method of diffusion modulation and a residual-driven
constraint (RDC) parameterization to obtain clearer images, reduce excessive dissipation
effectively, and minimize texture components in the residual. These new methods are
modifications or improvements of those studied by one of the authors [19]. In this paper,
the diffusion modulation model is derived in a different and clearer way (Section 3.1), the
RDC parameterization is considered correspondingly (Section 3.3), an effective strategy is
introduced for the evaluation of locally averaged diffusion terms (Section 3.4), and combined
effects of these techniques are experimentally analyzed for various natural and medical
images (Section 5). The new methods would be applicable for most conventional PDE-based
denoising models.

An outline of the paper is as follows. In the next section, we briefly review variational
denoising models and their nonvariational variants. Section 3 suggests a novel denoising
model. The model incorporates methods of equalized net diffusion (END) and RDC
parameterization, in order for the resulting algorithm to be able to restore clear images with
the corresponding residuals left behind being texture-free. In Section 4, we present an efficient
time-stepping procedure and anisotropic diffusion difference schemes for the model. Its
stability is analyzed in the same section. Section 5 gives certain numerical examples to show
effectiveness of the resulting model. It has been numerically verified that our new model is
robust and works similarly well for wide ranges of algorithm parameters, producing clear
images satisfactorily. It is successfully applicable for denoising of natural images and various
medical images as well. Our ultimate goal is to produce clear images of texture-free residual.

2. Preliminaries

This section presents a brief review of variational approaches for image denoising, followed
by nonvariational variants.

2.1. Variational Approaches

Given an observed (noisy) image u0 : Ω → R , where Ω is the image domain which is an
open subset in R

2 , we consider a simple noise model of the following form:

u0 = u + v, (2.1)
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where u is the desired image and v denotes the noise of a zero mean. Then a common
denoising technique is to minimize a functional of the following gradient:

u = argmin
u

{∫
Ω
ρ(|∇u|)dx + λ

2

∫
Ω
(u0 − u)2dx

}
, (2.2)

where ρ is an increasing function (often, convex) and λ ≥ 0 denotes the constraint parameter.
It is often convenient to transform theminimization problem (2.2) into a differential equation,
called the Euler-Lagrange equation, by applying the variational calculus [20] as follows:

−∇ ·
(
ρ′(|∇u|) ∇u

|∇u|
)

= λ(u0 − u). (2.3)

For an edge-adaptive image denoising, it is required to hold ρ′(x)/x → 0 as x → ∞.
For a convenient numerical simulation of (2.3), the energy descent direction may be

parameterized by an artificial time t, that is, u can be considered as an evolutionary function
and the corresponding evolutionary equation can be obtained by adding ∂u/∂t on the left
side of (2.3).

When ρ(x) = x, the model (2.3) in its evolutionary form becomes the total variation
(TV)model [8] as follows:

∂u

∂t
− κ(u) = λ(u0 − u), (TV), (2.4)

where κ(u) is the mean curvature defined as

κ(u) = ∇ ·
( ∇u

|∇u|
)
. (2.5)

It is often the case that the constraint parameter λ is set as a constant, as suggested by Rudin
et al. [8]. In order to find the parameter, the authors merely multiplied (2.4) by (u0 − u) and
averaged the resulting equation over the whole image domain Ω. Then, for its steady state,
we have

λ = − 1
σ2

1
|Ω|

∫
Ω
(u0 − u)κ(u)dx, (2.6)

where σ2 is the noise variance. (In [8], λ was evaluated after applying integration by parts,
which could avoid approximations of second derivatives.)

As another example of (2.3), the Perona-Malik (PM) model [7] can be obtained by
setting ρ(x) = (1/2)K2 ln(1 + x2/K2), for some K > 0, and λ = 0 as follows:

∂u

∂t
− ∇ · (c(|∇u|)∇u) = 0, (PM), (2.7)

where c(x) = ρ′(x)/x = (1 + x2/K2)−1. Note that for the PM model, the function ρ is strictly
convex for x < K and strictly concave for x > K. (K is a threshold.) Thus themodel can flatten
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regions of slow transitions (where c(|∇u|) is big); however, it may enhance image content of
large gradient magnitudes such as edges and speckles (where c(|∇u|) is small).

2.2. Nonvariational Reformulations

The TV and PMmodels tend to converge to a piecewise constant image. Such a phenomenon
is called the staircasing effect. In order to suppress it, Marquina and Osher [5] suggested to
multiply the stationary TV model by a factor of |∇u| as follows:

∂u

∂t
− |∇u|κ(u) = λ|∇u|(u0 − u). (ITV) (2.8)

Since |∇u| vanishes only on flat regions, its steady state is analytically the same as that of
the TV model (2.4). We will call (2.8) the improved TV (ITV) model, as called in [21]. Such a
nonvariational reformulation may reduce the staircasing effect successfully; however, it is yet
to be improved for a better preservation of fine structures.

As another variant, we may set ρ(x) = x2−q, 0 ≤ q < 2, in (2.3) and multiply the result-
ing equation by |∇u|q [12] as follows:

∂u

∂t
− |∇u|q ∇ ·

( ∇u

|∇u|q
)

= β(u0 − u), (CCAD), (2.9)

where

β = λ
|∇u|q
2 − q

. (2.10)

The second-order differential operator in (2.9) is closely related to that of the PMmodel (2.7),
in particular when q → 2, and therefore we will call (2.9) the convex-concave anisotropic
diffusion (CCAD) model. The CCAD model can be implemented as a stable numerical algo-
rithm for all q ∈ [0, 2). It has been numerically verified [12] that for 1 < q < 2, the CCAD
model is superior to the ITV model. Note that the ITV model is a special case (q = 1) of the
CCAD model.

These reformulations of variational models can restore better images and their
properties are now well understood. However, they may still leave interesting image fine
structures to the residual. Here, we close the section by writing variational denoising models
and their nonvariational reformulations in the following general form:

∂u

∂t
+ S(u) = C(u)(u0 − u), (2.11)

where S(u) and C(u) denote the diffusion term and the constraint coefficient, respectively.
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3. The New Denoising Model

In this section, we will build a new denoising model, incorporating the method of diffusion
modulation and a variable constraint parameterization; the resulting model can restore clear
images with the corresponding residuals being as free of image fine structures as possible.

We will first try to find the source of undesired diffusion, exemplifying the TV model
(2.4) for simplicity. Let u and r be, respectively, the desired image and the residual, r = u0 −u.
Then, the associated residual equation reads

∂r

∂t
+ λr = −κ(u). (3.1)

Although the given image u0 is piecewise smooth and is the same as the desired image u at
t = 0 (i.e., r|t=0 ≡ 0), the residual at t > 0 becomes positive or negative at pixels where the
image is concave or convex, respectively. Thus the solution of the TV model at t > 0, u(t) =
u0 − r(t) must involve undesired dissipation wherever its curvature is nonzero; the larger
the curvature is in modulus, the more undesired dissipation occurs. The above observation
exemplified with the TV model is clearly applicable for more general PDE-based denoising
models of the form (2.11).

3.1. The Method of Diffusion Modulation

In order to eliminate the undesired dissipation effectively, we may consider a variable
constraint parameter λ(x), which has motivated the method of diffusion modulation.

An alternative to (2.6) is to get a variable parameter λ = λ(x) by averaging locally

λ(x) = − 1
σ2
loc(x)

1
|Ωx|

∫
Ωx

(u0 − u)κ(u)dx, (3.2)

where Ωx is a neighborhood of x and σ2
loc(x) denotes the local noise variance measured over

Ωx.
Note that the right side of (3.2) can be considered as an inner product of u0 − u and

−κ(u) defined on Ωx, scaled by 1/σ2
loc(x), that is,

λ(x) =
1

σ2
loc(x)

〈u0 − u,−κ(u)〉Ωx
≤ 1

σ2
loc(x)

‖u0 − u‖loc,x · ‖κ(u)‖loc,x, (3.3)

where ‖ · ‖loc,x denotes a local average over Ωx and the Cauchy-Schwarz inequality has been
applied. It should also be noticed that the constraint parameter λ in (2.6) is nonnegative for
an effective denoising; we will require its local evaluation λ(x) be nonnegative at all image
points x. The corresponding modification of the constraint parameter λ(x) in (3.2) reads

λ̃(x) = max(λ(x), 0) =
θloc(x)
σ2
loc(x)

‖u0 − u‖loc,x · ‖κ(u)‖loc,x, (3.4)
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for 0 ≤ θloc(x) ≤ 1. Thus, the stationary TVmodel incorporated with λ̃(x) and scaled by locally
averaged curvature ‖κ(u)‖loc can be formulated as

− 1
‖κ(u)‖loc

κ(u) = βloc(u0 − u), (3.5)

where

βloc(x) =
θloc(x)
σ2
loc(x)

‖u0 − u‖loc,x. (3.6)

The model in (3.5) is a variant of the stationary TV model, of which the diffusion is
modulated by a locally averaged curvature. Thus its solution must be essentially the same
as that of the stationary TV model at pixels where ‖κ(u)‖loc,x is nonzero. When the average
curvature term is regularized, the diffusion modulation of the evolutionary TV model (2.4)
can be written as

∂u

∂t
− 1
‖κ(u)‖loc + ε0

κ(u) = βloc(u0 − u), (3.7)

where ε0 > 0 is incorporated to prevent the denominator approaching zero.
The steady state of (3.7) must be similar to that of the TV model (2.4) incorporating

(3.4), when ε0 is small. However, their numerical solutions, which are in practice obtained
terminating much earlier than reaching the steady state, may differ much from each other.
Themodel (3.7) requires evaluating βloc(x) at each point x in the image domain. In Section 3.3,
we will consider an effective alternative to the constraint coefficient βloc. Here, our finding is
that

(a) the diffusion operator can be modulated by multiplying the reciprocal of a local
average of the diffusion term itself, and

(b) the constraint coefficient can be determined as a function of the residual magnitude
|u0 − u|.

Thus, we may consider the following reformulation of (2.11), of which the diffusion
term is modulated by a function of diffusion operator itself:

∂u

∂t
+M(S(u))S(u) = C(u)(u0 − u), (3.8)

where M(s) is a positive function called a modulator. The modulator will play an important
role for suppressing undesired excessive dissipation on the regions of large diffusion
magnitude |S(u)|, while the constraint coefficientC(u)must become larger at pixels where the
residual reveals structural components of the given image. Such a combination of diffusion
modulation and residual-driven variable constraint may (a) minimize undesired dissipation
in the first place and (b) return important image features (if any in the residual) back to the
restored image. See examples in Section 5.
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Figure 1: The modulator M(s) and the net diffusion functionN(s) for γ = 1 and η = 2.

Now, let us find an effective modulator. Let

N(s) = M(s) · s (3.9)

be the net diffusion function. Then, an effective modulator can be defined to impose the
net diffusion, N(S(u)), approximately equal over a wide range of |S(u)| ≥ s0, for some
s0 > 0. However, the net diffusion function must be strictly increasing and origin-symmetric.
Note that the model (3.8) converges in the direction in which the net diffusion decreases
in modulus. The convergence must introduce denoising, that is, S(u) becomes smaller in
modulus, which requires N to be strictly increasing. The origin symmetry of N implies
that N(−s) = −N(s), with which N becomes equally diffusive for both concavities (up and
down). Such a net diffusion function can be defined, for example, as

N(s) = M(s)s =
γ

1 + η |s|s, (3.10)

for some constants η, γ > 0. See Figure 1, where |N(s)| takes virtually the same values
except on smooth regions (where |s| is small) and therefore the function N may introduce
an equalized net diffusion in practice.

Incorporating (3.10), the model (3.8) can be rewritten as

∂u

∂t
+

γ

1 + η‖S(u)‖loc
S(u) = C(u)(u0 − u), (END) (3.11)

which can be viewed as a generalization of the diffusion-modulated TV model (3.7). We will
call (3.11) the equalized net diffusion (END) formulation of (2.11). In a time-stepping procedure
of (3.11), the locally averaged curvature term can be evaluated utilizing the last iterate of the
solution.

In the following, we will present effective strategies for the determination of γ and η,
a variable constraint coefficient C(u), and ‖S(u)‖loc.
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3.2. Determination of η and γ

Let un−1 be the solution in the last time level tn−1. Then, for the computation of un, we will try
to find the constants η and γ to satisfy

N(T) = χ
γ

η
= T, 0 < χ < 1, (3.12)

for some threshold T > 0 and a user-specified parameter χ. The first identity in (3.12)
determines the sharpness of N near the origin; it becomes sharper, as χ → 1.

Note that the net diffusion magnitude |N(S(un−1))| satisfying (3.12) is smaller than
the magnitude of the original diffusion, |S(un−1)|, at pixels where the image content changes
rapidly (|S(un−1)| > T), while it becomes larger in smooth regions. This would make the
END model suppress excessive dissipation in regions of fast transitions and denoise more
efficiently in smooth regions.

The equations in (3.12) can be easily solved for η and γ , as follows:

η =
χ

1 − χ
· 1
T
, γ = 1 + ηT =

1
1 − χ

. (3.13)

Then, since N(s) is an increasing function, we have

T = N(T) ≤ |N(s)| =
∣∣∣∣ γs

1 + η|s|
∣∣∣∣ ≤ γ

η
= T

1
χ
, for |s| ≥ T. (3.14)

Thus the net diffusion on oscillatory regions (|S(un−1)| ≥ T) can differ only by a factor of 1/χ
at most. The parameter χ must be large enough to equalize the net diffusion on oscillatory
regions; however, it should not be too large, because otherwise the (almost) flat net diffusion
will hardly be effective in denoising.

The threshold T must be small enough to equalize the net diffusion on every
interesting oscillatory region including edges and textures. It has been numerically verified
that T can be chosen as an average of |S(un−1)|,

T = S0 :=
(

1
|Ω|

∫
Ω

∣∣∣S(un−1
)∣∣∣2 dx

)1/2

. (3.15)

Since the diffusion magnitude |S(un−1)| evaluated from oscillatory regions is typically larger
than its L2-average S0, the threshold T in (3.15) suffices to equalize the net diffusion for
regions of fine structures.

The above arguments for the choice of η and γ can be summarized as follows.

(1) Select a constant χ, 0 < χ < 1, and compute the L2-average of |S(un−1)| as

S0 =
(

1
|Ω|

∫
Ω

∣∣∣S(un−1
)∣∣∣2dx

)1/2

. (3.16)
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(2) Determine the parameters η and γ for the computation of un as

η =
χ

1 − χ
· 1
S0

, γ =
1

1 − χ
. (3.17)

Thus END requires the user to select only a single parameter, χ, which determines the
sharpness of the net diffusion functionN near the origin. It has been numerically verified that
it works well with χ = 0.5 ∼ 0.8. (We set χ = 0.6 for all experiments presented in this paper.)
Note that when χ = 0, we have M(s) ≡ 1 and therefore the END model (3.11) is reduced to
the conventional model (2.11).

3.3. Residual-Driven Variable Constraint Coefficients

The determination of the constraint parameter has been an interesting problem for PDE-based
denoisingmodels, of which the basic mechanism is diffusion. Thus the parameter C cannot be
too large; it must be small enough to introduce a sufficient amount of diffusion. On the other
hand, it should be large enough to keep the details in the image. However, in the literature,
the parameter has been chosen constant for most cases so that the resulting models can either
smear out fine structures excessively or maintain an objectionable amount of noise into the
restored image.

In order to overcome the difficulty, the parameter must be set variable, more precisely,
edge-adaptive. Our strategy toward the objective is to

(a) initialize the parameter to be small, and

(b) allow the parameter grow wherever undesired dissipation is excessive, keeping it
small elsewhere.

Note that the parameter would better be initialized small so that in the early stage of
computation, the ENDmodel (3.11) can remove the noise effectively and equally everywhere.
Then, by letting the parameter grow, the model can return structural components (lost in the
residual) back to the image.

An automatic and effective numerical method for the determination of the constraint
coefficient C, as a function of (x, t), can be formulated as follows.

(1) Select a desirable interval Ic = [c0, c1] for which C(x, t) ∈ Ic, where c0 ≥ 0 is
sufficiently small.

(2) Initialize C as a constant as

C0 = C(x, t = 0) = c0. (3.18)

(3) Set C1 = C0 and for n = 2, 3, . . ..

(3a) Compute the absolute residual Rn−1 and the correction vectorHn−1 as follows:

Rn−1 =
∣∣∣u0 − un−1

∣∣∣,
Hn−1 = max

(
0, Gm

(
Rn−1

)
−Av

(
Rn−1

))
,

(3.19)
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whereGm is a localized Gaussian smoothing of radiusm andAv(Rn−1) denotes
the L2-average of Rn−1.

(3b) Update

Cn = Cn−1 + ξnHn−1, (3.20)

where ξn is a scaling factor. For example, when the constraint coefficient is to
be limited in a prescribed interval [c0, c1], that is, C(x, t) ∈ [c0, c1] for all (x, t),
the scaling factor ξn can be chosen as

ξn =
1

2n−1
· c1 − c0∥∥Hn−1∥∥

∞
, n = 2, 3, . . . . (3.21)

Remark 3.1. The L2-average of Rn−1 is the standard deviation (SD) of the the residual, that is,

Av

(
Rn−1

)
=
(

1
|Ω|

∫
Ω

(
u0 − un−1

)2
dx

)1/2

=: σn−1. (3.22)

It must be larger than the true SD of the noise, when the intermediate residual (u0 − un−1)
involves structural components of the image. Thus the correction vector Hn−1 in (3.19) is
nonzero mainly on regions where undesired dissipation is excessive. See Figure 4 below.

The above procedure has been motivated also from the observation presented in the
beginning of the current section: PDE-based denoising models tend to introduce a large
numerical dissipation near fine structures such as edges and textures and the tendency in
turn makes the residual have structural components there. Such structural components can
be viewed as an indicator for an undesired dissipation. By adding the components to the
constraint coefficient C, we may reduce the undesired dissipation from the resulting image.
We call the procedure the residual-driven constraint (RDC) parameterization.

3.4. Evaluation of ‖S(u)‖loc
The incorporation of ‖S(u)‖loc in the END model (3.11) has been initiated from a local
evaluation of the constraint parameter. At pixels where noise is involved, the magnitude of
the diffusion operator S(u) is large, which in turn makes the diffusion modulator, M(S(u)),
small. Thus, the denoising may become slow unless the diffusion operator included in the
modulator is appropriately evaluated from its local average.

For an effective evaluation of ‖S(u)‖loc, it is quite natural to choose a bigger averaging
window when the given image involves a larger noise level. Here we present an effective
strategy for the evaluation of ‖S(u)‖loc.

Consider an averaging algorithm of the following form:

Sk = LSk−1, (3.23)
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where S0 = S(un−1) and L represents a local averaging scheme of which the weights for each
point are given as

1
16

⎡
⎣1 2 1
2 4 2
1 2 1

⎤
⎦. (3.24)

Then we can evaluate ‖S(un−1)‖loc at the pixel point x as

∥∥∥S(un−1
)∥∥∥

loc
(x) =

∣∣∣Sk(x)
∣∣∣, (3.25)

where the iteration count k is set large in the beginning of the simulation (n = 1) and becomes
smaller as n grows. It has been numerically verified that the resulting END model is efficient
when k is chosen to be at least 4 and not larger than 10. For all examples presented in Section 5
below, the smoothing iteration is chosen as

k = max(4, 11 − n). (3.26)

Thus for the evaluation of ‖S(u0)‖loc(x), for example, the algorithm first makes an average of
S(u0) over a 21 × 21 window centered at x, with weights being diminished exponentially in
radial directions, and then measures the absolute value of the averaged diffusion at the same
point.

4. Numerical Schemes

This section presents an efficient time-stepping procedure which incorporates anisotropic
diffusion difference schemes for the END model (3.11), followed by its stability analysis.

4.1. A Linearized Time-Stepping Procedure

LetΔt be the timestep size and tn = nΔt, n ≥ 0. Define un = u(·, tn). For the diffusion operator,
we will exemplify the CCAD model, that is,

S(u) = −|∇u|q∇ ·
( ∇u

|∇u|q
)
, 0 ≤ q < 2. (4.1)

For � = 1, 2 and m = n, n − 1, let Sn−1
� be a diffusion matrix approximating the directional

diffusion operator as follows:

Sn−1
� um ≈ −

∣∣∣∇un−1
∣∣∣q∂x�

(
∂x�u

m

|∇un−1|q
)
. (4.2)
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(See Section 4.2 below for the spatial numerical scheme.) Let Sn−1 = Sn−1
1 + Sn−1

2 and

Fn−1 =
γ

1 + η
∥∥Sn−1un−1∥∥

loc

. (4.3)

Define An−1 = An−1
1 +An−1

2 , where

An−1
� := Fn−1Sn−1

� +
1
2
Cn. (4.4)

Here Cn is the variable constraint coefficient, RDC, presented in Section 3.3. Then, a linearized
Crank-Nicolson time-stepping procedure for the END model (3.11) can be formulated as

un − un−1

Δt
+

1
2
An−1

(
un + un−1

)
= Cnu0, (4.5)

or equivalently

(
1 +

Δt

2
An−1

)
un =

(
1 − Δt

2
An−1

)
un−1 + Δt Cnu0. (4.6)

Onemay solve the above system of equations by applying an iterative algebraic solver.
However, for an efficiency reason, we in this paper will employ the alternating direction
implicit (ADI) method [22, 23] for (4.6) as follows:

(
1 +

Δt

2
An−1

1

)
u∗ =

(
1 − Δt

2
An−1

1 −ΔtAn−1
2

)
un−1 + ΔtCnu0,

(
1 +

Δt

2
An−1

2

)
un = u∗ +

Δt

2
An−1

2 un−1,

(4.7)

where u∗ is an intermediate solution. SinceAn−1
1 andAn−1

2 are tridiagonal matrices, each step
of the Crank-Nicolson ADI (CN-ADI) procedure (4.7) can be carried out by inverting a series
of tri-diagonal matrices.

4.2. Spatial Difference Schemes

This subsection considers nonstandard difference schemes for Sn−1
� in (4.2). Here we will

present the scheme for Sn−1
1 only; the same scheme is applicable for Sn−1

2 . Let Dun−1
i−1/2,j be a

finite difference approximation of |∇un−1| evaluated at xi−1/2,j , the mid point of xi−1,j and xi,j .
For example, a second-order scheme reads

Dun−1
i−1/2,j =

⎛
⎜⎝(

un−1
i,j − un−1

i−1,j
)2

+

⎡
⎣1
2

⎛
⎝un−1

i−1,j+1 + un−1
i,j+1

2
−
un−1
i−1,j−1 + un−1

i,j−1
2

⎞
⎠

⎤
⎦

2
⎞
⎟⎠

1/2

. (4.8)
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Define

dn−1
ij,W =

[(
Dun−1

i−1/2,j
)2

+ ε2
]q/2

, dn−1
ij,E = dn−1

i+1,j,W , (4.9)

where ε is a small positive constant introduced to prevent dn−1
ij,W from approaching zero. Then

the differential operator in (4.2) for � = 1 can be approximated as

−∂x1

(
∂x1u

m

|∇un−1|q
)

≈ − 1
dn−1
ij,W

um
i−1,j +

⎛
⎝ 1

dn−1
ij,W

+
1

dn−1
ij,E

⎞
⎠um

i,j −
1

dn−1
ij,E

um
i+1,j ,

∣∣∣∇un−1
∣∣∣q ≈ 2

dn−1
ij,W · dn−1

ij,E

dn−1
ij,W + dn−1

ij,E

,

(4.10)

where the last term is the harmonic average of dn−1
ij,W and dn−1

ij,E . It follows from (4.2) and (4.10)

that the three consecutive nonzero elements of the matrix Sn−1
1 corresponding to the pixel xij

become

[
Sn−1
1

]
ij
=
(
−sn−1ij,W , 2,−sn−1ij,E

)
, (4.11)

where

sn−1ij,W =
2dn−1

ij,E

dn−1
ij,W + dn−1

ij,E

, sn−1ij,E =
2dn−1

ij,W

dn−1
ij,W + dn−1

ij,E

. (4.12)

It should be noticed that sn−1ij,W + sn−1ij,E = 2. The above non-standard numerical scheme has been
successfully applied for image zooming of arbitrary magnification factors [24–26].

The following theorem presents a stability analysis for the Crank-Nicolson method
(4.6) of the END model, which can be proved straightforwardly using our previous results
[19, 25].

Theorem 4.1. Let the Crank-Nicolson method (4.6) incorporate difference schemes in (4.8)–(4.12)
and

F0 = min
i,j,n

Fn−1
ij , F1 = max

i,j,n
Fn−1

ij ; C0 = min
i,j,n

Cn
ij , C1 = max

i,j,n
Cn
ij . (4.13)

Suppose that

(4F1 + C1)
Δt

2
≤ 1. (4.14)
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Then the Crank-Nicolson method holds the maximum principle, independently of 0 ≤ q < 2, and its
solution satisfies

‖un − u0‖∞ ≤ 4F1

4F0 + C0
‖u0‖∞, n ≥ 0. (4.15)

The stability condition (4.14) reads

Δt ≤ 2
(4F1 + C1)

. (4.16)

In practice, it has been verified that the Crank-Nicolson method is stable for reasonable
choices of timestep size, say, Δt ≤ 2.

One should notice that the entries of the main diagonal of Sn−1 are all 4 for n ≥ 1,
independently of both q and the image. The numerical schemes in (4.8)–(4.12), producing
such a diffusion matrix, play important roles in mathematical analysis and practical compu-
tation.

5. Numerical Experiments

This section gives numerical examples to show effectiveness of the method of diffusion
modulation (in particular, END (3.11)) and the RDC parameterization introduced in
Section 3.3. For comparison purposes, five different models are considered and noted as
follows:

(i) ITV: the ITV model (2.8) with constant λ,

(ii) CCAD: the CCAD model (2.9)with a constant β and q = 1.7,

(iii) END: the END-incorporated model (3.11) of CCAD,

(iv) RDC: the RDC parameterization built over CCAD,

(v) END + RDC: the model incorporating both END and RDC over CCAD.

For ITV and CCAD, the constant parameters λ and β are chosen from many trials to
produce best images compared from PSNR and visual content. By PSNR, we mean the peak
signal-to-noise ratio (PSNR) defined as

PSNR ≡ 10 log10

⎛
⎝

∑
ij 255

2

∑
ij

(
gij − uij

)2
⎞
⎠dB, (5.1)

where g denotes the original image and u is the restored image from a noisy image, u0, which
is a contamination of g by Gaussian noise. For every incorporation of END, the sharpness
constant χ in (3.17) is set 0.6. The RDC coefficient begins with c0 = 0.5 and is upper limited
by c1 = 3.5. The Gaussian smoothing Gm for the absolute residual considered in (3.19) is
carried out with six iterations of the nearest 4-point averaging algorithm (m = 6).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Sample images downloaded from public domains: (a) aircraft, (b) balloons, (c) Elaine, (d) fruits,
(e) house, (f) Lena, (g) stones, and (h) swan. All are gray-scaled and of 256 × 256 pixels.

Public domain images are downloaded, as shown in Figure 2, and then deteriorated
by Gaussian noise. For the numerical schemes, we choose Δt = 1 in the CN-ADI procedure
(4.7) and ε = 0.05 in (4.9). The ADI iteration is stopped when

∥∥∥un − un−1
∥∥∥
∞
< 0.01. (5.2)

Table 1 presents PSNRs for the restored images by the five different models. The
CCAD model can restore better images than the ITV model for all tested images; it has
been numerically verified that the best images can be obtained when q = 1.5 ∼ 2.2, for all
tested images. As one can see from the table, END and RDC have improved the restoration
quality similarly and more dramatically over CCAD than CCAD does over ITV, for most
cases. When END and RDC are combined, they can produce even superior restored images
to their individual applications; one of combined effects is to raise the PSNR values by 0.5 ∼ 1.
In practice, the END incorporation increases the computational cost by 30–40% per iteration.
However, it is still efficient computationally. The CN-ADI procedure (4.7) has converged in
3–9 iterations for all models and for all images we have tested.

Figure 3 depicts the restored images u by CCAD, END, RDC, and END + RDC,
beginning from the noisy Lena image of the PSNR 21.25. As one may have expected, CCAD
has restored a somewhat blurry image of which the corresponding residual holds a lot of
texture components. END and RDC have produced better images than CCAD when they
work separately; their combination has resulted in even a better image whose residual
barely shows texture components although twice-magnified. END and RDC, when they are
combined, can satisfactorily restore clear images of which the residuals contain no or little
interesting image features.

Figure 4 presents the RDC coefficient C, generated by END + RDC restoring Lena.
We set the initial value C0 ≡ c0 = 0.5 and the upper limit c1 = 3.5. Then the RDC
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Table 1: PSNR analysis.

Noise ITV CCAD END RDC END + RDC
Aircraft 22.83 25.11 26.66 27.37 27.81 28.42
Balloons 22.83 28.06 29.81 31.49 31.34 31.63
Elaine 24.78 29.20 29.80 30.91 30.94 31.28
Fruits 24.77 23.44 24.08 24.81 25.30 25.77
House 22.83 25.33 26.02 27.59 27.84 28.49
Lena 21.25 27.14 27.84 28.86 28.78 29.50
Stones 25.22 28.43 29.31 31.12 30.87 31.61
Swan 23.94 28.89 29.27 30.96 30.85 31.43

(a) (b) (c) (d)

Figure 3: Lena: the restored images u and the corresponding residuals by (a) CCAD, (b) END, (c) RDC,
and (d) END+RDC. For a visualization purpose, the displayed residuals are twice-magnified and shifted,
2(g − u) + 128, where g is the original clean image.

parameterization in Section 3.3 lets Cn grow, as n increases, wherever excessive undesired
dissipation is detected. As one can see from the figure, the variable constraint coefficient
exceeds 1 on only regions near textures and edges.

In Figure 5, we apply our new model, END + RDC, to an ultrasound image, using the
same algorithm parameters chosen for the previous example. Denoising must be performed
with a special care particularly for such a medical image; every image feature may carry an
important information, although it looks like noise. Thus a denoising algorithm for medical
images must be successful only if it does not lose any of the image contents, that is, the
residual is texture-free. Figure 5(b) shows the restored image by six iterations of the Crank-
Nicolson ADI algorithm (4.7), while Figure 5(c) depicts the corresponding residual. The
displayed residual is twice-magnified and shifted, 2 ∗ (g − u) + 128, as before. The residual
contains no interesting image features, as one can see.

One may try to choose better parameters (q, χ, and ξn) for the model END + RDC, a
combination of END and RDC built over the CCAD model, to get better images with higher
PSNR values. However, the resulting model is robust and works similarly well for wide
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3

2

1

Figure 4: Lena: the residual-driven constraint coefficient C, generated by END + RDC.

(a) (b) (c)

Figure 5:Ultrasound image in 311×382 pixels: (a) the original g, (b) the restored image u obtained by END
+ RDC, and (c) the corresponding residual, which measures a PSNR of 32.89. For a better visualization,
the displayed residual is twice-magnified and shifted, 2 ∗ (g − u) + 128.

ranges of the parameters. It is successfully applicable for denoising of natural images and
various medical images as well. Here the ultimate goal is to produce clear images of texture-
free residual.

6. Conclusions

Partial differential equation PDE-based denoising models often lose important fine structures
due to an excessive dissipation. In order to minimize such undesired dissipation, we have
considered mathematical and numerical techniques applicable for conventional PDE-based
denoising models. The method of diffusion modulation is first presented; as an example,
the paper has introduced the equalized net diffusion (END) technique, which may suppress
excessive dissipation on most regions of fine structures. Then, an effective residual-driven
constraint (RDC) parameterization has been studied in order for the resulting algorithm to
be able to return important image features in the residual (if any) back to the restored image.
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These methods are incorporated with a semi-implicit time-stepping procedure, the Crank-
Nicolson ADI method. The resulting algorithm has been analyzed for stability and tested to
prove its efficiency and reliability in denoising for various natural and medical images. It
restores clear images satisfactorily, preserving fine structures successfully.
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