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Neural networks with radial basis functions method are used to solve a class of initial boundary
value of fractional partial differential equations with variable coefficients on a finite domain. It
takes the case where a left-handed or right-handed fractional spatial derivative may be present in
the partial differential equations. Convergence of this method will be discussed in the paper. A
numerical example using neural networks RBF method for a two-sided fractional PDE also will be
presented and compared with other methods.

1. Introduction

In this paper, I will use neural network method to solve the fractional partial differential
equation (FPDE) of the form:

∂u(x, t)
∂t

= c+(x, t)
∂αu(x, t)
∂+xα

+ c−(x, t)
∂αu(x, t)
∂−xα

+ s(x, t). (1.1)

On a finite domain L < x < R, 0 ≤ t ≤ T . Here, I consider the case 1 ≤ α ≤ 2, where
the parameter α is the fractional order (fractor) of the spatial derivative. The function s(x, t)
is source/sink term [1]. The functions c+(x, t) ≥ 0 and c−(x, t) ≥ 0 may be interpreted as
transport-related coefficients. We also assume an initial condition u(x, t = 0) = F(x) for L <
x < R and zero Dirichlet boundary conditions. For the case 1 < α ≤ 2, the addition of classical
advective term −v(x, t)∂u(x, t)/∂x on the right-hand side of (1.1) does not impact the analysis
performed in this paper and has been omitted to simplify the notation.
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The left-hand (+) and right-hand (−) fractional derivatives in (1.1) are the Riemann-
Liouville fractional derivatives of order α [5] defined by

(
Dα
L+f

)
(x) =

dαf(x)
d+xα

=
1

Γ(n − α)
dn

dxn

∫x

L

f(ξ)

(x − ξ)α+1−n
dξ,

(
Dα
R−f

)
(x) =

dαf(x)
d−xα

=
(−1)n

Γ(n − α)
dn

dxn

∫R

x

f(ξ)

(x − ξ)α+1−n
dξ,

(1.2)

where n is an integer such that n− 1 ≤ α ≤ n. If α = m is an integer, then the above definitions
give the standard integer derivatives, that is

(
Dm
L +f

)
(x) =

dmf(x)
dxm

,
(
Dm
R −f

)
(x) = (−1)m d

mf(x)
dxm

=
dmf(x)
d(−x)m . (1.3)

When α = 2, and setting c(x, t) = c+(x, t) + c−(x, t), (1.1) becomes the following
classical parabolic PDE:

∂u(x, t)
∂t

= c(x, t)
∂2u(x, t)
∂x2

+ s(x, t). (1.4)

Similarly, when α = 1 and setting c(x, t) = c+(x, t) − c−(x, t), (1.1) reduces to the
following classical hyperbolic PDE:

∂u(x, t)
∂t

= c(x, t)
∂u(x, t)
∂x

+ s(x, t). (1.5)

The case 1 < α < 2 represents a superdiffusive process, where particles diffuse faster
than the classical model (1.4) predicts. For some applications to physics and hydrology, see
[2–4].

I also note that the left-handed fractional derivative of f(x) at a point x depends on
all function values to the left of the point x, that is, this derivative is a weighted average of
such function values. Similarly, the right-handed fractional derivative of f(x) at a point x
depends on all function values to the right of this point. In general, left-handed and right-
handed derivatives are not equal unless α is an even integer, in which case these derivatives
become localized and equal. When α is an odd integer, these derivatives become localized
and opposite in sign. For more details on fractional derivative concepts and definitions, see
[1, 3, 5, 6]. Reference [7] provides a more detailed treatment of the right-handed fractional
derivatives as well as a substantial treatment of the left-handed fractional derivatives.

Published papers on the numerical solution of fractional partial differential equation
are scarce. A different method for solving the fractional partial differential equation (1.1) is
pursued in the recent paper [4]. They transform this partial differential equation into a system
of ordinary differential equations (method of lines), which is then solved using backward
differentiation formulas. Another very recent paper, [8] develops a finite element method for
two-point boundary value problem, and [1], finds the numerical solution of (1.1) by finite
differences method.
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2. Multilayer Neural Networks

The Rumelhart-Hinton-William’s multilayer network [9], that we consider here, is a feed-
forward type network with connections between adjoining layers only. Networks generally
have hidden layers between the input and output layers. Each layer consists of computational
units. The input-output relationship of each unit is represented by inputs xi output y,
connection weights wi, threshold θ, and differential function φ as follows:

y(x1, . . . , xn) =
m∑

j=1

vjφ
(∥∥∥Wj −X

∥∥∥ + θj
)
, where xi ∈ R, Wj ∈ Rn, vj , θj ∈ R

(2.1)

the learning rule of this network is known as the backpropagation algorithm [9], which is an
algorithm that uses a gradient descent method to modify weight and thresholds as the error
between the desired output and the output signal of the network is minimized. I generally
use a bounded andmonotonic increasing differentiable function which is called a radial basis
function for each unit output function.

If a multilayer network has n input units and m output units, then the input-
output relationship defines a continuous mapping from n-dimensional Euclidean space tom-
dimensional Euclidean space. I call this mapping the input-output mapping of the network.
I study the problem of network capability from the point of view of input-output mapping.
It observed that for the study of mappings defined by multilayer networks, it is sufficient to
consider networks whose φ(x) and whose output functions for input and output layers are
linear.

3. Approximate Realization of Continuous Mappings by
Neural Networks

Reference [10] considers the possibility of representing continuous mappings by neural
networks whose output functions in hidden layers are sigmoid function, for example,
φ(x) = 1/(1 + e−x). It is simply noted here that general continuous mappings cannot be
exactly represented by Rumelhart-Hinton-William’s networks. For example, if a real analytic
output function such as the sigmoid function φ(x) = 1/(1 + e−x) is used, then an input-
output mapping of this network is analytic and generally cannot represent all continuous
mappings.

Let points of n-dimensional Euclidean space Rn be denoted by x = (x1, . . . , xn) and the
norm of x defined by ‖x‖ = (

∑n
i=0x

2
i ).

Definition 3.1 (see [11]). LetH = Rn is a linear space. A function f : H → R is called a radial
basis function that can be represented in the form f = goφ, where φ : R → R, g : Rn → R,
and g(x) = ‖x −wi‖2, x,wi ∈ Rn.

In this paper, I study approximate U by using y which is a representation model of
neural networks, through analyzing previous theoretical studies. Also we present a study
of convergent of solution U by approximate solution y, where φ(wj, x, θ) is radial basis
function.

We also give some theorems for soliciting the conditions to converge the approxima-
tion solution for (1.1) by neural networks method.
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Theorem 3.2 (Irie-Miyake, [6]). Let ψ(x) ∈ L1(R), that is, let ψ(x) be absolutely integrable and
u(x1, . . . , xn) ∈ L2(Rn). Let Ψ(ξ) be integrable andU(x1, . . . , xn) be Fourier transforms of ψ(x) and
u(x1, . . . , xn), respectively. If Ψ(1)/= 0, then

u(x1, . . . , xn) =
∫∞

−∞
· · ·
∫∞

−∞
ψ

(
n∑

i=1

xiwi −w0

)
1

(2π)nΨ(1)
U(w1, . . . , wn)

× exp(iw0)dw0 dw1 · · ·dwn.

(3.1)

Theorem 3.3. Let φ(x) be a radial basis function, nonconstant, bounded, and monotone increasing
continuous function. Let K be a compact subset of Rn and u(x1, . . . , xn) a real value continuous
function on K. Then for an arbitrary ε > 0, there exists an integral N and real constants
vj , θj , wij (i = 1, 2, . . . , n, j = 1, 2, . . . , m) such that y(x1, . . . , xn) =

∑m
j=1vjφ[(

∑n
i=1(wij−xi)2]1/2+

θj) satisfiesmaxx∈K|y(x1, . . . , xn)− u(x1, . . . , xn)| < ε. In other words, for an arbitrary ε > 0, there
exists a three-layer network whose output function for the hidden layer is φ(x), whose output functions
for input and output layers are linear, and which has an input-output function y(x1, . . . , xn) such that
maxx∈K|y(x1, . . . , xn) − u(x1, . . . , xn)| < ε.

Proof. First

Since u(x)(x = (x1, . . . , xn)) is a continuous function on a compact subsetK of Rn, u(x) can be
extended to be a continuous function on Rn with compact support.

If I operate the mollifier ρα∗ on u(x), ρα∗u(x) is C∞-function with compact support.
Furthermore, ρα∗u(x) → u(x)(α → +0) uniformly on Rn. Therefore, we may suppose u(x) is
a C∞-function with compact support for proving Theorem 3.3. By the Paley-Wiener theorem
[10], the Fourier transformU(w)(w = w1, . . . , wn) of u(x) is real analytic and, for any integer
N, there exists a constant CN such that

|U(w)| ≤ CN(1 + |w|)−N. (3.2)

In particularU(w) ∈ L1 ∩ L2(Rn).
I define IA(x1, . . . , xn), I∞,A(x1, . . . , xn), and JA(x1, . . . , xn) as follows:

IA(x1, . . . , xn) =
∫A

−A
· · ·
∫A

−A
ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠ 1
(2π)nΨ(1)

U(w1, . . . , wn)

× exp(iw0)dw0 dw1 . . . dwn,

I∞,A(x1, . . . , xn) =
∫A

−A
· · ·
∫A

−A

⎡

⎣
∫∞

−∞
ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠ 1
(2π)nΨ(1)

U(w1, . . . , wn)

× exp(iw0)dw0

]

dw1 · · ·dwn,

JA(x1, . . . , xn) =
1

(2π)n

∫A

−A

∫A

−A
U(w1, . . . , wn) exp

[

i
n∑

i=1

(xi −wi)2
]1/2

dw1 · · ·dwn,

(3.3)

where ψ(x) ∈ L1 is defined by ψ(x) = φ(x/δ + α) − φ(x/δ − α), δ, α > 0.
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The essential part of the proof of Irie-Miyake’s integral formula [1] is the equality
I∞,A(x1, . . . , xn) = JA(x1, . . . , xn), and this is derived from

∫α

−α
ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠ exp(iw0)dw0 = exp

⎛

⎝
[

i
n∑

i=1

(xi −wi)2
]1/2⎞

⎠Ψ(1),

(3.4)

in our discussion, using the estimate ofU(w), it is easy to prove that limA→∞JA(x1, . . . , xn) =
u(x1, . . . , xn) uniformly on Rn. Therefore, limA→∞I∞,A(x1, . . . , xn) = u(x1, . . . , xn) uniformly
on Rn. I can state that for any ε > 0, there exists A > 0 such that

max
x∈Rn

|I∞,A(x1, . . . , xn) − u(x1, . . . , xn)| < ε

2
. (3.5)

Second

I will approximate I∞,A by finite integrals on K. For ε > 0, fix A which satisfies (3.5). For
A′ > 0, set

IA′,A(x1, . . . , xn) =
∫A

−A
· · ·
∫A

−A

⎡

⎣
∫A′

−A′
ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠

× 1
(2π)nΨ(1)

U(w1, . . . , wn) × exp(iw0)dw0

]
dw1 · · ·dwn.

(3.6)

I will show that, for ε > 0, I can take A′ > 0 so that

max
x∈K

|IA′,A(x1, . . . , xn) − I∞,A(x1, . . . , xn)| < ε

2
. (3.7)

Using the following equation:

∫A′

−A′
ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠ exp(iw0)dw0

=
∫∑n

i=1xiwi+A′

∑n
i=1xiwi−A′

ψ(t) exp(−it)dt · exp
[

i
n∑

i=1

(xi −wi)2
]1/2

,

(3.8)
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the factU(x) ∈ L1 and compactness of [−A,A]n ×K, we can take A′ so that

∣
∣∣∣
∣∣

∫A′

−A′
ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠ exp(iw0)dw0

−
∫∞

−∞
ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠ exp(iw0)dw0

∣
∣∣∣
∣∣

≤ ε(2π)2|Ψ(1)|
(
2
∫∞
−∞ · · · ∫∞−∞|U(x)|dx + 1

) ×
∫A

−A
· · ·
∫A

−A
|U(x)|dx on K.

(3.9)

Therefore,

max
x∈K

|IA′ ,A(x1, . . . , xn) − I∞,A(x1, . . . , xn)|

≤ ε
(
2
∫∞
−∞ · · · ∫∞−∞|U(x)|dx + 1

) ×
∫A

−A
· · ·
∫A

−A
|U(x)|dx < ε

2
.

(3.10)

Third

From (3.5) and (3.7), I can say that for any ε > 0, there exists A,A′ > 0 such that

max
x∈K

|u(x1, . . . , xn) − IA′ ,A(x1, . . . , xn)| < ε, (3.11)

u(x) can be approximated by the finite integral IA′,A(X) uniformly on K. The integral of
IA′ ,A(X) can be replaced by the real part and is continuous on [−A′, A′] × · · · × [−A,A] × K,
hence IA′,A(X) can be approximated by the Riemann sum uniformly on K. Since

ψ

⎛

⎝
[

n∑

i=1

(xi −wi)2
]1/2

−w0

⎞

⎠ = φ

⎛

⎜
⎝

[∑n
i=1(xi −wi)2

]1/2

δ
−w0 + α

⎞

⎟
⎠

− φ

⎛

⎜
⎝

[∑n
i=1(xi −wi)2

]1/2

δ
−w0 − α

⎞

⎟
⎠,

(3.12)

the Riemann sum can be represented by a three-layer network. Therefore u(x) can be repre-
sented approximately by three-layer network.
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Theorem 3.4. Let H be a linear space. The set of radial basis functions denoted by Φ = {expoφ :
φ ∈ H∗} is fundamental in C(H).

Proof. Let T denotes the linear span of the set, Φ as I will prove T an algebra in C(H), for
x ∈ H and φ, ψ ∈ H∗ (whereH∗ is the dual space ofH) [11]

[(
expoφ

)(
expoψ

)]
(x) =

(
exp oφ

)
(x) · (exp oψ)(x)

= exp
(
φ(x)

) · exp(ψ(x)) = exp
(
φ(x) + ψ(x)

)
= exp

(
φ + ψ

)
(x).
(3.13)

Let φ0 be the zero functional in H∗, then (expoφ0) = 1 for all x ∈ H . Hence, T contains
constants.

Now if x, y ∈ H and x /=y, then there exists φ ∈ H∗ such that φ(x − y)/= 0.

exp
[
φ
(
x − y)]/= exp(0) = 1,

exp
[
φ(x) − φ(y)]/= 1,

exp
[
φ(x)

] · exp(−φ(y))/= 1,

exp
[
φ(x)

]

exp
(
φ
(
y
)) /= 1,

expφ(x)/= exp
(
φ
(
y
))
,

(3.14)

hence T separates point ofH .
Now, I will prove each basic neighborhood of a fixed point u in C(H) intersects T ;

K is compact set such that K ⊂ H , a basic neighborhood of u corresponding to K, and has
the form BK,ε = {g ∈ C(H) : ‖u − g‖K < ε, now restrict u and all members of T to K, then
{h/K : h ∈ T} is still on algebra-containing constants separating ofK, hence {h/K : h ∈ T} is
dense in C(K), and consequently, T intersects BK,ε, as required. Therefore, T is fundamental
in C(H) and required.

4. Numerical Methods

Conceding a feed forward network with input layer of a single hidden layer, and an output
layer consisting of a single unit, I have purposely chosen a single output unit to simplify the
exposition without loss of generality.

The network is designed to perform a nonlinear mapping form the input space to the
hidden space, followed by a linear mapping from the hidden space to the output space.

Given a set of N different points {xi ∈ Rn, i = 1, 2, . . . , n} and a corresponding set
N real numbers {ui ∈ Rn, i = 1, 2, . . . , n}, we find a function f : Rn → R that satisfied the
interpolation conditions

f(xi) = yi, i = 1, 2, . . . , n. (4.1)
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For strict interpolation as specified here, the interpolating surface (i.e.; function f(x))
is constraining to pass through all the training data points, initial w(0) ∈ Rn+m, θ(0),
d(0) ∈ R, v(0) ∈ Rn, we will use algorithm of backpropagation neural network [11] to find
the best weights W,V, d, and θ, inserting the interpolation conditions of (1.1) in (2.1), we
obtain the following set of simultaneous linear equations for the unknown coefficients of the
expansion

⎡

⎢
⎢⎢⎢
⎢
⎣

φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

. . . . . . . . . . . .

φn1 φn2 φnn

⎤

⎥
⎥⎥⎥
⎥
⎦

⎡

⎢
⎢⎢⎢
⎢
⎣

ν1

ν2

. . .

νn

⎤

⎥
⎥⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢⎢
⎢
⎣

y1

y2

. . .

yn

⎤

⎥
⎥⎥⎥
⎥
⎦
, (4.2)

where φij = φ(‖Wj

i −Xi‖), (i, j) = 1, 2, . . . , n.
Compute the error E = (1/2)

∑N
i=1(yi − ui)2, and δi = (yi − ui)∗φ′(yi).

CalculateΔνi = αδi∗Zi = αδi∗‖Xi −Wij‖ (α is training rat 0 < α < 1),

Δdj = α∗δj , ρi =
N∑

j=1

δjVj , βi = ρiα′
(∥∥Xi −Wij

∥
∥),

ΔWij = αβixi, Δθi = αβi, V new
i = V old

j + ΔVj, Wnew
ij = Wold

ij + ΔWij,

θnewi = θoldj + Δθi, dnew
i = dold

j + Δdi.

(4.3)

After that the best weights W , V , θ, d are fined. Given the substitute in (2.1), the
approximate solution is found.

The above method is supposed to work in this situation. In such case, the values of
absence of the exact solution of independent variables will be substituted in the boundary
conditions in order to get the exact values. Those values can be used in the phase of training
of the considered backpropagation neural network. The approach is proved to get good
weights of (2.1). The radial basis function in Theorems 3.3 and 3.4 was used in order to obtain
converge training of the backpropagation neural network.

5. Numerical Example

The following two-sided fractional partial differential equation

∂u(x, t)
∂u

= c+(x, t)
∂1.8u(x, t)
∂+x1.8

+ c−(x, t)
∂1.8u(x, t)
∂−x1.8

+ s(x, t) (5.1)

were considered on a finite domain 0 < x < 2 and t > 0 with the coefficient functions c+(x, t) =
Γ(1.2)x1.8 and c−(x, t) = Γ(2 − x)x1.8, and the forcing function

s(x, t) = −32e−t
[
x2 + (2 − x)2 − 2.5

(
x3 + (2 − x)3

)
+
25
22

(
x4 + (2 − x)4

)]
, (5.2)
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Table 1: The training data by values of the boundary conditions.

x t U(x, t) Y (x, t) × e−5
0.1 0 0.1444 0.1678

0.2 0 1.0404 1.5493

0.5 0 0.2500 0.9654

1.3 0 3.3124 6.7412

1.5 0 2.25 4.7759

1.7 0 1.0404 5.7418

2 0.1 0 0

2 0.4 0 0

2 0.6 0 0

Table 2: The comparisons between exact solution u(xi, ti) and the approximated solution test points
y(xi, yi) at Δxi = 0.2, Δti = 0.1.

x t U(x, t) Y (x, t)

0.2 0.1 0.4691 0.4246

0.4 0.2 1.3414 1.3752

0.6 0.3 0.2490 0.2831

0.8 0.4 2.0906 2.0597

1.0 0.5 2.4711 2.4244

1.2 0.6 2.4261 2.4997

1.4 0.7 2.0231 2.0488

1.6 0.8 0.7362 0.7651

1.8 0.9 0.2107 0.2239

Maximum error 0.0736

initial condition u(x, 0) = 4x2(2 − x)2, and boundary conditions u(0, t) = u(2, t) = 0. This
fractional PDE has the exact solution u(x, t) = 4e−tx2(2 − x)2, which can be verified applying
the fractional formulas

Dα
L+(x − L)p = Γ

(
p + 1

)

Γ
(
p + 1 − α)(x − L)p−α, Dα

R−(R − x)p = Γ
(
p + 1

)

Γ
(
p + 1 − α) (R − x)p−α

(5.3)

(see [1]).
Table 1 shows the training data by values of the boundary conditions. Table 2 shows

the comparisons between exact solution u(xi, ti) and the approximated solution test points
y(xi, yi) at Δx = 0.2, Δt = 0.1. Table 3 compares maximum error between approxi-
mate solution by artificial neural networks method and finite difference numerical method
[1].
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Table 3: Compares maximum error between approximate solutions.

Δxi Δti
FDM NNS

Maximum error Maximum error
0.2 0.1 0.1417 0.0736
0.1 0.05 0.0571 0.0541
0.05 0.025 0.0249 0.0217
0.025 0.0125 0.0113 0.0082

6. Conclusion

Referring back to Tables 1–3, it is clear that the approximation of fractional partial FPDE
using neural network with RBF obtains a good approximated solution. The converge of this
method is given as well. In addition, the discussed method is able to solve fractional partial
differential equations with more than two variables where many other methods fail, clearly.
The suggested method provides a general approximated solution to the interval domain and
depends on boundary conditions.
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