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A new compact difference scheme is proposed for solving the nonlinear Schrödinger equation. The
scheme is proved to conserve the total mass and the total energy and the optimal convergent rate,
without any restriction on the grid ratio, at the order of O(h8 + τ2) in the discrete L∞-norm with
time step τ and mesh size h. In numerical analysis, beside the standard techniques of the energy
method, a new technique named “regression of compactness” and some lemmas are proposed to
prove the high-order convergence. For computing the nonlinear algebraical systems generated by
the nonlinear compact scheme, an efficient iterative algorithm is constructed. Numerical examples
are given to support the theoretical analysis.

1. Introduction

The time-dependent Schrödinger equation is one of themost important equations in quantum
mechanics [1] such as the Bose-Einstein condensate (BEC), which is also used widely in
many other different fields [2, 3] such as plasma physics, nonlinear optics, water waves, and
bimolecular dynamics. There are many studies on numerical approaches, including finite
difference [4–16], finite element [17–19], and polynomial approximation methods [20–24], of
the initial or initial-boundary value problems of the Schrödinger equations.

Recently, there has been growing interest in high-order compact methods for solving
partial differential equations (PDEs) [25–35]. It was shown that the high-order difference
methods play an important role in the simulation of high-frequency wave phenomena.
However, there is few proof of unconditional H1 norm convergence of any compact
difference scheme for nonlinear equations.
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In this paper, we consider the following cubic nonlinear Schrödinger (NLS) equation:

i∂tu(x, t) +
1
2
∂xxu(x, t) + V (x)u(x, t) − q|u(x, t)|2u(x, t) = 0, x ∈ R, t > 0, (1.1)

subject to periodic boundary condition

u(x, t) = u(x + L, t), x ∈ R, t > 0, (1.2)

and initial condition

u(x, 0) = ϕ(x), x ∈ R, (1.3)

where q is dimensionless constant characterizing the interaction (positive for repulsive
interaction and negative for the attractive interaction) between particles in BEC. V (x) is a
real function corresponding to the external trap potential and it is often chosen as a harmonic
potential, that is, a quadratic polynomial, in most experiments. u := u(x, t) is the unknown
periodical complex-valued function whose initial value ϕ(x) is a given periodical complex-
valued function. L > 0 is the period of the u(x, t).

Denote Ω = (0, L); it is easy to show that the problem (1.1)–(1.3) conserves the total
mass

Q(u(·, t)) :=
∫
Ω
|u(x, t)|2dx ≡ Q(u(·, 0)) = Q

(
ϕ
)
, t ≥ 0, (1.4)

and the global energy

E(u(·, t)) := 1
4

∫
Ω

[
|∇u|2 + 2V (x)u + q|u|4

]
dx ≡ E

(
ϕ
)
, t ≥ 0. (1.5)

Fei et al. pointed out in [15] that the nonconservative schemes may easily show nonlinear
blowup, and they presented a new conservative linear difference scheme for nonlinear
Schrödinger equation. In [16], Li and Vu-Quoc also said, “. . . in some areas, the ability to
preserve some invariant properties of the original differential equation is a criterion to judge
the success of a numerical simulation.”

In this paper, a high-order compact (HOC) difference scheme is proposed for solving
the problem (1.1)–(1.3). On the proposedHOC scheme, we obtain the following novel results.

(i) The proposed scheme is eighth order in space and second order in time.

(ii) The new scheme conserves the discrete total mass and the discrete global energy
corresponding to (1.4) and (1.5), respectively.

(iii) A new technique named “regression of compactness” is introduced to analyze the
convergence of the proposed.

(iv) An efficient iterative algorithm is constructed to compute the proposed scheme.
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The remainder of this paper is arranged as follows. In Section 2, some notations are
introduced, and a HOC difference scheme is constructed for the NLS equation. In Section 3,
some useful lemmas are introduced or proved. In Section 4, discrete conservation laws of the
proposed scheme are studied, then the convergence rate is proved at, without any restriction
on the mesh ratio, the order of O(h8 + τ2) in the discrete maximum norm. In Section 5,
an efficient iterative algorithm is designed to solve the nonlinear scheme. Lastly, numerical
experiments are presented in Section 6 and some remarks are given in the concluding section.

2. Notations and Compact Finite Difference Schemes

Before giving the compact difference scheme, some notations are firstly introduced. For a
positive integer N, choose time-step τ = T/N and denote time steps tn = nτ , where 0 < T <
Tmax with Tmax the maximal existing time of the solution; choose mesh size h = L/J , with J a
positive integer and denote grid points as

xj = jh, j = 0, 1, . . . , J. (2.1)

Denote the index sets

TJ =
{
j | j = 0, 1, 2, 3, . . . , J − 1

}
,

Te
J =
{
j | j = −2,−1, 0, 1, . . . , J + 1

}
.

(2.2)

Denote Un
j to be the numerical approximation and, respectively, un

j be the exact value of
u(x, t) at the point (xj , tn) for j ∈ Te

J and n = 0, 1, 2, . . . ,N, and denote Un ∈ C
J+3 to be the

numerical solution and, respectively, un ∈ C
J+3 be the exact solution at time t = tn. For a

grid function u = {un
j | j ∈ TJ , n = 0, 1, 2, . . . ,N}, introduce the following finite difference

operators:

δ+
xu

n
j =

un
j+1 − un

j

h
, δ−

xu
n
j =

un
j − un

j−1

h
, δ

〈1〉
x un

j =
un
j+1 − un

j−1

2h
,

δ2
xu

n
j = δ+

xδ
−
xu

n
j , δ

〈2〉
x un

j = δ
〈1〉
x δ

〈1〉
x un

j , δ+
t u

n
j =

un+1
j − un

j

τ
,

(2.3)

We denote the space

XJ :=
{
u =
(
uj | j ∈ Te

J

)
| uj = uj+J when j = −2,−1, 0, 1

}
⊆ C

J+3 (2.4)

and define seminorms and discrete inner product over XJ as

‖u‖pp = h
J−1∑
j=0

∣∣uj

∣∣p, 0 < p < ∞, ‖u‖∞ = max
j∈TJ

∣∣uj

∣∣, (u, v) = h
J−1∑
j=0

ujvj . (2.5)
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For simplicity, we write ‖v‖2 as ‖v‖. Throughout the paper, we adopt the standard
Sobolev spaces and their corresponding norms let C denote a generic constant which is
independent of mesh size h and time step τ , and use the notation w � v to present that
there is a generic constant C which is independent of time step τ and mesh size h such that
w � Cv. For the exact solution of the initial-boundary value problem (1.1)–(1.3), we assume
that

‖un‖ � C, ‖δ+
xu

n‖ � C,
∥∥∥δ〈1〉

x un
∥∥∥ � C, ‖un‖∞ � C. (2.6)

2.1. Some Properties of Cyclic Matrix

A matrix in the form of

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · an−2 an−1
an−1 a0 a1 · · · an−3 an−2
an−2 an−1 a0 · · · an−4 an−3
...

...
... · · ·

...
...

a1 a2 a3 · · · an−1 a0

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.7)

is called a cyclic matrix. Because the matrixA is determined by the entries in the first row, the
matrix can be denoted as

A = C(a0, a1, . . . , an−1). (2.8)

Denote G = C(0, 1, 0, . . . , 0), which is called as a basic cyclic matrix. By a simple calculation,
we can get that

Gk = C

⎛
⎜⎝0, . . . , 0︸ ︷︷ ︸

k

, 1, 0, . . . , 0

⎞
⎟⎠, k = 0, 1, . . . , n − 1,

Gn = C(1, 0, . . . , 0) = I, I is the unit matrix.

(2.9)

Then, any cyclic matrix A = C(a0, a1, . . . , an−1) can be written as a polynomial of G; that is,

A = a0I + a1G + a2G
2 + · · · + an−1G

n−1. (2.10)

This implies that, for any two cyclic matrices A and B, AB = BA. Now we list some useful
lemmas as follows.

Lemma 2.1. If A and B are two cyclic matrices, AB is still a cyclic matrix.

Proof. For any two cyclic matrices

A = C(a0, a1, . . . , an−1), B = C(b0, b1, . . . , bn−1), (2.11)
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by using the multiplication of polynomials and the properties (2.9) we obtain

AB =
(
a0I + a1G + a2G

2 + · · · + an−1G
n−1
)(

b0I + b1G + b2G
2 + · · · + bn−1G

n−1
)

= c0I + c1G + a2G
2 + · · · + cn−1G

n−1 = C(c0, c1, . . . , cn−1),
(2.12)

where

c0 = a0b0 + a1bn−1 + · · · + an−1b1,

c1 = a0b1 + a1b0 + · · · + an−1b2,

...

cn−1 = a0bn−1 + a1bn−2 + · · · + an−1b0.

(2.13)

Lemma 2.2. If a cyclic matrix A is invertible, then its inverse matrix A−1 is still a cyclic matrix.

Proof. If A = C(a0, a1, . . . , an−1) is invertible, we assume that the inverse matrix is B =
C(b0, b1, . . . , bn−1), then

(
a0I + a1G + a2G

2 + · · · + an−1G
n−1
)
B = I. (2.14)

Multiplying b0I + b1G + b2G
2 + · · · + bn−1G

n−1 with (2.14) yields

(
c0I + c1G + c2G

2 + · · · + cn−1G
n−1
)
B = b0I + b1G + a2G

2 + · · · + bn−1G
n−1. (2.15)

If (c0, c1, c2, . . . , cn−1) = (1, 0, 0, . . . , 0), we obtain the linear system (2.13). Noting that |A|/= 0,
we obtain that the system (2.13) has a unique nonzero solution (b0, b1, . . . , bn−1). This together
with (2.15) gives that B = b0I + b1G + b2G

2 + · · · + bn−1G
n−1 where (b0, b1, . . . , bn−1) is the

unique nonzero solution of (2.13). It follows that the assumption is right; that is, B =
C(b0, b1, . . . , bn−1) is a cyclic matrix.

Lemma 2.3. For any a real cyclic matrix A = C(a0, a1, . . . , an−1), all the eigenvalues are in the form
of

f(εk), k = 0, 1, 2, . . . , n − 1, (2.16)

where f(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 and εk = cos(2kπ/n) + isin(2kπ/n).

Proof. On the one hand, it follows from |εI − G| = 0 that εn = 1 which indicates that the
eigenvalues of G are

εk = ei(2kπ/n) = cos
(
2kπ
n

)
+ isin

(
2kπ
n

)
, k = 0, 1, 2, . . . , n − 1. (2.17)



6 Advances in Numerical Analysis

On the other hand, just as (2.10), the real cyclic matrix A can be written as

A = f(G) = a0I + a1G + a2G
2 + · · · + an−1G

n−1, (2.18)

where a0, a1, . . . , an−1 are n real numbers. This gives that the eigenvalues of A are in the form
of

λk = f(εk), k = 0, 1, 2, . . . , n − 1. (2.19)

2.2. Compact Approximation of Second Derivative

The key point of the HOC method is to discretize the derivative with the fewest nodes to get
the expected accuracy. In order to achieve higher accuracy, we adopt implicit compact scheme
which equals a combination of the nodal derivatives to a combination of the nodal values of
the function. Next, by Taylor’s formula, expanding all the nodal derivatives and nodal values
of the function at the same node, we can determine the coefficients of the combinations under
the constrains of accuracy order.

The nodal derivatives are implicitly evaluated herein by solving linear algebraic
equations in strip. The stencil and the weighted factors are restricted to be symmetric so that
the resulting schemes are nondissipative. Suppose f(x) is a L-periodic function, then for the
discretization of the second-order derivatives fxx(x), we have the formula [31]:

β
(
fxx
)
j−2 + α

(
fxx
)
j−1 +

(
fxx
)
j + α

(
fxx
)
j+1 + β

(
fxx
)
j+2 = bδ

〈2〉
x fj + aδ2

xfj +O(hp), (2.20)

where fj = f(xj), (fxx)j = fxx(xj), a, b, α, and β are undetermined parameters which depend
on the accuracy order constraints. After tedious calculation, we can get these constraints:

a + b = 1 + 2α + 2β, p = 2,

a + 22b =
4!
2!

(
α + 22β

)
, p = 4,

a + 24b =
6!
4!

(
α + 24β

)
, p = 6,

a + 26b =
8!
6!

(
α + 26β

)
, p = 8.

(2.21)

According to (2.20), an eighth-order scheme is obtained with

α =
344
1179

, β =
23
2358

, a =
960
1179

, b =
930
1179

, (2.22)

which is the unique solution of the constraint equation (2.21).
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Thus, the approximation (2.20) to (fxx)j can be written in the form of finite-
dimensional linear operator

Ah

(
fxx
)
j = bδx̂δx̂fj + aδ+

xδ
−
xfj +O

(
h8
)

=⇒
(
fxx
)
j = bA−1

h δx̂δx̂fj + aA−1
h δ+

xδ
−
xfj +O

(
h8
)
, j ∈ TJ ,

(2.23)

where the finite difference operator Ah is defined as

Ahfj := βfj−2 + αfj−1 + fj + αfj+1 + βfj+2. (2.24)

The corresponding matrix form is

Af̃xx = bδ
〈2〉
x f̃ + aδ2

xf̃ , (2.25)

where

f̃xx =
((

fxx
)
0,
(
fxx
)
1, . . . ,

(
fxx
)
J−1

)�
, f̃ =

(
f0, f1, . . . , fJ−1

)�
,

A = C
(
1, α, β, 0, . . . , 0, β, α

)
,

(2.26)

is a positive, symmetric, and cyclic pentadiagonal matrix.

Lemma 2.4 (see [36]). If a matrix H has real entries and is symmetric and positive definite, then

(a) H is invertible and its inverse matrixA−1 also has real entries and is symmetric and positive
definite;

(b) H can be decomposed as

H = D2, (2.27)

where D also has real entries and is symmetric and positive definite.
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2.3. High-Order Compact Scheme

Imposing the approximations given in Section 2.2 on the spatial direction and the Crank-
Nicolson discretization on the temporal direction of the NLS equation (1.1) gives

iδ+
t u

n
j +

b

4
A−1

h δ
〈2〉
x

(
un
j + un+1

j

)
+
a

4
A−1

h δ2
x

(
un
j + un+1

j

)
+
1
2
Vj

(
un
j + un+1

j

)

+
q

4

(∣∣∣un
j

∣∣∣2 +
∣∣∣un+1

j

∣∣∣2
) (

un
j + un+1

j

)
= ξnj , j ∈ TJ , 0 � n � N − 1,

(2.28)

u0
j = ϕ

(
xj

)
, j ∈ Te

J , (2.29)

un ∈ XJ, 0 � n � N, (2.30)

where Vj = V (xj) and ξnj is the local truncation error. The corresponding matrix form of the
(2.28)–(2.30) is

iδtu
n +

b

4
Mδ

〈2〉
x

(
un + un+1

)
+
a

4
Mδ2

x

(
un + un+1

)
+
1
2
V
(
un + un+1

)

+
q

4

(
|un|2 +

∣∣∣un+1
∣∣∣2
)(

un + un+1
)
= ξn, 0 � n � N − 1,

u0
j = ϕ

(
xj

)
, j ∈ Te

J ,

un ∈ XJ, 0 � n � N,

(2.31)

where V = diag(V1, V2, . . . , VJ) and M = A−1.
On the local truncation error ξnj , using Taylor’s expansion, we obtain the follwing

lemma.

Lemma 2.5. Suppose that ϕ(x) ∈ H1(R) and u(x, t) ∈ C10,4(R × (0, T]), there is

∣∣∣ξnj
∣∣∣ � C

(
h8 + τ2

)
, j ∈ TJ , 0 � n � N − 1,

∣∣∣δtξnj
∣∣∣ � C

(
h8 + τ2

)
, j ∈ TJ , 0 � n � N − 2.

(2.32)

Omitting the small term ξnj in (2.28) yields the following difference scheme

iδ+
t U

n
j +

b

4
A−1

h δ
〈2〉
x

(
Un

j +Un+1
j

)
+
a

4
A−1

h δ2
x

(
Un

j +Un+1
j

)
+
1
2
Vj

(
Un

j +Un+1
j

)

+
q

4

(∣∣∣Un
j

∣∣∣2 +
∣∣∣Un+1

j

∣∣∣2
)(

Un
j +Un+1

j

)
= 0, j ∈ TJ , 0 � n � N − 1,

U0
j = ϕ

(
xj

)
, j ∈ TJ ,

Un ∈ XJ, 0 � n � N;

(2.33)
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that is,

iAhδtU
n
j +

b

4
δ
〈2〉
x

(
Un

j +Un+1
j

)
+
a

4
δ2
x

(
Un

j +Un+1
j

)
+
1
2
Ah

[
Vj

(
Un

j +Un+1
j

)]

+
q

4
Ah

[(∣∣∣Un
j

∣∣∣2 +
∣∣∣Un+1

j

∣∣∣2
)(

Un
j +Un+1

j

)]
= 0, j ∈ TJ , 0 � n � N − 1,

U0
j = ϕ

(
xj

)
, j ∈ TJ ,

Un ∈ XJ, 0 � n � N.

(2.34)

Remark 2.6. Though (2.33) and (2.34) are two different forms of a same scheme, the latter is
suitable for computing in implementation.

3. Some Useful Lemmas

Lemma 2.3 gives that the eigenvalues of the cyclic matrix A = C(1, α, β, 0, . . . , 0, β, α) are in
the form of

λj = 1 + 2α cos
(
2jπ
J

)
+ 2β cos

(
4jπ
J

)
, j ∈ TJ . (3.1)

This gives

1 − 2α − 2β � λj � 1 + 2α + 2β. (3.2)

It is easy to verify that 1 − 2α − 2β > 0, which indicates that the matrix A is positive definite.
For the real, positive definite, symmetric and cyclic matrix A = C(1, α, β, 0, . . . , 0, β, α),

it follows from Lemma 2.2 that there are J real numbers m0, m1, . . . , mJ−1 such that M =
C(m0, m1, . . . , mJ−1). Lemmas 2.3 and 2.4 give that M is real positive definite and symmetric.
And then we can introduce the following discrete norm:

|||u||| := (Mu,u)1/2. (3.3)

On the relation between ||| · ||| and ‖ · ‖, we have the following lemma.

Lemma 3.1. The discrete norms ||| · ||| and ‖ · ‖ are equivalent; in fact, there is

c1‖u‖ � |||u||| � c2‖u‖, for any a grid function u ∈ XJ, (3.4)

where c1 = 1/
√
1 + 2α + 2β, c2 = 1/

√
1 − 2α − 2β.

Proof. It follows from (3.2) that the eigenvalues ofM satisfy

1
1 + 2α + 2β

� μj � 1
1 − 2α − 2β

, j ∈ TJ . (3.5)
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This gives the spectral radius ρ(M) � (1/(1 − 2α − 2β)), and consequently

‖M‖ = ρ(M) � 1
1 − 2α − 2β

. (3.6)

Because

1
1 + 2α + 2β

(u, u) � (Mu,u) � ‖M‖ · ‖u‖2 � 1
1 − 2α − 2β

(u, u), (3.7)

then (3.5) follows from (3.3) and (3.7).

The following lemmas will be used frequently in this paper.

Lemma 3.2. For any a grid function u ∈ XJ , there are

δ+
x(Mu) = Mδ+

xu, (3.8)

δ
〈1〉
x (Mu) = Mδ

〈1〉
x u. (3.9)

Proof. For the kth entry of the vector Mu, there is

(Mu)k =
J−1∑
j=0

mjuj+k, (3.10)

where the periodicity of u is used. This gives

δ+
x(Mu)k =

1
h

⎛
⎝J−1∑

j=0

mjuj+k+1 −
J−1∑
j=0

mjuj+k

⎞
⎠ =

J−1∑
j=0

mj

(
uj+k+1 − uj+k

)
h

. (3.11)

For the kth element of the vector Mδ+
xu, there is

(Mδ+
xu)k =

J−1∑
j=0

mj

(
uj+k − uj+k−1

)
h

. (3.12)

Then (3.8) is gotten from (3.11) and (3.12). Similarly, (3.9) can be proved.

Lemma 3.3. For any two grid functions u, v ∈ XJ ; there are

(
δ2
xu, v

)
= − (δ+

xu, δ
+
xv),

(
δ
〈2〉
x u, v

)
= −

(
δ
〈1〉
x u, δ

〈1〉
x v
)
.

(3.13)
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Proof. Direct calculation and noticing the periodicity of the two grid functions yield (3.13).

Lemma 3.4. For the approximation un, un+1 ∈ XJ , there are


(
Mδ2

x

(
un + un+1

)
, un + un+1

)
= 0, (3.14)


(
Mδ

〈2〉
x

(
un + un+1

)
, un + un+1

)
= 0, (3.15)

�
(
Mδ2

x

(
un + un+1

)
, δ+

t u
n
)
=

1
τ

(∣∣∣
∣∣∣
∣∣∣δ+

xu
n+1
∣∣∣
∣∣∣
∣∣∣2 − |||δ+

xu
n|||2
)
, (3.16)

�
(
Mδ

〈2〉
x

(
un + un+1

)
, δ+

t u
n
)
=

1
τ

(∣∣∣
∣∣∣
∣∣∣δ〈1〉

x un+1
∣∣∣
∣∣∣
∣∣∣2 −
∣∣∣
∣∣∣
∣∣∣δ〈1〉

x un
∣∣∣
∣∣∣
∣∣∣2
)
, (3.17)

where “(·)” and “�(·)” mean taking the imaginary part and the real part, respectively.

Proof. Lemmas 3.2, 3.3, and definition (3.3) together with the symmetry of M give


(
Mδ2

x

(
un + un+1

)
, un + un+1

)
= 
(
δ2
x

(
un + un+1

)
,M
(
un + un+1

))

= 
(
δ+
x

(
un + un+1

)
, δ+

xM
(
un + un+1

))

= 
(
δ+
x

(
un + un+1

)
,Mδ+

x

(
un + un+1

))

= 
(
Mδ+

x

(
un + un+1

)
, δ+

x

(
un + un+1

))

= 
∣∣∣
∣∣∣
∣∣∣δ+

x

(
un + un+1

)∣∣∣
∣∣∣
∣∣∣2 = 0.

(3.18)

Similarly, (3.15) can be proved. Also using Lemmas 3.2, and 3.3, definition (3.3), and the
symmetry of M, we obtain

�
(
Mδ2

x

(
un + un+1

)
, δ+

t u
n
)
=

1
τ
�
(
δ+
xu

n+1 + δ+
xu

n,Mδ+
xu

n+1 −Mδ+
xu

n
)

=
1
τ

(∣∣∣∣∣∣∣∣∣δ+
xu

n+1
∣∣∣∣∣∣∣∣∣2 − |||δ+

xu
n|||2
)
.

(3.19)

Similarly, (3.17) can be proved.

Lemma 3.5 (see [33]). For time sequences w = {w0, w1, . . . , wn,wn+1} and g = {g0, g1,
. . . , gn−1, gn}, there is

∣∣∣∣∣2τ
n∑
l=0

glδtw
l

∣∣∣∣∣ �
∣∣∣w0
∣∣∣2 + τ

n∑
l=1

∣∣∣wl
∣∣∣2 +
∣∣∣wn+1

∣∣∣2 +
∣∣∣g0
∣∣∣2 + τ

n−1∑
l=0

∣∣∣δtgl
∣∣∣2 + ∣∣gn

∣∣2. (3.20)
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4. Numerical Analysis

The corresponding matrix form of (2.33) is

iδtU
n +

b

4
Mδ

〈2〉
x

(
Un +Un+1

)
+
a

4
Mδ2

x

(
Un +Un+1

)
+
1
2
V
(
Un +Un+1

)

+
q

4

(
|Un|2 +

∣∣∣Un+1
∣∣∣2
)(

Un +Un+1
)
= 0, 0 � n � N − 1,

(4.1)

U0
j = ϕ

(
xj

)
, j ∈ Te

J , (4.2)

Un ∈ XJ, 0 � n � N, (4.3)

where

A = C
(
1, α, β, 0, . . . , 0, β, α

)
,

((
|Un|2 +

∣∣∣Un+1
∣∣∣2
)(

Un +Un+1
))

j

=
(∣∣∣Un

j

∣∣∣2 +
∣∣∣Un+1

j

∣∣∣2
)(

Un
j +Un+1

j

)
.

(4.4)

4.1. Solvability of the Nonlinear Scheme

For proving the solvability, we need the following Brouwer fixed point theorem.

Lemma 4.1 (see [37]). Let (H, 〈·, ·〉) be a finite-dimensional inner-product space, ‖ · ‖ the associated
norm, and g : H → H continuous. Assume, moreover, that

∃α > 0, ∀z ∈ H, ‖z‖ = α, �
〈
g(z), z

〉
> 0. (4.5)

Then, there exists a z∗ ∈ H such that g(z∗) = 0 and ‖z∗‖ � α.

On the solvability of the scheme (2.34), we have the following lemma.

Lemma 4.2 (Solvability of difference scheme). Under the assumption (A), for any initial data
u0 ∈ XJ , there exists a solutionUn ∈ XJ of (2.34) for n ≥ 1.

Proof. The HOC scheme (2.33) is equivalent to the difference scheme (2.34) whose matrix
form is (4.1)–(4.3), so we here just prove the unique solvability of the difference scheme (4.1)–
(4.3).

In (4.1), for given Un ∈ XJ (n ≥ 1), we first prove the existence. For j ∈ TJ , rewrite
(4.1) as

Un+(1/2) = Un + i
b

4
τMδ

〈2〉
x Un+(1/2) + i

a

4
τMδ2

xU
n+(1/2) + i

τ

2
VUn+(1/2)

+ i
q

4
τ

(
|Un|2 +

∣∣∣2Un+(1/2) −Un
∣∣∣2
)
Un+(1/2).

(4.6)
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We define a mapping F: u∗ ∈ XJ → F(u∗) ∈ XJ as

F(U∗) = U∗ −Un − i
b

4
τMδ

〈2〉
x U∗ − i

a

4
τMδ2

xU
∗ − i

τ

2
VU∗

− i
q

4
τ
(
|Un|2 + |2U∗ −Un|2

)
U∗,

(4.7)

which is obviously continue. Computing the inner product of (4.7) with u∗ and then taking
the real part yield

�(F(U∗), U∗) = ‖U∗‖2 − (Un,U∗) ≥ ‖U∗‖(‖U∗‖ − ‖Un‖), (4.8)

where Lemma 3.4 was used. Let ‖U∗‖ = ‖Un‖ + 1, then it follows from (4.8) that
�(F(U∗), U∗) ≥ 0. This together with Lemma 4.1 indecaites that there exists a solution
Un+1 ∈ XJ satisfying F(Un+1) = 0. Then Un+1 satisfies the scheme (2.34).

4.2. Discrete Conservation Laws

Corresponding to (1.4)-(1.5), the proposed scheme also possesses two counterpart discrete
conservation laws.

Lemma 4.3. The difference solution of scheme (2.34) conserves the discrete mass and discrete energy
in the form of

Qn = · · · = Q0, n = 0, 1, 2, . . . ,N, (4.9)

En = · · · = E0, n = 0, 1, 2, . . . ,N, (4.10)

where

Qn := ‖Un‖2, En :=
b

4

∣∣∣
∣∣∣
∣∣∣δ〈1〉

x Un
∣∣∣
∣∣∣
∣∣∣2 + a

4
|||δ+

xU
n|||2 + 1

2
h
J−1∑
j=0

Vj |Un|2 +
q

4
‖Un‖44. (4.11)

Proof. Computing the inner product of (4.1) with Un + Un+1 then taking the imaginary part
yields

1
τ

(∥∥∥Un+1
∥∥∥2 − ‖Un‖2

)
+
b

4

(
Mδ

〈2〉
x

(
Un +Un+1

)
,
(
Un +Un+1

))

+
a

4

(
Mδ2

x

(
Un+Un+1

)
, Un+Un+1

)
+
1
2


⎛
⎝h

J−1∑
j=0

Vj

(∣∣∣Un+Un+1
∣∣∣2
)⎞⎠

+
q

4

((

|Un|2 +
∣∣∣Un+1

∣∣∣2
)(

Un +Un+1
)
, Un +Un+1

)
= 0.

(4.12)

This together with Lemma 3.4 gives (4.9).
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Computing the inner product of (4.1)with δ+
t U

n then taking the real part yields

�(iδ+
t U

n, δ+
t U

n) +
b

4
�
(
Mδ

〈2〉
x

(
Un +Un+1

)
, δ+

t U
n
)

+
a

4
�
(
Mδ2

x

(
Un +Un+1

)
, δ+

t U
n
)
+
1
2
�

⎛
⎝h

J−1∑
j=0

Vj

(∣∣∣Un+1
∣∣∣2 − |Un|2

)⎞⎠

+
q

4
�
((

|Un|2 +
∣∣∣Un+1

∣∣∣2
)(

Un +Un+1
)
, δ+

t U
n

)
= 0.

(4.13)

This together with

((
|Un|2 +

∣∣∣Un+1
∣∣∣2
)(

Un +Un+1
)
, δ+

t U
n

)
=
(∥∥∥Un+1

∥∥∥4
4
− ‖Un‖44

)
(4.14)

and Lemma 3.4 gives (4.10).

4.3. A Priori Estimate

In proof of the convergence, we need the following a priori estimate.

Lemma 4.4. The difference solution of the scheme (2.34) satisfies

‖Un‖ � C,
∥∥∥δ〈1〉

x Un
∥∥∥ � C, ‖δ+

xU
n‖ � C, ‖Un‖∞ � C. (4.15)

This implies the stability of the scheme (2.34).

Proof. It follows from (4.9) that

‖Un‖ � C. (4.16)

Lemma 3.1 gives

|||δ+
xU

n|||2 ≥ c21‖δ
+
xU

n‖2. (4.17)

Using the discrete Sobolev inequality and (4.16), we obtain

‖Un‖44 � c40

(
‖δ+

xU
n‖1/4‖Un‖3/4 + ‖Un‖

)4
� 8c40

(
‖δ+

xU
n‖‖Un‖3 + ‖Un‖4

)

� ε‖δ+
xU

n‖2 +
16c80
ε

‖Un‖6 + 8c40‖U
n‖4 � ε‖δ+

xU
n‖2 + C,

(4.18)
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where c0 is a positive constant independent of the grid parameters. Taking ε = ac21/2|q|, then
it follows from (4.16)–(4.18) and (4.10) that

‖δ+
xU

n‖ � C,
∥∥∥δ〈1〉

x Un
∥∥∥ � C. (4.19)

Utilizing the discrete Sobolev estimate and Lemma 4.3, we obtain from (4.16) and (4.19) that

‖Un‖∞ � C. (4.20)

This completes the proof.

4.4. Unconditional Convergence in Maximum Norm

Theorem 4.5. Suppose that u(x, t) ∈ C10,4(R × (0, T]) and τ is sufficiently small, then the solution
un
j of the proposed scheme (2.34) converges to the solution u(xj , tn) of the problem (1.1)–(1.3) with

order O(h8 + τ2) in the discrete L∞-norm.

Proof. Denote the error function as

en = un −Un, n = 0, 1, 2, . . . ,N. (4.21)

Subtracting (4.1)–(4.3) from (2.31), respectively, we obtain the equation of error function as
follows:

iδ+
t e

n +
b

4
Mδ

〈2〉
x

(
en + en+1

)
+
a

4
Mδ2

x

(
en + en+1

)

+
1
2
Vj

(
en + en+1

)
+
q

4
gn+1 = ξn, n = 0, 1, . . . ,N − 1,

(4.22)

e0j = 0, j ∈ TJ , (4.23)

en ∈ XJ, n = 0, 1, 2, . . . ,N. (4.24)

where

gn+1
j =

(∣∣∣un
j

∣∣∣2 +
∣∣∣un+1

j

∣∣∣2
)(

un
j + un+1

j

)
−
(∣∣∣Un

j

∣∣∣2 +
∣∣∣Un+1

j

∣∣∣2
)(

Un
j +Un+1

j

)
, j ∈ TJ . (4.25)
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Noting that

gn+1
j =

(∣∣∣un
j

∣∣∣2 +
∣∣∣un+1

j

∣∣∣2
)(

un
j + un+1

j

)
−
(∣∣∣Un

j

∣∣∣2 +
∣∣∣Un+1

j

∣∣∣2
)(

Un
j +Un+1

j

)

=
(
enj U

n
j + un

j e
n
j + en+1j Un+1

j + un+1
j en+1j

)(
un
j + un+1

j

)

+
(∣∣∣Un

j

∣∣∣2 +
∣∣∣Un+1

j

∣∣∣2
)(

enj + en+1j

)

=
(
enj

(
un
j − enj

)
+ un

j e
n
j + en+1j

(
un+1
j − en+1j

)
+ un+1

j en+1j

)

×
(
un
j + un+1

j

)
+
(∣∣∣un

j − enj

∣∣∣2 +
∣∣∣un+1

j − en+1j

∣∣∣2
)(

enj + en+1j

)
, j ∈ TJ ,

(4.26)

we obtain from (4.25), (2.6), and Lemma 4.4 that

∣∣∣
∣∣∣gn+1

∣∣∣
∣∣∣2 � C

(
||en||2 +

∣∣∣
∣∣∣en+1

∣∣∣
∣∣∣2
)
. (4.27)

Computing the inner product of (4.22)with en + en+1 and then taking the imaginary part, we
obtain

1
τ

(∥∥∥en+1
∥∥∥2 − ‖en‖2

)
+
q

4

(
gn+1, en + en+1

)
= 
(
ξn, en + en+1

)
, (4.28)

where Lemma 3.4 was used.
For the last two terms of (4.28), using Lemma 4.4 and (4.26) we have

∣∣∣q
4

(
gn+1, en + en+1

)∣∣∣ � ‖en‖2 +
∥∥∥en+1

∥∥∥2,
∣∣∣(ξn, en + en+1

)∣∣∣ � ‖ξn‖2 + ‖en‖2 +
∥∥∥en+1

∥∥∥2.
(4.29)

Substituting (4.29) into (4.28) yields

1
τ

(∥∥∥en+1
∥∥∥2 − ‖en‖2

)
� ‖ξn‖2 + ‖en‖2 +

∥∥∥en+1
∥∥∥2. (4.30)

By virtue of Gronwall’s inequality and Lemma 2.5, noting that ‖e0‖ = 0, we obtain from (4.30)
that

‖en‖ � C
(
h8 + τ2

)
, n = 1, 2, . . . ,N, (4.31)

if τ is sufficiently small.
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Computing the inner product of (4.22) with δ+
t e

n and then taking the real part, we
obtain

b

4
�
(
Mδ

〈2〉
x

(
en + en+1

)
, δ+

t e
n
)
+
a

4
�
(
Mδ2

x

(
en + en+1

)
, δ+

t e
n
)

+
q

4
�
(
gn+1, δ+

t e
n
)
= �(ξn, δ+

t e
n), n = 1, 2, . . . ,N − 1.

(4.32)

This together with Lemma 3.4 gives

− b

4τ

(∣∣∣
∣∣∣
∣∣∣δ〈1〉

x un+1
∣∣∣
∣∣∣
∣∣∣2 −
∣∣∣
∣∣∣
∣∣∣δ〈1〉

x un
∣∣∣
∣∣∣
∣∣∣2
)
− a

4τ

(∣∣∣
∣∣∣
∣∣∣δ+

xu
n+1
∣∣∣
∣∣∣
∣∣∣2 − |||δ+

xu
n|||2
)

+
q

4
�
(
gn+1, δ+

t e
n
)
= �(ξn, δ+

t e
n).

(4.33)

It follows from (4.22) that

δ+
t e

n = i
b

4
Mδ

〈2〉
x

(
en + en+1

)
+ i

a

4
Mδ2

x

(
en + en+1

)

+
i

2
Vj

(
en + en+1

)
+ i

q

4
gn+1 − iξn, n = 1, 2, . . . ,N − 1.

(4.34)

Thus, for the third term on the left side of (4.33), we have

q

4
�
(
gn+1, δ+

t e
n
)
=

q

4
�
(
gn+1, i

b

4
Mδ

〈2〉
x

(
en + en+1

)
+ i

a

4
Mδ2

x

(
en + en+1

)

+
i

2
Vj

(
en + en+1

)
+ i

q

4
gn+1 − iξn

)

= −
q

4

(
gn+1,

b

4
Mδ

〈2〉
x

(
en + en+1

))
−
q

4

(
gn+1,

a

4
Mδ2

x

(
en + en+1

))

−
q

4

(
gn+1,

1
2
V
(
en + en+1

))
+
q

4

(
gn+1, ξn

)
.

(4.35)

Noting (4.26), (4.31), and

δ+
x

(
enj

(
un
j − enj

))
= δ+

xe
n
j

(
un
j+1 − enj+1

)
+ enj

(
δ+
xu

n
j − δ+

xe
n
j

)

= δ+
xe

n
j U

n
j+1 + enj

(
δ+
xu

n
j − δ+

xe
n
j

)
, δ+

x

((
un
j − enj

)(
un
j − enj

))

=
(
δ+
xu

n
j − δ+

xe
n
j

)(
un
j+1 − enj+1

)
+
(
un
j − enj

)(
δ+
xu

n
j − δ+

xe
n
j

)

=
(
δ+
xu

n
j − δ+

xe
n
j

)
Un

j+1 +Un
j

(
δ+
xu

n
j − δ+

xe
n
j

)
, |(δ+

xe
nen, en)|

� ‖δ+
xe

n‖2 + ‖en‖44 � 2‖δ+
xe

n‖2 + C
(
‖en‖6 + ‖en‖4

)
,

(4.36)
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we obtain

∣∣∣q
4

(
gn+1,

a

4
Mδ2

x

(
en + en+1

))∣∣∣ =
∣∣∣−q

4

(
δ+
xg

n+1,
a

4
Mδ+

x

(
en + en+1

))∣∣∣
� ‖M‖

∣∣∣(δ+
xg

n+1, δ+
x

(
en + en+1

))∣∣∣
�
∣∣∣(δ+

xg
n+1, δ+

x

(
en + en+1

))∣∣∣
(4.37)

� ‖δ+
xe

n‖2 +
∥∥∥δ+

xe
n+1
∥∥∥2 + (en + en+1

)2
. (4.38)

Similarly we obtain

∣∣∣∣q4
(
gn+1,

b

4
Mδ

〈2〉
x

(
en + en+1

))∣∣∣∣ �
∥∥∥δ〈1〉

x en
∥∥∥2 +

∥∥∥δ〈1〉
x en+1

∥∥∥2 + (h8 + τ2
)2
. (4.39)

For the last two terms of (4.35), using the Cauchy inequality, noting that V (x) ∈ C(Ω), we
obtain

∣∣∣∣−q4
(
gn+1,

1
2
V
(
en + en+1

))
+
q

4

(
gn+1, ξn

)∣∣∣∣ � ‖en‖2 +
∥∥∥en+1

∥∥∥2 + ‖ξn‖2 �
(
h8 + τ2

)2
.

(4.40)

Substituting (4.38)–(4.40) into (4.35) yields

∣∣∣q
4
�
(
gn+1, δ+

t e
n
)∣∣∣ �

∥∥∥δ〈1〉
x en

∥∥∥2 +
∥∥∥δ〈1〉

x en+1
∥∥∥2 +

∥∥∥δ1
xe

n
∥∥∥2 +

∥∥∥δ1
xe

n+1
∥∥∥2 + (h8 + τ2

)2
. (4.41)

Substituting (4.41) into (4.33) yields

∣∣∣
∣∣∣
∣∣∣δ〈1〉

x un+1
∣∣∣
∣∣∣
∣∣∣2 −
∣∣∣
∣∣∣
∣∣∣δ〈1〉

x un
∣∣∣
∣∣∣
∣∣∣2 +
∣∣∣
∣∣∣
∣∣∣δ+

xu
n+1
∣∣∣
∣∣∣
∣∣∣2 − |||δ+

xu
n|||2

� τ

[∥∥∥δ〈1〉
x en

∥∥∥2 +
∥∥∥δ〈1〉

x en+1
∥∥∥2 +

∥∥∥δ1
xe

n
∥∥∥2 +

∥∥∥δ1
xe

n+1
∥∥∥2

+
(
h8 + τ2

)2
− �(ξn, δ+

t e
n)
]
.

(4.42)

Summing up for the superscript n from 0 to m and then replacing m by n and noting
‖|δ〈1〉

x u0|‖ = ‖|δ1
xu

0|‖ = 0, we obtain

∣∣∣
∣∣∣
∣∣∣δ〈1〉

x un+1
∣∣∣
∣∣∣
∣∣∣2 +
∣∣∣
∣∣∣
∣∣∣δ+

xu
n+1
∣∣∣
∣∣∣
∣∣∣2 � τ

n+1∑
l=0

[∥∥∥δ〈1〉
x el
∥∥∥2 +

∥∥∥δ1
xe

l
∥∥∥2
]
+

∣∣∣∣∣τ
n+1∑
l=0

(
ξl, δ+

t e
l
)∣∣∣∣∣ +

(
h8 + τ2

)2
.

(4.43)
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By virtue of Lemmas 3.5, 2.5, and (4.31), we obtain

∣∣∣∣∣τ
n+1∑
l=0

(
ξl, δ+

t e
l
)∣∣∣∣∣ �

(
h8 + τ2

)2
. (4.44)

Substituting (4.44) into (4.43) and then utilizing Gronwall’s inequality, we obtain

∥∥∥δ〈1〉
x en

∥∥∥ � h8 + τ2, ‖δ+
xe

n‖ � h8 + τ2, n = 1, 2, . . . ,N, (4.45)

if τ is sufficiently small. This together with (4.31) gives

‖en‖∞ � h8 + τ2, n = 1, 2, . . . ,N. (4.46)

This completes the proof.

5. An Iterative Algorithm

Obviously, the scheme (2.34) is nonlinear and implicit. In order to obtain the solutionUn+1
j at

the time level n + 1, an efficient iterative algorithm needs to be proposed. In this section, we
construct an iterative algorithm to compute the scheme (2.34).

For a fixed n, the difference scheme (2.34) can be solved by the following iterative
algorithm:

i

τ
Ah

(
U

n+1(s+1)
j −Un

j

)
+
b

4
δ
〈2〉
x

(
Un

j +U
n+1(s+1)
j

)
+
a

4
δ2
x

(
Un

j +U
n+1(s+1)
j

)

+
1
2
Ah

[
Vj

(
Un

j +U
n+1(s)
j

)]
+
q

4
Ah

[(∣∣∣Un
j

∣∣∣2 +
∣∣∣Un+1(s)

j

∣∣∣2
)(

Un
j +U

n+1(s)
j

)]
= 0,

j ∈ TJ , 0 � n � N − 1,

Un+1(s+1) ∈ XJ, 0 � n � N,

(5.1)

with

U
n+1(0)
j =

{
Un

j , if n = 0,

2Un
j −Un−1

j , if n ≥ 1.
. (5.2)
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Denote

B
n+1(s)
j =

q

4

[(∣∣∣Un
j

∣∣∣2 +
∣∣∣Un+1(s)

j

∣∣∣2
)(

Un
j +U

n+1(s)
j

)]
,

λ =
τ

h2
, ã = iβ +

bλ

16
, b̃ = iα +

aλ

4
, c̃ = i − bλ

8
− aλ

2
,

d̃
n+1(s)
j =

(
2iβ − ã −

τβ

2
Vj−2

)
Un

j−2 +
(
2iβ − ã −

τβ

2
Vj+2

)
Un

j+2

+
(
2iα − b̃ − τα

2
Vj−1
)
Un

j−1 +
(
2iα − b̃ − τα

2
Vj+1

)
Un

j+1 +
(
2i − c̃ −

τβ

2
Vj

)
Un

j

− τ
[
β
(
B
n+1(s)
j−2 + B

n+1(s)
j+2

)
+ α
(
B
n+1(s)
j−1 + B

n+1(s)
j+1

)
+ B

n+1(s)
j

]

+
τβ

2
Vj−2U

n+1(s)
j−2 +

τα

2
Vj−1U

n+1(s)
j−1 +

τ

2
VjU

n+1(s)
j

+
τα

2
Vj+1U

n+1(s)
j+1 +

τβ

2
Vj+2U

n+1(s)
j+2 ,

(5.3)

then the iterative algorithm can be written as the following matrix form

Hun+1(s+1) = d̃n+1(s), (5.4)

where

H = C
(
c̃, b̃, ã, 0, . . . , 0, ã, b̃

)
(5.5)

is a cyclic pentadiagonal constant matrix.
Though the algebraical system Hun+1(s+1) = d̃n+1(s) generated by the proposed scheme

is nonlinear and then need iteration in implementation, the coefficient matrix H is cyclic
pentadiagonal and invariable at different levels and then the matrix H should not be
computed repeatedly. This together with the proposed iterative algorithm and the Thomas
algorithm can improve greatly the computational efficiency. To some extent, the proposed
scheme is more efficient than most linearized scheme.

6. Numerical Experiments

In this section, numerical tests are given to support our theoretical analysis on convergence
and stability. In implementation, we chose a tolerance ε = 10−10 to control the iteration; that
is, ‖Un+1(s+1) −Un+1(s)‖∞ � 10−10.

Example 6.1. Periodic initial-boundary value problem.



Advances in Numerical Analysis 21

Table 1: Errors of the numerical solution of Example 6.1 computed by the proposed scheme at t = 1.

h τ Error Sorder
π/5 0.2 1.2112E − 002 —
π/10 0.2/16 6.7642E − 005 8.1724
π/20 0.2/162 4.1327E − 007 8.0007
π/40 0.2/163 1.6156E − 009 7.9989

Table 2: Errors of the numerical solution of Example 6.1 computed by the proposed scheme with h = π/40
at t = 1.

τ Error Torder
0.2 3.0062E − 002 —
0.1 6.7267E − 003 2.1600
0.05 1.6655E − 003 2.0140
0.025 4.1653E − 004 1.9995

Consider

i
∂u

∂t
(x, t) +

∂2u

∂x2 (x, t) + 2|u(x, t)|2u(x, t) = 0, (x, t) ∈ R × [0, T]

u(x, 0) = e2ix, x ∈ R,

u(x, t) = u(x + π, t), x ∈ R.

(6.1)

This problem has the following plane wave solution:

u(x, t) = exp[2i(x − t)]. (6.2)

Now, we compute Example 6.1 on the finite domain [0, π]. In order to test the
maximum norm convergence with order O(h8 + τ2), we let τ = O(h4) in computation to test
the eighth-order convergence in space and take a small h in computation to test second-order
convergence in time. In order to quantify the numerical results, we introduce the following
“error” functions and “convergence rate:”

e(h, τ) =
∥∥∥UN(h, τ) − uN(h, τ)

∥∥∥
∞
,

sorder =
log
(
e(h, τ)/e

(
h/2, τ/24

))
log(2)

,

torder =
log(e(h, τ)/e(h, τ/2))

log(2)
.

(6.3)

Then we list the numerical results of Example 6.1 in Tables 1-2.

Example 6.2. Homogenous initial-boundary value problem.
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Table 3: Errors of the numerical solution of Example 6.2 computed by the proposed scheme at t = 1.

h τ Error Sorder
0.5 0.2 4.3204E − 001 —
0.5/2 0.2/16 2.1276E − 003 7.6658
0.5/22 0.2/162 8.2863E − 006 8.0043
0.5/23 0.2/163 3.2391E − 008 7.9990

Table 4: Errors of the numerical solution of Example 6.2 computed by the proposed scheme with h = 0.15
at t = 1.

τ Error Torder
0.1 1.5320E − 001 —
0.05 3.4611E − 002 2.1461
0.025 8.4527E − 003 2.0338
0.0125 210386E − 004 2.0064

Consider

i
∂u

∂t
(x, t) +

∂2u

∂x2 (x, t) + 2|u(x, t)|2u(x, t) = 0, (x, t) ∈ R × [0, T],

u(x, 0) = e2ix, x ∈ R,

u(x, t) −→ 0, as |x| −→ 0.

(6.4)

The initial value problem has the one-soliton solution

u(x, t) = sech(x − 4t) exp(2ix − 3it). (6.5)

Because u(x, t) decays to zero rapidly as |x| → ∞, so for sufficiently large number −xL and
xR and a finite time T , the initial problem is consistent with the following initial-boundary
value problem:

i
∂u

∂t
(x, t) +

∂2u

∂x2 (x, t) + 2|u(x, t)|2u(x, t) = 0, (x, t) ∈ Ω × (0, T],

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T],

u(x, 0) = e2ixsech(x), x ∈ Ω,

(6.6)

where Ω = (−40, 40).

In computation of Example 6.2, we assume that the value of the exact solution is zero
when x ∈ Ωc := R \Ω and list the numerical results of Example 6.2 in Tables 3-4.

Tables 1–4 show that the new scheme is eighth-order convergent in space and second
order in time for U in the discrete L∞-norm, which verifies Theorem 4.5. Tables 2 and 4 also
show that the proposed scheme is very robust.
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7. Conclusion

In this paper, we construct an eighth-order compact different scheme for numerically solving
the NLS equation, use the discrete energy method together with a new technique named
“regression of compactness” to prove that the proposed HOC scheme is convergent, without
any restriction on the grid ratio, at the order of O(h8 + τ2) in the discrete L∞-norm. What’s
better, the HOC scheme conserves the discrete total mass and energy, which changed the
viewpoint that the compact difference scheme of a nonlinear equation cannot preserve the
discrete conservation laws. In order to implement the nonlinear compact difference scheme,
we propose an iterative algorithm which is numerically proved to be very reliable.
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