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We study the CSCS method for large Hermitian positive definite Toeplitz linear systems, which
first appears in Ng’s paper published in (Ng, 2003), and CSCS stands for circulant and skew
circulant splitting of the coefficient matrix A. In this paper, we present a new iteration method
for the numerical solution of Hermitian positive definite Toeplitz systems of linear equations. The
method is a two-parameter generation of the CSCS method such that when the two parameters
involved are equal, it coincides with the CSCS method. We discuss the convergence property and
optimal parameters of this method. Finally, we extend our method to BTTB matrices. Numerical
experiments are presented to show the effectiveness of our new method.

1. Introduction

We consider iterative solution of the large system of linear equations

Ax = b, (1.1)

where A ∈ C
n×n is Hermitian positive definite Toeplitz matrix and b, x ∈ C

n. An n-by-
n matrix A = (ai,j)

n
i,j=1 is said to be Toeplitz if ai,j = ai−j ; that is, A is constant along its

diagonals. Toeplitz systems arise in a variety of applications, especially in signal processing
and control theory. Many direct methods are proposed for solving Toeplitz linear systems. A
straightforward application of Gaussian elimination will lead to an algorithm with O(n3)
complexity. There are a number of fast Toeplitz solvers that decrease the complexity to
O(n2) operations, see for instance [1–3]. Around 1980, superfast direct Toeplitz solvers of
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complexity O(n log2n), such as the one by Ammar and Gragg [4], were also developed.
Recent research on using the preconditioned conjugate gradient method as an iterative
method for solving Toeplitz systems has brought much attention. One of the main important
results of this methodology is that the PCG method has a computational complexity
proportional to O(n logn) for a large class of problem [5] and is therefore competitive with
any direct method.

In [6], an iterative method based on circulant and skew circulant splitting (CSCS) of
the Toeplitz matrix was given. The authors have driven an upper bound of the contraction
factor of the CSCS iteration which is dependent solely on the spectra of the circulant and the
skew circulant matrices involved.

In [7] the authors studied the HSS iteration method for large sparse non-Hermitian
positive definite Toeplitz linear systems, which first appears in [8]. They used the HSS
iteration method based on a special case of the HSS splitting, where the symmetric part
H = (1/2)(A+AT ) is a centrosymmetric matrix and skew-symmetric part S = (1/2)(A−AT ) is
a skew-centrosymmetric matrix for a given Toeplitz matrix and discussed the computational
complexity of the HSS and IHSS methods.

In this paper we present an efficient iterative method for the numerical solution
of Hermitian positive definite Toeplitz systems of linear equations. The method is a two-
parameter generation of the CSCS method such that when the two parameters involved are
equal, it coincides with the CSCS method. We discuss the convergence property and optimal
parameters of this method. Then we extend our method to block-Toeplitz-Toeplitz-block
(BTTB)matrices.

For convenience, some of the terminology used in this paper will be given. The symbol
C

n×n will denote the set of all n × n complex matrices. Let A,B ∈ C
n×n. We use the notation

A � 0 (A � 0) if A is Hermitian positive (semi-)definite. If A and B are both Hermitian, we
write A � B (A � B) if and only if A − B � 0 (A − B � 0). For a Hermitian positive definite
matrix A, we define the ‖ · ‖A norm of a vector z ∈ C

n as ‖z‖A =
√
z∗Az. Then the induced

‖ · ‖A norm of a matrix B ∈ C
n×n is defined as ‖B‖A = ‖A1/2BA−1/2‖A.

The organization of this paper is as follows. In Section 2, we present accelerated
circulant and skew circulant splitting (ACSCS)method for Toeplitz systems. In Section 3, we
study the convergence properties and analyze the convergence rate of ACSCS iteration and
derive optimal parameters. The convergence results of ACSCS method for BTTB matrices are
given in Section 4. Numerical experiments are presented in Section 5 to show the effectiveness
of our new method. Finally some conclusions are given in Section 6.

2. Accelerated Circulant and Skew Circulant Splitting Method

Let us begin by supposing that the entries ai,j = ai−j of n-by-n Toeplitz matrix An(= A) are
the Fourier coefficients of the real generating function

f(θ) =
∞∑

−∞
ake

−ikθ (2.1)

defined on [−π,π]. Since f is a real-valued function, a−k = ak for all integers and An is a
Hermitian matrix. For Hermitian Toeplitz matrix An we note that it can always be split as

An = Cn + Sn, (2.2)
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where

Cn =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 + an−1 a−(n−1) + a1

a1 + a−(n−1) a0

. . . . . .

. . . . . . a−1 + an−1

a(n−1) + a−1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Sn =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 − an−1 a−(n−1) − a1

a1 − a−(n−1) a0

. . . . . .

. . . . . . a−1 − an−1

a(n−1) − a−1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.3)

Clearly Cn is Hermitian circulant matrix and Sn is Hermitian skew circulant matrix.
The positive definiteness of Cn and Sn is given in the following theorem. Its proof is similar
to that of Theorem 2 in [9].

Theorem 2.1. Let f be a real-valued function in the Wiener class (
∑∞

−∞|ak| < ∞) and satisfies the
condition

f(θ) =
∞∑

−∞
ake

−ikθ ≥ δ > 0 ∀θ. (2.4)

Then the circulant matrixCn and the skew circulant matrix Sn, defining by the splittingAn = Cn+Sn,
are uniformly positive and bounded for sufficiently large n.

The subscript n of matrices is omitted hereafter whenever there is no confusion.
Based on the splitting (2.2), Ng [6] presented the CSCS iteration method: given an

initial guess x(0), for k = 0, 1, 2, . . ., until x(k) converges, compute

(αI + C)x(k+1/2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − C)x(k+1/2) + b,
(2.5)

where α is a given positive constant. He has also proved that if the circulant and the skew
circulant splitting matrices are positive definite, then the CSCS method converges to the
unique solution of the system of linear equations. Moreover, he derived an upper bound of
the contraction of the CSCS iteration which is dependent solely on the spectra of the circulant
and the skew circulant matrices C and S, respectively.

In this paper, based on the CSCS splitting, we present a different approach to solve
(1.1) with the Hermitian positive definite coefficient matrix, called the Accelerated Circulant
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and Skew Circulant Splitting method, shortened to the ACSCS iteration. Let us describe it as
follows.

The ACSCS iteration method: given an initial guess x(0), for k = 0, 1, 2, . . ., until x(k)

converges, compute

(αI + C)x(k+1/2) = (αI − S)x(k) + b,
(
βI + S

)
x(k+1) =

(
βI − S

)
x(k+1/2) + b,

(2.6)

where α is a given nonnegative constant and β is given positive constant.
The ACSCS iteration alternates between the circulant matrix C and the skew circulant

matrix S. Theoretical analysis shows that if the coefficient matrix A is Hermitian positive
definite the ACSCS iteration (2.6) can converge to the unique solution of linear system (1.1)
with any given nonnegative α, if β is restricted in an appropriate region. And the upper bound
of contraction factor of the ACSCS iteration is dependent on the choice of α, β, the spectra of
the circulant matrix C, and the skew circulant matrix S. The two steps at each ACSCS iterate
require exact solutions with the n × n matrices αI + C and βI + S. Since circulant matrices
can be diagonalized by the discrete Fourier matrix F and skew circulant matrices can be
diagonalized by the diagonal times discrete Fourier F̂ [10], that is,

C = F∗Λ1F, S = F̂∗Λ2F̂, (2.7)

where Λ1 and Λ2 are diagonal matrices holding the eigenvalues of C and S, respectively, the
exact solutions with circulant matrices and skew circulant matrices can be obtained by using
fast Fourier transforms (FFTs). In particular, the number of operations required for each step
of the ACSCS iteration method is O(n logn).

Noting that the roles of the matrices C and S in (2.6) can be reverse, we can first solve
the system of linear equation with the βI + S and then solve the system of linear equation
with coefficient matrix αI + C.

3. Convergence Analysis of the ACSCS Iteration

In this section we study the convergence rate of the ACSCS iteration and we suppose that
the entries ai,j = ai−j of A are the Fourier coefficient of the real generating function f that
satisfies the conditions of Theorem 2.1. So, for sufficiently large n, the matrices A, C, and
S will be Hermitian positive definite. Let us denote the eigenvalues of C and S by λi, μi, i =
1, . . . , n, and the minimum andmaximum eigenvalues ofC and S by λmin, λmax and μmin, μmax,
respectively. Therefore, from Theorem 2.1, for sufficiently large nwe have λmin > 0 and μmin >
0.

We first note that the ACSCS iteration method can be generalized to the two-step
splitting iteration framework, and the following lemma describes a general convergence
criterion for a two-step splitting iteration.

Lemma 3.1. Let A ∈ C
n×n, A = Mi −Ni (i = 1, 2) be two splitting of the matrix A, and x(0) ∈ C

n

be a given initial vector. If x(k) is a two-step iteration sequence defined by

M1x
(k+1/2) = N1x

(k) + b,

M2x
(k+1) = N2x

(k+1/2) + b,
(3.1)
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k = 0, 1, 2, . . ., then

xk+1 = M−1
2 N2M

−1
1 N1x

k +M−1
2

(
I +N2M

−1
1

)
b, k = 0, 1, 2, . . . . (3.2)

Moreover, if the spectral radius ρ(M−1
2 N2M

−1
1 N1) < 1, then the iterative sequence x(k) converges to

the unique solution x∗ ∈ C
n of the system of linear equations (1.1) for all initial vectors x(0) ∈ C

n.

Applying this lemma to the ACSCS iteration, we obtain the following convergence
property.

Theorem 3.2. Let A ∈ C
(n×n) be a Hermitian positive definite Toeplitz matrix, and let C, S be its

Hermitian positive circulant and skew circulant parts, α be a nonnegative constant, and β be a positive
constant. Then the iteration matrix M(α, β) of the ACSCS method is

M
(
α, β

)
=
(
βI + S

)−1(
βI − C

)
(αI + C)−1(αI − S), (3.3)

and its spectral radius ρ(M(α, β)) is bounded by

δ
(
α, β

)
=

n
max
i=1

∣∣∣∣
β − λi
α + λi

∣∣∣∣
n

max
i=1

∣∣∣∣
α − μi

β + μi

∣∣∣∣, (3.4)

where λi, μi, i = 1, . . . , n are eigenvalues of C, S, respectively. And for any given parameter α if

α − 2μmin < β < α + 2λmin, (3.5)

then δ(α, β) < 1, that is, the ACSCS iteration converges, where λmin, μmin are the minimum
eigenvalue of C and S, respectively.

Proof. Setting

M1 = αI + C, N1 = αI − S, M2 = βI + S, N2 = βI − C (3.6)

in Lemma 3.1. Since αI + C and βI + S are nonsingular for any nonnegative constant α and
positive β, we get (3.3).

By similarity transformation, we have

ρ
(
M

(
α, β

))
= ρ

((
βI + S

)−1(
βI − C

)
(αI + C)−1(αI − S)

)

= ρ
((

βI − C
)
(αI + C)−1(αI − S)

(
βI + S

)−1)

≤
∥∥∥
(
βI − C

)
(αI + C)−1(αI − S)

(
βI + S

)−1∥∥∥
2

≤
∥∥∥(βI − C)(αI + C)−1

∥∥∥
2

∥∥∥(αI − S)
(
βI + S

)−1∥∥∥
2

=
n

max
i=1

∣∣∣∣
β − λi
α + λi

∣∣∣∣
n

max
i=1

∣∣∣∣
α − μi

β + μi

∣∣∣∣.

(3.7)

Then the bound for ρ(M(α, β)) is given by (3.4).
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Since α ≥ 0, β > 0, and β satisfies the relation (3.5), the following equalities hold:

n
max
i=1

∣∣∣∣
β − λi
α + λi

∣∣∣∣ = max
(∣∣∣∣

β − λmax

α + λmax

∣∣∣∣,
∣∣∣∣
β − λmin

α + λmin

∣∣∣∣
)

< 1,

n
max
i=1

∣∣∣∣
α − μi

β + μi

∣∣∣∣ = max
(∣∣∣∣

α − μmax

β + μmax

∣∣∣∣,
∣∣∣∣
α − μmin

β + μmin

∣∣∣∣
)

< 1,

(3.8)

so δ(α, β) < 1.

Theorem 3.2 mainly discusses the available β for a convergent ACSCS iteration for
any given nonnegative α. It also shows that the choice of β is dependent on the minimum
eigenvalue of the circulant matrix C and the skew circulant matrix S and the choice of α.
Notice that

(α + 2λmin) −
(
α − 2μmin

)
= 2

(
λmin + μmin

)
> 0, (3.9)

then we remark that for any α the available β exists. And if λmin and μmin are large, then the
restriction put on β is loose. The bound on δ(α, β) of the convergence rate depends on the
spectrum of C and S and the choice of α and β. Moreover, δ(α, β) is also an upper bound of
the contraction of the ACSCS iteration.

Moreover, from the proof of Theorem 3.2 we can simplify the bound δ(α, β) as

δ
(
α, β

)
= max

(∣∣∣∣
β − λmax

α + λmax

∣∣∣∣,
∣∣∣∣
β − λmin

α + λmin

∣∣∣∣
)
×max

(∣∣∣∣
α − μmax

β + μmax

∣∣∣∣,
∣∣∣∣
α − μmin

β + μmin

∣∣∣∣
)
. (3.10)

In the following lemma, we list some useful relations related to the minimum and
maximum eigenvalues of matrices C and S, which are essential for us to obtain the optimal
parameters α and β and to describe their properties.

Lemma 3.3. Let Sλ = λmin + λmax, Sμ = μmin + μmax and Pλ = λminλmax, Pμ = μminμmax, then the
following relations hold:

μmax
(
Sμ + Sλ

) − (
Pμ − Pλ

)
=
(
μmax + λmin

)(
μmax + λmax

)
, (3.11)

μmin
(
Sμ + Sλ

) − (
Pμ − Pλ

)
=
(
μmin + λmin

)(
μmin + λmax

)
, (3.12)

λmax
(
Sλ + Sμ

) − (
Pλ − Pμ

)
=
(
λmax + μmin

)(
λmax + μmax

)
, (3.13)

λmin
(
Sλ + Sμ

) − (
Pλ − Pμ

)
=
(
λmin + μmin

)(
λmin + μmax

)
, (3.14)

(
Pμ − Pλ

)2 +
(
Sλ + Sμ

)(
SμPλ + SλPμ

)
=
(
λmax + μmin

)(
μmax + λmin

)

× (
λmax + μmax

)(
λmin + μmin

)
.

(3.15)

Proof. The equalities follow from straightforward computation.
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Theorem 3.4. Let A, C, S be the matrices defined in Theorem 3.2 and Sλ, Sμ, Pλ, Pμ be defined as
Lemma 3.3. Then the optimal α∗, β∗ should be

α∗ =

(
Pμ − Pλ

)
+
√(

Pμ − Pλ

)2 +
(
Sμ + Sλ

)(
SμPλ + SλPμ

)

Sμ + Sλ
, (3.16)

β∗ =

(
Pλ − Pμ

)
+
√(

Pμ − Pλ

)2 +
(
Sμ + Sλ

)(
SμPλ + SλPμ

)

Sμ + Sλ
, (3.17)

and they satisfy the relations

μmin < α∗ < μmax, (3.18)

λmin < β∗ < λmax, (3.19)

α∗ − 2μmin < β∗ < α∗ + 2λmin. (3.20)

And the optimal bound is

δ∗(α∗, β∗
)
=

√(
λmax + μmin

)(
μmax + λmin

)
/
(
λmax + μmax

)(
λmin + μmin

) − 1
√(

λmax + μmin
)(
μmax + λmin

)
/
(
λmax + μmax

)(
λmin + μmin

)
+ 1

. (3.21)

Proof. From Theorem 3.2 and (3.8) there exist a β∗ ∈ [λmin, λmax] and α∗ ∈ [μmin, μmax] such
that

n
max
i=1

∣∣∣∣
β − λi
α + λi

∣∣∣∣ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λmax − β

λmax + α
, β ≤ β∗,

β − λmin

α + λmin
, β ≥ β∗,

(3.22)

n
max
i=1

∣∣∣∣
α − μi

β + μi

∣∣∣∣ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μmax − α

μmax + β
, α ≤ α∗,

α − μmin

β + μmin
, α ≥ α∗,

(3.23)

respectively. In order to minimize the bound in (3.10), the following equalities must hold:

β − λmin

α + λmin
=

λmax − β

λmax + α
,

α − μmin

β + μmin
=

μmax − α

μmax + β
.

(3.24)
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By using Sλ = λmax +λmin, Pλ = λmaxλmin, Sμ = μmax +μmin, Pμ = μmaxμmin, the above equalities
can be rewritten as

2
(
αβ − Pλ

)
=
(
α − β

)
Sλ,

2
(
αβ − Pμ

)
=
(
β − α

)
Sμ.

(3.25)

These relations imply that

α − β =
2
(
Pμ − Pλ

)

Sλ + Sμ
, αβ =

SμPλ + SλPμ

Sλ + Sμ
. (3.26)

By putting β′ = −β, the parameters α and β′ will be the roots of the quadratic polynomial

x2 − 2
(
Pμ − Pλ

)

Sμ + Sλ
x − SμPλ + SλPμ

Sμ + Sλ
= 0. (3.27)

Solving this equation we get the parameters α∗ and β∗ given by (3.16) and (3.17), respectively.
These parameters α∗ and β∗ can be considered as optimal parameters if they satisfy the
relations (3.18)–(3.20).

From (3.12), (3.15) and (3.11), (3.15), we have

μmin
(
Sλ + Sμ

) − (
Pμ − Pλ

) ≤
√(

Pμ − Pλ

)2 +
(
Sλ + Sμ

)(
SμPλ + SλPμ

)
, (3.28)

μmax
(
Sλ + Sμ

) − (
Pμ − Pλ

) ≥
√(

Pμ − Pλ

)2 +
(
Sλ + Sμ

)(
SμPλ + SλPμ

)
, (3.29)

respectively. From these inequalities, by the definition of α∗ and simple computation, we get
μmin ≤ α∗ ≤ μmax. By similarity computation, we can also show that λmin ≤ β∗ ≤ λmax. So, the
parameters α∗ and β∗ satisfy the relations (3.18) and (3.19).

Moreover, for the optimal parameter α∗ and β∗, we have

β∗ − α∗ − 2λmin = 2

[(
Pλ − Pμ

) − λmin
(
Sμ + Sλ

)
(
Sμ + Sλ

)
]

= −2
(
λmin + μmin

)(
λmin + μmax

)
(
Sμ + Sλ

) (from (3.14))

< 0.

(3.30)

By similarity computation, we obtain β∗ − α∗ − 2μmin > 0. So, the parameters α∗ and β∗ satisfy
the relation (3.20).

Finally, by denoting

Δ =
√(

Pμ − Pλ

)2 +
(
Sλ + Sμ

)(
SμPλ + SλPμ

)
, (3.31)
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and substituting α∗ and β∗ in (3.10) and using the relations (3.11)–(3.15), we obtain the
optimal bound

δ∗(α∗, β∗
)
=

α∗ − μmin

β∗ + μmin
× β∗ − λmin

α∗ + λmin

=

(
Pμ − Pλ

)
+
√
Δ − μmin

(
Sμ + Sλ

)
(
Pλ − Pμ

)
+
√
Δ + μmin

(
Sμ + Sλ

) ×
(
Pλ − Pμ

)
+
√
Δ − λmin

(
Sμ + Sλ

)
(
Pμ − Pλ

)
+
√
Δ + λmin

(
Sμ + Sλ

)

=

√
Δ − (

μmin + λmin
)(
μmin + λmax

)
√
Δ +

(
μmin + λmin

)(
μmin + λmax

) ×
√
Δ − (

λmin + μmin
)(
λmin + μmax

)
√
Δ +

(
λmin + μmin

)(
λmin + μmax

)

=

(
μmax + λmin

)(
λmax + μmin

) −
√
Δ

(
μmax + λmin

)(
λmax + μmin

)
+
√
Δ

=

√(
λmax + μmin

)(
μmax + λmin

)
/
(
λmax + μmax

)(
λmin + μmin

) − 1
√(

λmax + μmin
) (

μmax + λmin
)
/
(
λmax + μmax

)(
λmin + μmin

)
+ 1

.

(3.32)

Remark 3.5. We remark that if the eigenvalues of matrices C andD contain inΩ = [γmin, γmax],
and we estimate δ(α, β), as [6], by

δ
(
α, β

)
= max

γ∈Ω

(∣∣∣∣
β − γ

α + γ

∣∣∣∣max
γ∈Ω

∣∣∣∣
α − γ

β + γ

∣∣∣∣
)
, (3.33)

then by taking β = α, we obtain

α∗ =
√
γminγmax, (3.34)

δ(α∗) =
γmin + γmax − 2√γminγmax

γmin + γmax + 2√γminγmax
, (3.35)

which are the same as those given in [6] for Hermitian positive definite matrix A.

4. ACSCS Iteration Method for the BTTB Matrices

In this section we extend our method to block-Toeplitz-Toeplitz-block (BTTB)matrices of the
form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A0 A1 · · · Am−1

A1 A0 · · · Am−2
...

. . .
...

Am−1 Am−2 · · · A0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.1)
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with

Aj =

⎛
⎜⎜⎜⎜⎜⎜⎝

aj,0 aj,1 · · · aj,n−1

aj,1 aj,0 · · · aj,n−2
...

. . .
...

aj,n−1 aj,n−2 · · · aj,0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.2)

Similar to the Toeplitz matrix, the BTTB matrix A possesses a splitting [11]:

A = Cc + Cs + Sc + Ss, (4.3)

where Cc is a block-circulant-circulant-block (BCCB) matrix, Cs is a block-circulant-skew-
circulant-block (BCSB) matrix, Sc is a block-skew-circulant-circulant-block (BSCB) matrix,
and Ss is a block-skew-circulant-skew-circulant block (BSSB) matrix. We note that the
matrices Cc, Cs, Sc, and Ss can be diagonalized by F ⊗F, F ⊗ F̂, F̂ ⊗F, and F̂ ⊗ F̂, respectively.
Therefore, the systems of linear equations with coefficient matrices (α1,1I + Cc), (α1,2I +
Cs), (α2,1I + Sc), and (α2,2I + Ss), where αi,j for i, j = 1, 2 are positive constants, can be solved
efficiently using FFTs. The total number of operations required for each step of the method is
O(nm log(nm)) where nm is the size of the BTTB matrix A. Based on the splitting of A given
in (4.3), the ACSCS iteration is as follows.

The ACSCS iteration method for BTTB matrix: given an initial guess x(0), for k =
0, 1, 2, . . ., until x(k) converges, compute

(α1,1I + Cc)x(k+1/4) = (α1,1I − Cs − Sc − Ss)x(k) + b,

(α1,2I + Cs)x(k+2/4) = (α1,2I − Cc − Sc − Ss)x(k+1/4) + b,

(α2,1I + Sc)x(k+3/4) = (α2,2I − Ss − Cc − Cs)x(k+2/4) + b,

(α2,2I + Ss)x(k+1) = (α2,2I − Sc − Cc − Cs)x(k+3/4) + b,

(4.4)

where αi,j , i, j = 1, 2 are given positive constants.
In the sequel, we need the following definition and results.

Definition 4.1 (see [12]). A splitting A = M − N is called P -regular if MH + N is Hermitian
positive definite.

Theorem 4.2 (see [13]). Let A be Hermitian positive definite. Then A = M − N is a P -regular
splitting if and only if ‖M−1N‖A < 1.

Lemma 4.3 (see [14]). Suppose A,B ∈ C
n×n be two Hermitian matrices, then

λmax(A + B) ≤ λmax(A) + λmax(B),

λmin(A + B) ≥ λmin(A) + λmin(B),
(4.5)
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where λmin(X) and λmax(X) denote the minimum and the maximum eigenvalues of matrix X,
respectively.

Now we give the main results as follows.

Theorem 4.4. Let A be a Hermitian positive definite BTTB matrix, and Cc, Cs, Sc, and Ss be its
BCCB, BCSB, BSCB, and BSSB parts, and αi,j , i, j = 1, 2 be positive constants. Then the iteration
matrixM of the ACSCS method for BTTB matrices is

M = (α2,2I + Ss)−1(α2,2I − Sc − Cc − Cs)(α2,1I + Sc)−1(α2,1I − Ss − Cc − Cs)

×(α1,2I + Cs)−1(α1,2I − Cc − Sc − Ss)(α1,1I + Cc)−1(α1,1I − Cs − Sc − Ss).
(4.6)

And if

α1,1 >
λmax(Cs) + λmax(Sc) + λmax(Ss) − λmin(Cc)

2
(≡ α̃1,1),

α1,2 >
λmax(Cc) + λmax(Sc) + λmax(Ss) − λmin(Cs)

2
(≡ α̃1,2),

α2,1 >
λmax(Ss) + λmax(Cc) + λmax(Cs) − λmin(Sc)

2
(≡ α̃2,1),

α2,2 >
λmax(Sc) + λmax(Cc) + λmax(Cs) − λmin(Ss)

2
(≡ α̃2,2),

(4.7)

then the spectral radius ρ(M) < 1, and the ACSCS iteration converges to the unique solution x∗ ∈ C
n

of the system of linear equations (1.1) for all initial vectors x(0) ∈ C
n.

Proof. By the definitions of BCCB, BCSB, BSCB, and BSSB parts of A, the matrices
Cc, Cs, Sc, and Ss are Hermitian. Let us consider the Hermitian matrices

M1 = α1,1I + Cc, N1 = α1,1I − Cs − Sc − Ss,

M2 = α1,2I + Cs, N2 = α1,2I − Cc − Sc − Ss,

M3 = α2,1I + Sc, N3 = α2,1I − Ss − Cc − Cs,

M4 = α2,2I + Ss, N4 = α2,2I − Sc − Cc − Cs.

(4.8)

Since A is Hermitian positive definite, it follows that

Mi −Ni � 0, for i = 1, 2, 3, 4. (4.9)

By the assumptions (4.7) and Lemma 4.3, we have also

Mi +Ni � 0, for i = 1, 2, 3, 4. (4.10)



12 Advances in Numerical Analysis

The relations (4.9) and (4.10) imply that Mi � 0, for i = 1, 2, 3, 4. So, the matrices Mi � 0, for
i = 1, 2, 3, 4, are nonsingular and we get (4.6). In addition, the splittings A = Mi − Ni, i =
1, 2, 3, 4 are P -regular and by Theorem 4.2, we have

∥∥∥M−1
i Ni

∥∥∥
A
< 1, for i = 1, 2, 3, 4. (4.11)

Finally, by using (4.11), we can obtain

‖M‖A ≤
∥∥∥M−1

1 N1

∥∥∥
A

∥∥∥M−1
2 N2

∥∥∥
A

∥∥∥M−1
3 N3

∥∥∥
A

∥∥∥M−1
4 N4

∥∥∥
A
< 1, (4.12)

which completes the proof.

5. Numerical Experiments

In this section, we compare the ACSCS method with CSCS and CG methods for 1D and
2D Toeplitz problems. We used the vector of all ones for the right-hand side vector b. All
tests are started from the zero vector, performed in MATLAB 7.6 with double precision, and
terminated when

∥∥r(k)
∥∥
2∥∥r(0)

∥∥
2

≤ 10−7, (5.1)

or when the number of iterations is over 1000. This case is denoted by the symbol “−”. Here
r(k) is the residual vector of the system of linear equation (1.1) at the current iterate x(k), and
r(0) is the initial one.

For 1D Toeplitz problems (Examples 5.1–5.3), our comparisons are done for the
number of iterations of the CG, CSCS, and ACSCS methods (denoted by “IT”) and the
elapsed CPU time (denoted by “CPU”). All numerical results are performed for n =
16, 32, 64, 128, 256, 512, 1024. The corresponding numerical results are listed in Tables 1–4.
In these tables λmin and μmin represent the minimum eigenvalue of matrices C and S,
respectively. Note that the CPU time in these tables does not account those for computing
the iteration parameters. For ACSCS method, α∗ and β∗ are computed by (3.16) and (3.17),
respectively. And for CSCS method, α∗ is computed by (3.34).

Example 5.1 (see [10]). In this example An is symmetric positive definite Toeplitz matrix,

ak =

⎧
⎪⎪⎨

⎪⎪⎩

4π2(−1)k
k2

− 24(−1)k
k4

, k /= 0,

1 +
π5

5
, k = 0

(5.2)

with generating function f(θ) = θ4 + 1, θ ∈ [−π,π]. Numerical results for this example are
listed in Table 1.
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Table 1: Numerical results of Example 5.1.

n λmin μmin
IT CPU

CG CSCS ACSCS CG CSCS ACSCS
16 0.4183 0.5825 8 35 37 0.0077 0.0101 0.0095
32 0.4801 0.5199 20 39 39 0.0085 0.0106 0.0100
64 0.4951 0.5049 37 40 39 0.0098 0.0108 0.0106
128 0.4988 0.5012 55 40 40 0.0108 0.0115 0.0128
256 0.4997 0.5003 67 40 40 0.0138 0.0142 0.0144
512 0.4991 0.5001 70 40 40 0.0189 0.0203 0.0205
1024 0.5000 0.5000 71 40 40 0.0283 0.0316 0.0292

Table 2: Numerical results of Example 5.2.

n λmin μmin
IT CPU

CG CSCS ACSCS CG CSCS ACSCS
16 0.4478 0.4177 12 8 8 0.0074 0.0079 0.0079
32 0.4419 0.4247 15 9 9 0.0076 0.0087 0.0084
64 0.4377 0.4292 17 10 10 0.0079 0.0090 0.0091
128 0.4355 0.4315 19 11 11 0.0083 0.0094 0.0093
256 0.4344 0.4325 20 12 12 0.0095 0.0106 0.0103
512 0.4339 0.4330 21 13 13 0.0101 0.0111 0.0111
1024 0.4337 0.4333 22 14 14 0.0148 0.0161 0.0150

Table 3: Numerical results of Example 5.3 for β = 10, γ = 0.5.

n λmin μmin
IT CPU

CG CSCS ACSCS CG CSCS ACSCS
16 1.0621 0.1280 8 20 10 0.0072 0.0095 0.0080
32 0.7746 −0.0251 16 — 13 0.0077 — 0.0085
64 0.6285 −0.1005 23 — 15 0.0082 — 0.0090
128 0.5169 −0.1379 28 — 18 0.0096 — 0.0096
256 0.4410 0.1485 32 20 15 0.0107 0.0117 0.0100
512 0.3841 0.1207 34 23 16 0.0128 0.0139 0.0125
1024 0.3444 0.1067 35 24 17 0.0173 0.0245 0.0185

Table 4: Numerical results of Example 5.3 for β = 10, γ = 0.1.

n λmin μmin
IT CPU

CG CSCS ACSCS CG CSCS ACSCS
16 0.8963 −0.0771 8 — 12 0.0077 — 0.0082
32 0.5967 −0.2367 16 — 18 0.0082 — 0.0090
64 0.4444 0.1194 26 22 16 0.0090 0.0092 0.0093
128 0.3282 0.0025 36 — 20 0.0102 — 0.0105
256 0.2490 0.0473 47 — 27 0.0123 — 0.0130
512 0.1898 −0.0012 59 — 29 0.0170 — 0.0171
1024 0.1484 0.0125 68 — 31 0.0279 — 0.0297
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Example 5.2 (see [15]). Let An be a Hermitian positive definite Toeplitz matrix,

ak =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 +
√−1

(1 + k)1.1
, k > 0,

2, k = 0,

a−k, k < 0.

(5.3)

The associated generating function is f(θ) = 2
∑∞

k=0(sin(kθ) + cos(kθ))/(1 + k)1.1, θ ∈ [0, 2π].
Numerical results of this example are presented in Table 2.

Example 5.3 (see [10]). In this example An is Hermitian positive definite Toeplitz matrix,

ak =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−√−1(β − γ
)(

1 + (−1)k
)
,

2πk
k > 0,

(
β + γ

)
, k = 0,

a−k, k < 0

(5.4)

with generating function

f{β,γ}(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

β − γ

π
θ + β, −π ≤ θ < 0,

β − γ

π
θ + γ, 0 < θ ≤ π,

(5.5)

where β and γ are the maximum and minimum values of f{β,γ} on [−π,π], respectively. In
Tables 3 and 4, numerical results are reported for β = 10, γ = 0.5 and β = 10, γ = 0.1,
respectively.

In the following, we summarize the observation from Tables 1–4. In all cases, in
terms of CPU time needed for convergence, the ACSCS converges at the same rate that
the CG method converges. However, the number of ACSCS iterations is less than that of
CG iterations required for convergence. The convergence behavior of ACSCS method, in
terms of the number of iterations and CPU time needed for convergence, is similar to that
of CSCS method when λmin and μmin are positive and not too small (all the cases in Tables 1
and 2). Moreover, we observe that, when λmin and μmin are too small or negative (the cases
n = 32, 64, 128 in Table 3 and the cases n/= 64 in Table 4), the ACSCS method converges at
the same rate that the CG converges, but the CSCS method does not converge. These results
imply that the computational efficiency of the ACSCS iteration method is similar to that of
the CG method and is higher than that of the CSCS iterations.

For 2D Toeplitz problems, we tested three problems of the form given in (4.1) with
the diagonals of the blocks Aj . The diagonals of Aj are given by the generating sequences
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Table 5: Numerical results of 2D examples.

n
Sequence (a) Sequence (b) Sequence (c)

CG ACSCS CSCS CG ACSCS CSCS CG ACSCS CSCS
8 15 35 42 15 30 36 10 17 19
16 28 50 57 27 43 49 16 25 28
32 37 60 65 35 51 56 23 34 37
64 45 64 68 41 54 58 30 41 44
128 49 63 66 46 54 56 37 46 49

Table 6: Numerical results of 2D examples for ACSCS method with α1,1 = 0.5(< α̃1,1).

n
Sequence (a) Sequence (b) Sequence (c)

IT IT IT
8 15 14 13
16 15 15 14
32 17 17 15
64 20 20 16
128 22 22 17

Table 7: Numerical results of 2D examples for CSCS method with optimal α.

n
Sequence (a) Sequence (b) Sequence (c)

α∗ IT α∗ IT α∗ IT
8 2.48 26 2.31 23 1.18 15
16 3.75 35 3.53 31 1.79 20
32 5.14 42 4.65 36 2.41 25
64 6.33 44 5.70 39 3.17 30
128 7.39 44 6.74 39 3.93 34

(see [10])

(a) aj,i = 1/(j + 1)(|i| + 1)1+.1(j+1), j ≥ 0, i = 0,±1,±2, . . .,
(b) aj,i = 1/(j + 1)1.1(|i| + 1)1+.1(j+1), j ≥ 0, i = 0,±1,±2, . . .,
(c) aj,i = 1/(j + 1)2.1 + (|i| + 1)2.1, j ≥ 0, i = 0,±1,±2, . . ..

The generating sequences (b) and (c) are absolutely summable while (a) is not. Our
comparisons are done for the number of iterations of the CG, CSCS, and ACSCS methods
(denoted by “IT”). All numerical results are performed for n = 16, 32, 64, 128. The corre-
sponding numerical results are listed in Table 5. For ACSCS method, parameters αi,j = α̃i,j ,
i, j = 1, 2 are used. For CSCS method, we used α = max2i,j=1{αi,j}. Table 5 shows that, in all
cases, the number of ACSCS iterations required for convergence is less than that of CSCS
method and more than that of CG method. We mention that the relations (4.7) are sufficient
conditions for convergence of ACSCS iteration for BTTBmatrices. The numerical experiments
show that the convergence behavior of ACSCS method, in terms of the number of iterations
needed for convergence, is better than that of CG and CSCS methods if one of the parameters
αi,j , i, j = 1, 2 is chosen less than the corresponding lower bound α̃i,j given in Theorem 4.2.
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Table 6 presents the results which are obtained for the ACSCS method with α1,1 = 0.5(< α̃1,1),
α1,2 = α̃1,2, α2,1 = α̃2,1, and α2,2 = α̃2,2. Table 7 presents the results obtained for CSCS method
with the optimal parameter α, obtained computationally by trial and error. As we observe,
from Tables 5–7, the number of ACSCS iterations required for convergence is less than that of
CG and CSCS methods.

These results imply that the computational efficiency of the ACSCS iteration method
is similar to that of the CG method and is higher than that of the CSCS iterations.

6. Conclusion

In this paper, a new iterationmethod for the numerical solution of Hermitian positive definite
Toeplitz systems of linear equations has been described. This method, which called ACSCS
method, is a two- (four-) parameter generation of the CSCS of Ng for 1D (2D) problems and is
based on the circulant and the skew circulant splitting of the Toeplitz matrix. We theoretically
studied the convergence properties of the ACSCS method. Moreover, the contraction factor
of the ACSCS iteration and its optimal parameters are derived. Theoretical considerations
and numerical examples indicate that the splitting method is extremely effective when
the generation function is positive. Numerical results also showed that the computational
efficiency of the ACSCS iteration method is similar to that of the CG method and is higher
than that of the CSCS iteration method.
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