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Globalization, product proliferation, and fast product innovation have significantly increased the
complexities of supply chains in many industries. One of the most important advancements
of supply chain management in recent years is the development of models and methodologies
for controlling inventory in general supply networks under uncertainty and their widefspread
applications to industry. These developments are based on three generic methods: the queueing-
inventory method, the lead-time demand method and the flow-unit method. In this paper,
we compare and contrast these methods by discussing their strengths and weaknesses, their
differences and connections, and showing how to apply them systematically to characterize and
evaluate various supply networks with different supply processes, inventory policies, and demand
processes. Our objective is to forge links among research strands on different methods and various
network topologies so as to develop unified methodologies.

1. Introduction

Many real-world supply chains, such as those found in automotive, electronics, and con-
sumer packaged goods industries, consist of large-scale assembly and distribution operations
with geographically dispersed facilities. Clearly, many of these supply chains support the
production and distribution of multiple end-products which are assembled from hundreds
or thousands of subsystems and components with widely varying lead times and costs.

One challenge in all these supply chains is the efficient management of inventory in a
complex network of facilities and products with stochastic demand, random supply and high
inventory and transportation costs. This requires one to specify the inventory policy for each
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Table 1: Classification of the literature.

1 Single-period models or models with zero lead times Models with positive lead times
2 Supply chains with capacity limits Uncapacitated supply chains
3 Optimal policy characterization Policy evaluation and optimization
4 Guaranteed service time models Stochastic service time models

product at each facility so as to minimize the system-wide inventory cost subject to customer
service requirements. For many years, both practitioners and academicians have recognized
the potential benefit of effective inventory control in such networks. In fact, the literature on
multi-echelon inventory control can be dated back to the 1950s. However, it is only in the last
few years that some of these benefits have been realized, see, for example, Lee and Billington
[1], Graves and Willems [2], and Lin et al. [3]. Three reasons have contributed to this trend:

(1) the availability of data, not only on network structure and bill of materials (BOMs),
but also on demand processes, transportation lead times and manufacturing cycle
times, and so forth;

(2) industry that is searching for scientific methods for inventory management that
help to cope with long lead times and the increase in customer service expectations;

(3) recent developments in modeling and algorithms for the control of general struc-
ture multi-echelon inventory systems.

These developments are built on three generic methods: the queueing-inventory meth-
od, the lead-time demand method, and the flow-unit method. While the first two methods
take a snapshot of the system and focus on quantities (e.g., backorders and on-hand inven-
tory), the third method follows the movement of each flow unit and focuses on times (e.g.,
stockout delays and inventory holding times). This paper discusses the strengths and weak-
nesses of these methods, differences and connections among these methods, and dem-
onstrates their abilities in handling various network topologies, inventory policies, and dem-
and processes.

1.1. Classification of Literature

To position our survey in perspective, we classify the related literature by several dimensions
(see Table 1).

Models with Zero Lead Times versus Models with Positive Lead Times

Models with zero lead times can be used to analyze strategic issues as well as tactical or
operational issues when the lead times can be ignored, see, for example, the celebrated
Newsvendor model [4] and some mathematical-programming-based models [5]. Models
with positive lead times, such as the multi-echelon inventory models, explicitly consider lead
times and even uncertain lead times.

Capacitated Supply Chains versus Uncapacitated Supply Chains

Supply chain models with limited production capacity received significant attention in the
literature. We refer to Kapuscinski and Tayur [6] for a review of multistage single-product
supply chains, to Sox et al. [7] for single stage multiproduct systems, and to Shapiro [5] for
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mathematical programming models of production-inventory systems. In uncapacitated sup-
ply chains, we typically assume a positive exogenous “transit time” for processing a job,
where the “transit time” is defined as the total time it takes from job inception to job com-
pletion. This transit time may represent manufacturing cycle time, transportation lead time,
or warehouse receiving and processing times. The literature on uncapacitated supply chains
can be further classified into two categories: i.i.d. or sequential transit time. In the former, the
transit times are i.i.d. random variables; while, in the latter, the transit times are sequential in
the sense that jobs are completed in the same sequence as they are released.

Optimal Policy Characterization versus Policy Evaluation and Optimization

The focus of the former is on identification and characterization of the structure of the optimal
inventory policy. We refer to Federgruen [8], Zipkin [9], and Porteus [10] for excellent
reviews. Unfortunately, the optimal policy is not known for general supply chains except for
some special cases. When the optimal policy is unknown or known but too complex to im-
plement, an alternative approach is to evaluate and optimize simple heuristic policies which
are optimal in special cases but not in general.

Guaranteed Service Time Model versus Stochastic Service Time Model

In the former, it is assumed that in case of stockout, each stage has resources other than the
on-hand inventory (such as slack capacity and expediting) to satisfy demand so that the
committed service times can always be guaranteed. In the latter, it is assumed that in case of
stockout, each stage fully backorders the unsatisfied demand and fills the demand until on-
hand inventory becomes available. Thus, the delay due to stockout (i.e., the stockout delay) is
random, and the committed service times cannot be 100% guaranteed. A recent comparison
between the two models is provided by Graves and Willems [11].

1.2. The Scope and Objective of the Survey

This survey focuses on the stochastic service time model for uncapacitated supply chains.
Because we are interested in general supply networks, we focus on policy evaluation and
optimization. Given a certain class of simple but effective inventory policies, the specific
problem that we address in this survey is how to characterize and evaluate system perform-
ance in general structure supply chains. The challenge arises from the fact that the inven-
tory policy controlling one product at one facility may have an impact on all other pro-
ducts/facilities in the network either directly or indirectly.

For guaranteed service time models, Graves and Willems [11] summarize recent
development and demonstrate its potential applications in industry-size problems. These
developments are based on the lead-time demand method. For the stochastic service time
model, Hadley and Whitin [12] provide the first comprehensive review for single-stage
systems. Chen [13] reviews the lead-time demandmethod in serial supply chains, and de Kok
and Fransoo [14] discuss some of its applications in more general supply chains. Song and
Zipkin [15] provide an in-depth review of the literature on assembly systems, while Axsater
[16] presents an excellent survey for serial and distribution systems. Zipkin [9] presents
an excellent and comprehensive review for the queueing-inventory method in single-stage
systems and the lead-time demandmethod in single-stage, serial, pure distribution, and pure
assembly systems.
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The objective of this paper is to compare the effectiveness of queueing-inventory
method, the lead-time demand method, and the flow-unit method in supply chains along the
following dimensions: network topology, inventory policy, and demand process. Specifically,
we discuss how to apply each method systematically to evaluate various network topologies
with either i.i.d. or sequential transit times, either base stock or batch ordering inventory
policy, and either unit or batch demand process. The network topology considered includes
single-stage (see Section 2), serial (Section 3.1), pure distribution (Section 3.2), pure assembly
and 2-level general networks (Section 3.3), and tree and more general networks (Section 3.4).
For each network topology, we discuss the three methods side by side and address questions
such as, how are different stages connected and dependent? How does each method work?
How are the results/methods connected to those of single-stage systems and systems of
other topologies? What are the weakness and strength of each method? And what are the
differences and connections among the methods? Some open questions are summarized in
Section 4.

While some of the materials covered here appeared in previous reviews, we present
these materials (together with recent results) in a coherent way by building connections
among different methods and establishing uniform treatment of each method across different
network topologies. We also shed some lights on the strengths and limitations of each meth-
od.

2. Single-Stage Systems

In this section, we consider single-stage systems and review the key assumptions and results
of the three generic methods. We show how each method can handle different inventory
policies, transit times, and demand processes. Following convention, we define a stage (a
node, equivalently) to be a unique combination of a facility and a product, where the facility
refers to a processor plus a storage where the latter carries inventory processed by the former.

Inventory Policies

In this paper, we focus on either continuous-review or periodic-review base-stock and batch
ordering policies. For any stage in a supply chain, we define inventory position to be the sum
of its on-hand inventory and outstanding orders subtracting backorders. Under continuous
review, a base-stock policy with base-stock level s works as follows: whenever inventory
position drops below s, order up to s. A batch-ordering policy with reorder point r and batch
sizeQworks as follows: whenever the inventory position drops to or below the reorder point
r, an order of size nQ is placed to raise the inventory position up to the smallest integer above
r. Clearly, a base-stock policy is a special case of the batch-ordering policy with a batch size
Q = 1. Continuous-review base-stock policies are often used for expensive products facing
low-volume but highly uncertain demand (e.g., service parts). Batch-ordering policies are
often used where economies of scale in production and transportation cannot be ignored
(commodities).

Under periodic review, the base-stock and batch ordering policies work in similar
ways as their continuous-review counterparts except that inventory is reviewed only once
in one period. The sequence of events is as follows [12]. At the beginning of a review period,
the replenishment is received, the inventory is reviewed, and then an order decision is made.
Demand arrives during the period. At the end of the period, costs are calculated. Some work
in the literature assumes that all demands arrive at the end of the period; see, for example,
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Zipkin [9, Chapter 9]. Under this assumption, a single-stage periodic-review inventory
system can be viewed as a special case of its continuous-review counterpart with con-
stant demand interarrival times and batch demand sizes. In this survey, we assume demand
arrives during the period unless otherwise mentioned.

Transit Times

If the transit times (Section 1.1) are sequential and stochastic, namely, “stochastic sequential
transit times,” then they must be dependent over consecutive orders. Kaplan [17] presents a
discrete-timemodel for the stochastic sequential transit time in a periodic-review single-stage
system, where the evolution of the outstanding order vector is modeled by a Markov chain.
See Song and Zipkin [18] for a generalization of the model. For continuous-review single-
stage systems, Zipkin [19] presents a continuous-time model for stochastic and sequential
transit times.

Definition 2.1. The exogenous, stochastic, and sequential transit times are defined as follows:
there exits an exogenous continuous-time stochastic process {U(t)} that is stationary and
ergodic with finite limiting moments, such that the sample path of {U(t)} is left-continuous,
the transit time at t, L(t) = U(t), and t + L(t) is nondecreasing.

Svoronos and Zipkin [20] apply this model to multistage supply chain with two
additional assumptions: (1) the transit times are independent of the system state, for example,
demand and order placement and (2) the transit times are independent across stages.

In practice, the transit times can be either parallel or sequential or somewhere in
between. Many production and transportation processes in the real world are subject to
random exogenous events. Indeed, the orders placed by the systems under consideration
may be a negligible portion of their total workload. Thus, the transit times are exogenous and
should be estimated from data. While in some practical cases, the sequential transit time
model may be more realistic than the i.i.d. transit time model [20], in cases such as repairing
and maintenance, the i.i.d. transit time model may be a better approximation [21].

Demand Processes

Both unit demand and batch demand processes are studied in the literature. On arrival of a
batch demand, one shall address questions such as: should all units of the demand be sat-
isfied together (unsplit demand)? Or should each demand unit be satisfied separately (split
demand)? For a supply system (either production or transportation) processing a job of
multiple units, one needs to address questions like: is the job processed and replenished as
an individable entity (unsplit supply)? Or is each unit processed and replenished separately
(split supply)? If the former is true, does the transit time depend on job size? See Zipkin [9]
for more discussions on these questions. While the case of split demand is easier to handle
and thus widely studied in the literature, the case of unsplit demand is much more difficult;
see Section 2.1 for more details.

The Basic Assumption

For the ease of exposition, we make the following assumption throughout the survey unless
otherwise mentioned.
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Assumption 2.2. The system is under continuous review; unsatisfied demands are fully back-
ordered; outside suppliers have ample stock; the transit times are exogenous either i.i.d. or
sequential; demand is satisfied on a first-come first-serve (FCFS) basis; demand can be split;
supply cannot be split; transit times do not depend on job sizes.

Throughout the survey, we use the following notations: a+ = max{a, 0}, a− =
max{−a, 0}. E(·), V (·) are themean and variance of a random variable, respectively. If random
variables X and Y are independent, we denote X ⊥ Y . We consider base-stock policies with
s ≥ 0 and batch-ordering policies with r ≥ 0 unless otherwise mentioned.

We define the basic model for single-stage systems as follows: inventory is controlled
by a base-stock policy, demand follows Poisson process with rate λ, and the transit time (i.e.,
lead time) L is constant. In the following subsections, we first discuss the methods in the basic
model and then extend the results to more general demand process, inventory policies, and
supply process.

2.1. The Queueing-Inventory Method

Let {IO(t), t ≥ 0} be the outstanding order process, {IP(t), t ≥ 0} the inventory position
process, and {IL(t), t ≥ 0} the process of net inventory (on-hand minus backorder). Define
{I(t), t ≥ 0} ({B(t), t ≥ 0}) to be the process of on-hand inventory (backorder, resp.). For
appropriate initial conditions, the following equations hold under Assumption 2.2,

IO(t) + IL(t) = IP(t), t ≥ 0, (2.1)

I(t) = IL(t)+, (2.2)

B(t) = IL(t)−. (2.3)

For unsplit demand, (2.2)-(2.3) do not hold since I(t) > 0 and B(t) > 0 can hold simultaneous-
ly.

Note that IO(t) is the number of jobs in the supply process. The queueing-inven-
tory method characterizes the probability distribution of IO(t) by identifying the appropriate
queueing analogue. One can follow a 3-step procedure to characterize the system perfor-
mance: (1) the distribution of IP(t), (2) the distribution of IO(t), and (3) the dependence of
IO(t) and IP(t). We focus on steady-state analysis and define IO = limt→∞IO(t). The same
notational rule applies to IL, IP , and I and B.

Clearly, IP = s for base-stock policies. For batch-ordering policies, the distribution of
IP only depends on the demand process. IP is uniformly distributed in {r +1, r +2, . . . , r +Q}
for renewal batch demand under mild regularity assumptions [22]. See Zipkin [19] for a
discussion ofmore general demand processes. The distribution of IO depends on the demand
process, the inventory policy, and the supply system (see discussions below). For batch-
ordering policies, IP depends on IO. Intuitively, the lower the IP , the longer the time since
the last order, and therefore the lower the IO.

i.i.d. Transit Time

Consider first the basic model with constant L, the queueing analogue is aM/D/∞ queue. By
Palm theorem [23], IO follows Poisson (λL) distribution. If L is stochastic, then the queueing
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analogue is aM/G/∞ queue and IO follows Poisson (λE(L)) distribution. Because demand
is satisfied on a FCFS basis, the stockout delay differs from L even at s = 0; see Muckstadt [24,
page 96] for an exact analysis. For renewal unit demand, the queueing analogue is a G/G/∞
queue. For compound Poisson demand, then the queueing analogue is a MY/G/∞ queue
where {Yn} is the demand size process. The distribution of IO is compound Poisson under
Assumption 2.2.

Consider the basic model but with a batch ordering policy, the queueing analogue is
a ErQ/D/∞ queue where Er stands for Erlang interarrival times. See Galliher et al. [25] for
an exact analysis. For batch demand processes, tractable approximations become appealing.
One can first assume IP ⊥ IO and then approximate the distribution of IO by results from
systems with base-stock policy and batch-demand processes [9, Section 7.2.4].

Sequential Transit Time

Consider the basic model with sequential transit times (Definition 2.1). Let D(t1, t2] be the
demand during time interval (t1, t2], where t1 ≤ t2, and let D(∞ | L] = limt→∞D(t − L, t]. By
Svoronos and Zipkin [20]:

Proposition 2.3. IO has the same distribution as D(∞ | L].

Proof. See the appendix for a proof.

D(t − L, t] (D(∞ | L]) is called the lead-time demand. If demand follows compound
Poisson process, Proposition 2.3 also holds under Assumption 2.2.

For the basic model with constant transit time, one can obtain Proposition 2.3 by an
alternative approach [9]. At time t, because all orders placed on or before t−L are replenished
while all orders placed after t−L are still in transit, IO(t) equals to the number of orders placed
during (t−L, t]. Due to the Poisson demand and the continuous-review base-stock policy, one
must have

IO(t) = D(t − L, t]. (2.4)

Consider the batch ordering policy in the basic model with sequential transit times
(Definition 2.1). Equation (2.4) does not hold because IO(t) is clearly not the demand during
(t − L, t]. In addition, IO(t) depends on IP(t). Exact analysis of these systems using the
queueing-inventory method is rare. Fortunately, such systems can be easily handled by the
lead-time demand method and the flow-unit method.

2.2. The Lead-Time Demand Method

Consider the basic model. Observe that at time t, the system receives all orders placed on or
before t − L but none of the orders placed after t − L, then

IL(t) = IP(t − L) −D(t − L, t]. (2.5)

Equations (2.2)-(2.3) remain true here. Although (2.5) looks quite similar to (2.1) and
(2.4), they follow completely different logic. Indeed, IL and IP are measured at different
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times (t or t −L) in the lead-time demand method rather than the same time (t) in the queue-
ing-inventory method.

Let {IP(tn)} be the embedded discrete time Markov chain (DTMC) formed by ob-
serving IP(t) right after each ordering decision (at tn). Zipkin [19] shows the following.

Proposition 2.4. Consider a single-stage system. If (i) the inventory policy depends only on in-
ventory position, (ii) the demand sizes are i.i.d. random variables independent of the arrival epochs,
(iii) {IP(tn), n ≥ 0} is irreducible, aperiodic, and positive recurrent, (iv) the arrival epochs form
a counting process which is either stationary or converges to a stationary process in distribution as
t → ∞, and (v) the transit times are sequential and exogenous (Definition 2.1), then

(1) IP has the same distribution as {IP(tn)} as n → ∞,

(2) IL = IP −D(∞ | L],
(3) IP ⊥ D(∞ | L).

The inventory policy includes the batch-ordering policy and the (s, S) policy, and
the demand process includes renewal batch process and the superposition of independent
renewal batch processes [19]. We point out that for (2.5) and Proposition 2.4 to hold, the
assumptions of sequential transit time, FCFS rule, and split demand are necessary.

In the basic model, the stockout delay, X, for a demand at t, satisfies [26]

Pr{X ≤ x} = Pr{D(t − L + x, t) < s}, for 0 ≤ x ≤ L. (2.6)

To see this, note that, at t + x, all orders triggered by demand on or prior to t + x − L are
replenished. Because the demand at t has priority over demand after t, the demand at t is
satisfied on or before t + x if and only if the orders triggered by demand during (t + x − L, t)
are less than s. By the same logic, for compound Poisson demand, the stockout delay for the
kth unit of a demand, X(k), is given by

Pr{X(k) ≤ x} = Pr{D(t − L + x, t) ≤ s − k}, for 0 ≤ x ≤ L. (2.7)

Consider now the basic model under periodic review. Let IP(n) be the inventory
position at the beginning of period n after order decision is made and IL(n) (I(n) and B(n))
the net inventory (inventory on-hand and backorder) at the end of period n after demand is
realized. Let L here be an integer multiple of a review period and D[n,m] the demand from
period n tom inclusive. According to the sequence of events (see beginning of Section 2), (2.5)
and (2.2)-(2.3) become IL(n) = IP(n−L) −D[n−L, n], I(n) = IL(n)+, and B(n) = IL(n)−,
respectively. By Hausman et al. [27], for x ≤ L,

Pr
{
all demand in period n is satisfied within x periods

}
= Pr{D[n − L + x, n] ≤ s}.

(2.8)

2.3. The Flow-Unit Method

For the basic model, suppose a demand arrives at time t, then the order triggered by this
demand will satisfy the sth demand after t [28, 29]. Alternatively, the corresponding order
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that satisfies the demand at time t is placed at t − T(s), where T(s) is determined by starting
at time t, counting backwards until the number of demand arrivals reaches s [30]. We call
the former the “forward method” because, for each order, it looks forward to identify the
corresponding demand. We call the latter the “backward method” because, for each demand,
it looks backward to identify the corresponding order.

Both methods yield the same result for single-stage systems. For general networks, the
two methods may take different angles, and thus one can be more convenient than the other
(Section 3). We focus on the backward method unless otherwise mentioned. The stockout
delay, X, for the demand at time t and the holding time,W , for the product that satisfies this
demand are given by

X = (L − T(s))+, (2.9)

W = (T(s) − L)+. (2.10)

Unlike the queueing-inventory method and the lead-time demand method, the flow-
unit method focuses on the stockout delay (the inventory holding time) associated with
each demand (product) rather than the on-hand inventory and backorders at a certain time.
Equations (2.9)-(2.10) hold also for stochastic sequential lead times (Definition 2.1) and for
any point unit-demand process [31]. We should point out that the assumptions of sequential
lead time and FCFS rule are necessary for (2.9)-(2.10). By (2.9), the distribution of the stockout
delay, X, is given by,

Pr{X ≤ x} = Pr{L − T(s) ≤ x}, for 0 ≤ x ≤ L. (2.11)

For compound Poisson demand, different units in one demand face statistically different
stockout delays [29]. Consider the kth unit of a demand at t, the backorder delay, X(k), and
the inventory holding time,W(k), for the corresponding item that satisfies this unit are

X(k) = [L − T(J(k))]+, (2.12)

W(k) = [T(J(k)) − L]+, (2.13)

where J(k) is obtained by starting at time t, counting backwards demand arrivals until the
cumulative demand becomes greater than s − k in the first time. See Forsberg [32] and Zhao
[33] for extended discussions.

A comparison between (2.6)-(2.7) and (2.11)-(2.12) demonstrates the connections
between the lead-time demand method and the flow-unit method. Because D(t − L, t) is the
cumulative demand and T(s) is the sum of interarrival times, the event {T(s) ≥ L − x} is
equivalent to the event {D(t − L + x, t) < s} for unit demand [34, page 406]. Similarly, the
event {T(J(k)) ≥ L − x} is equivalent to the event {D(t − L + x, t) ≤ s − k} for batch demand.

For the basic model under periodic review, if demand arrives at the end of each period,
then the system is a special case of its continuous-review counterpart [33]. If demand arrives
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during a period, the flow-unit method also applies, see, for example, Axsater [35]. For the
basic model with batch ordering policy, by Axsater [36],

X = (L − T(S))+,
W = (T(S) − L)+,

(2.14)

where S is a random integer uniformly distributed in {r + 1, r + 2, . . . , r + Q}. See also Zhao
and Simchi-Levi [30]. For the basic model with both batch ordering policy and compound
Poisson demand, the analysis is more involved but still tractable, see Axsater [37].

3. Multistage Supply Chains

Multistage supply chains differ from single-stage systems because the lead time at one stage
depends on other stages’ stock levels. For a stage, the lead time is the total time needed
from order placement to order delivery. Clearly, lead times include but are not limited to
the “transit times.”

Notation 1. Consider a supply chain under Assumption 2.2 with node setN and arc setA. An
arc refers to a pair of nodes with direct supply-demand relationship. We define the following.

(i) {IOj(t), t ≥ 0}: the outstanding order process at node j ∈ N.

(ii) {IPj(t), t ≥ 0}: the inventory position process at node j.

(iii) {ILj(t), t ≥ 0}: the net inventory (on-hand minus backorder) process at node j.

(iv) {Ij(t), t ≥ 0} ({Bj(t), t ≥ 0}): the process of on-hand inventory (backorder) at node
j.

(v) Lj (Li,j): the processing cycle time at node j (transportation lead time over arc
(i, j) ∈ A).

(vi) ITj (ITi,j): the inventory in-transit during Lj (during Li,j).

(vii) L̃j : the total replenishment lead time at node j.

(viii) Xj (Wj): the stockout delay (inventory holding time) at node j.

(ix) τj (αj , βj): the committed service time (target type 1, 2 service) at node j.

(x) ai,j : the BOM structure, that is, one unit at node j requires ai,j unit(s) from node i.

(xi) hj (πj): the inventory holding cost (penalty cost) per unit item per unit time at node
j.

(xii) sj (rj , Qj): base-stock level (reorder point, batch size) at node j.

3.1. Serial Systems

In this section, we extend the methodologies and results of the single-stage systems to a serial
supply chain where nodes j ∈ J are numbered by 1, 2, . . . , |J|. Node |J| receives external
supply, node j + 1 supplies node j, and node 1 supplies external demand. The transit time
of node |J| is L|J|, and the transit time between stage j + 1 and j is Lj . This system can be
controlled either by an installation policy or an echelon policy. For an installation policy, the
notation is defined as above. For an echelon policy, we need the following notation.
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(i) IPej : the echelon inventory position at stage j, which is the sum of inventory on-
hand and on-order at stage j plus inventory on-hand and in-transit at all down-
stream stages of j subtracting B1.

(ii) ILej = IP
e
j − IOj : the echelon net inventory at stage j.

(iii) Iej = ILej + B1: the echelon on-hand inventory.

(iv) ITej = ITj + ILej : the echelon inventory in-transit.

(v) sej (r
e
j ): the echelon base-stock level (reorder point).

An echelon batch-ordering policy works as follows: whenever IPej drops to or below rej , an
order of size nQj is placed to raise the echelon inventory position up to the smallest integer
above rej . According to convention, we assume that Qj+1 and rj+1 are integer multiples of Qj

for all j.
We define the basic model for serial systems as follows: each stage controls its

inventory by an installation base-stock policy; external demand follows Poisson process; the
transit times are constant, and aj+1,j = 1, for all j. We focus on the penalty cost model and refer
to Boyaci and Gallego [38] and Shang and Song [39] for discussions on the service constraint
model.

Echelon Policies versus Installation Policies

The echelon policies (base-stock or batch ordering) are equivalent to their installation
counterparts under certain conditions. According to Axsater and Rosling [40], two policies
are equivalent if given identical initial conditions, the two policies share the same sample
path for their inventory positions at all stages of the supply chain for any external demand
sequence.

For serial systems under either continuous review or periodic review with identical
periods, one can construct an equivalent echelon batch-ordering policy for each installation
batch-ordering policy by setting re1 = r1; rej+1 = rej + Qj + rj+1, j = 1, 2, . . . , |J| − 1. The initial
conditions are rj < Ij(0) ≤ rj +Qj , and Ij(0) − rj is an integer multiple of Qj−1.

For an echelon policy, one may not always find an equivalent installation policy unless
the echelon policy is nested: stage j + 1 orders only when stage j orders for each j. The initial
condition is rej < Iej (0) ≤ rej + Qj . The result on batch ordering policies remain valid in pure
assembly systems but not in distribution systems. Indeed, Axsater and Juntti [41] compare
numerically the performance of echelon and installation batch ordering policies in a pure
distribution system with Poisson demand and show that either policies can outperform the
other and the difference is up to 5%.

Joint Distribution of Inventory Positions

Consider a continuous-review serial system with installation batch-ordering policies and
compound Poisson demand, the inventory position vector IP(t) = (IPj(t), j ∈ J) forms a
continuous-time Markov chain (CTMC)with state space S = ⊗j∈J{rj +Qj−1, rj +2Qj−1, . . . , rj +
Qj} where Q0 = 1. We focus on 3 questions: (1) what is the marginal distribution of IP at
each stage? (2) When are the IPs independent across stages? (3) What is the distribution of
IP seen by an order placed by a downstream stage?



12 Advances in Operations Research

Proposition 3.1. If the CTMC of IP(t) is irreducible and aperiodic, then as t → ∞

(1) IP(t) is uniformly distributed in S.
(2) The inventory positions are independent across different stages.

(3) Each order of stage j sees IPj+1 in its time averages.

Proof. See the appendix for a proof.

A sufficient condition for IP to be irreducible and aperiodic is that the external
demand can equal 1. For a serial supply chain with echelon batch-ordering policies, the
inventory position vector has a state space Se = ⊗j∈J{rej + 1, rej + 2, . . . , rej + Qj}. Because
inventory positions at different stages are driven by a common demand process, they may
not be independent. Proposition 3.1 does not hold here because the CTMC of IPe(t) may be
reducible and depends on initial conditions, see Axsater [42]. Fortunately, if one assumes
randomized initial conditions, then IPe is uniformly distributed in Se [43]. So far, the only
result on non-Markovian demand process is that Proposition 3.1 holds for renewal unit
external demand. See Section 3.2 for more discussions.

3.1.1. The Queueing-Inventory Method

Consider the basic model. Applying (2.1) to each stage, IPj(t) = IOj(t) + ILj(t), j ∈ J. Define
B|J|+1(t) ≡ 0. Because IOj(t) = Bj+1(t) + ITj(t), for all j, we must have

IPj(t) = Bj+1(t) + ITj(t) + ILj(t), j ∈ J. (3.1)

That is, the inventory position at stage j consists of three elements: backorders at stage j + 1,
inventory in-transit from stage j + 1 to j, and net inventory at stage j. By (3.1) and (2.3),

Bj(t) =
(
Bj+1(t) + ITj(t) − IPj(t)

)+
, j ∈ J. (3.2)

Note that IPj(t) is not independent of Bj+1(t) in general. Equations (3.1)-(3.2) hold for
any serial system under Assumption 2.2 and extend to periodic-review systems [44]. The
queueing-inventory method focuses on characterizing IOj and ITj for each stage.

i.i.d. Transit Time

Consider the basic model with i.i.d. transit times. Other than the special case of sj = 0, for all
j /= 1, where the system forms a Jackson network with mutually independent ITj(t), the serial
system poses a substantial challenge for exact analysis under the queueing-inventory method
because ITj depends on Bj+1. An exact analysis is unknown [9]. Various approximations are
proposed, see discussions of the distribution systems (Section 3.2.1).

Sequential Transit Time

For the basic model with stochastic sequential transit times (Definition 2.1), the analysis
here is a special case of those of pure distribution systems. We postpone the discussion
to Section 3.2.1. For batch ordering systems, the exact analysis by the queueing-inventory
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method is difficult because Bj+1 (and thus IOj) is not independent of IPj . Fortunately, such
systems can be easily handled by the lead-time demand method and the flow-unit method.

3.1.2. The Lead-Time Demand Method

Consider the basic model with sequential transit times (Definition 2.1). We discuss both in-
stallation and echelon policies. Extensions to compound Poisson demand is straightforward.

Installation Policies

By (3.1), IPj(t − Lj) = Bj+1(t − Lj) + ITj(t − Lj) + ILj(t − Lj), for all j. By the lead-time
demand method, at time t, all outstanding orders except Bj+1(t−Lj)will be available at stage
j. Therefore,

ILj(t) = IPj
(
t − Lj

) − Bj+1
(
t − Lj

) −D(
t − Lj, t

]
, j ∈ J. (3.3)

Equation (3.3) is similar to (2.5) in single-stage systems. The difference is that here only part
of IOj(t−Lj), that is, ITj(t−Lj), is available at t. For base-stock policies, IPj(t) ≡ sj . Equation
(3.3) implies the following recursive equations for Bj in steady-state:

Bj =
(
Bj+1 +D(∞ | Lj] − sj

)+
, j ∈ J, (3.4)

where D(∞ | Lj]s are mutually independent. We refer the reader to Van Houtum and Zijm
[45, 46], Chen and Zheng [47], and Gallego and Zipkin [48] for extended discussions. By
(3.4), a serial supply chain can be decomposed into |J| single-stage systems where one can
characterize Bj from j = |J| to j = 1 consecutively.

Extension to batch-ordering policy is not straightforward because IPj depends on Bj+1.
See Badinelli [49] for an exact analysis of systems with Poisson demand and constant lead
times. Indeed, echelon policies are easier to handle using the lead-time demand method.

Echelon Policies

First consider echelon base-stock policies. By (2.5),

ILe|J|(t) = s
e
|J| −D

(
t − L|J|, t

]
,

ILej (t) = IT
e
j

(
t − Lj

) −D(
t − Lj, t

]

= min
{
ILej+1

(
t − Lj

)
, sej

}
−D(

t − Lj, t
]
, j = 1, 2, . . . , |J| − 1.

(3.5)

In steady-state, ILe|J| = s
e
|J| −D(∞ | L|J|], ILej = min{ILej+1, sej } −D(∞ | Lj], j = 1, 2, . . . , |J| − 1,

where the D(∞ | Lj]s are mutually independent. Equation (3.5) can be extended to periodic-
review systems [44, 47].

Next, we consider batch-ordering policies. For the most upstream stage, ILe|J|(t) =
IPe|J|(t − L|J|) − D(t − L|J|, t]. Given ILej+1(t), IT

e
j (t) is uniquely determined as follows [44]:

if ILej+1(t) ≤ rej , then IT
e
j (t) = ILej+1(t); otherwise, ITej (t) > rej . Because IT

e
j (t) ≤ rej + Qj and
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ILej+1(t) − ITej (t) must be an integer multiple of Qj , ITej (t) = ILej+1(t) − mQj , where m is the
largest integer so that ILej+1(t) −mQj > r

e
j . Define ITej (t) = �(ILej+1(t), Qj). In steady-state,

ILe|J| = IP
e
|J| −D

(∞ | L|J|
]
,

ILej = �
(
ILej+1, Qj

)
−D(∞ | Lj

]
, j = 1, 2, . . . , |J| − 1.

(3.6)

Here, IPe|J| is uniformly distributed in {re|J| + 1, . . . , re|J| + Q|J|}, D(∞ | Lj]s are mutually
independent and independent of ITej s. See Chen and Zheng [44] and Chen [50] for more
discussions.

Approximations and Bounds

Policy evaluation based on the exact analysis can be time consuming. One can compute the
system performance approximately but fast using two-moment approximations. For instance,
one can compute (3.4) by fitting a negative binomial or Gamma distribution to the lead-
time demand utilizing the first two moments [20, 51]. Equation (3.4) can also be regarded as
incomplete convolutions of the form (X1 − a)+ + X2. Van Houtum and Zijm [45, 46] fit the
incomplete convolutions by mixed Erlang or hyperexponential distributions.

An alternative approach is to develop bounds. The “Restriction-Decomposition”
heuristic [48] is based on the observation that by (3.3)-(3.4), Ij ≤ (sj −D(∞ | Lj))+ and
B1 ≤ B2 + (D(∞ | L1 − s1)

+ ≤ · · · ≤ ∑
j∈J(D(∞ | Lj) − sj)

+. Thus, the system total cost
TC =

∑
j∈JhjIj + π1B1 ≤ ∑

j∈J[hj(sj − D(∞ | Lj))+ + π1(D(∞ | Lj) − sj)+]. The latter is the
sum of single-stage cost functions. One can then choose the base-stock levels that optimize
the bound.

Shang and Song [52] develop Newsvendor types of close-form bounds and appro-
ximations for the optimal base-stock levels. The key idea is to construct a subsystem for each
stage that includes itself and its downstream stages then replace the installation holding costs
at all stages of the subsystem by either a upper or a lower bound. Such a subsystem effectively
collapses into a single-stage system, for which one can use the newsboy model. For batch-
ordering policies, Chen and Zheng [53] develop lower and upper bounds for the total cost by
either under- or overcharging a penalty cost for each stage. The resulting bounds are sums of
|J|many single-stage cost functions.

Finally, we mention that the performance gap between echelon and installation pol-
icies may be minor. Chen [50] compares the best echelon policy with the best installation pol-
icy in serial systems. For different number of stages, lead times, batch sizes, demand varia-
bilities, and holding/penalty costs, it is shown, in a numerical study, that the % difference of
their performance (based on the optimal cost of echelon policies) range from 0% to 9% with
an average 1.75%.

3.1.3. The Flow-Unit Method

The flow-unit method provides an exact analysis for the basic model with either Poisson or
compound Poisson demand. Because the analysis here is a special case of that of pure distri-
bution systems, we postpone the discussion to Section 3.2.3. In the basic model with instal-
lation batch ordering policy, applying (2.14) to each j ∈ J yields, Xj = (Xj+1 + Lj − Tj(Sj))+



Advances in Operations Research 15

andWj = (Tj(Sj) −Xj+1 − Lj)+, where Sj is uniformly distributed in {rj +Qj−1, rj +2Qj−1, . . . ,
rj + Qj} and Sj, j ∈ J are independent (Proposition 3.1). Furthermore, Tj(·)s are not over-
lapping, and therefore Tj(Sj), j ∈ J are mutually independent. Consequently, a serial system
can be decomposed into multiple single-stage systems as in Section 3.1.2.

The flow-unit method can also be applied to serial systems with echelon batch order-
ing policy [42] or base-stock policy under periodic review [32, 33, 41]. We postpone the dis-
cussion to distribution systems (Section 3.2.3).

3.2. Pure Distribution

In this section, we focus on 2-level pure distribution systems (distribution systems, for
brevity), where node 0, the distribution center (DC), is the unique supplier for nodes j ∈ J
(the retailers) that face external demand. The transit time of node 0 is L0, and the transit
time between stage 0 and j is Lj . Distribution systems are more complex than serial systems
because (i) the demand process faced by the DC is a superposition of the order processes of
all retailers and (ii) DC needs to allocate inventory among retailers in case of shortages. In
this section, we focus on installation policies and FCFS rule unless otherwise mentioned.

Redefine S = ⊗j∈{0}⋃J{rj + δj , rj + 2δj , . . . , rj +Qj}, where δj = 1, for all j ∈ J, and δ0
is the maximum common factor of Qj, j ∈ J, by the proof of Proposition 3.1, see also [54].

Corollary 3.2. Proposition 3.1 holds for the inventory position vector of the DC and all retailers.

For demand under non-Markovian assumptions, Cheung and Hausman [55] show
that if external demand follows independent renewal unit processes, then the first two state-
ments of Proposition 3.1 hold for the inventory position vector of the DC and all retailers.

We define the basic model for distribution systems as follows: each stage utilizes an
installation base-stock policy, external demand follow independent Poisson processes with
rates λj , j ∈ J, Lj, j ∈ {0}⋃J are constant, and a0,j = 1, for all j. No lateral transshipment
is allowed.

3.2.1. The Queueing-Inventory Method

By (2.1), IOj(t)+ILj(t) = IPj(t) holds for j ∈ {0}⋃J under Assumption 2.2. Because IOj(t) =
B0,j(t) + ITj(t), for all j ∈ J, and B0,j(t) is the orders placed by stage j backlogged at stage 0,

B0 =
∑

j∈J
B0,j(t), (3.7)

IPj(t) = B0,j(t) + ITj(t) + ILj(t). (3.8)

For the basic model, conditioning on B0 = b, B0,j follows a binomial distribution with
b number of trials and a successful rate of λj/

∑
l∈Jλl per trial (the “binomial decomposition,”

[51, 56]). This is true because the probability that an order received by the DC is placed by
retailer j is λj\

∑
l∈Jλl, and each order is independent of the others. This result holds as long as

external demand follows independent Poisson processes, retailers utilize continuous-review
base-stock policy, and DC serves retailers’ orders on a FCFS basis. For compound Poisson
demand or batch ordering policy, it is much more involved to decompose B0 into B0,j , see
Shanker [57] and Chen and Zheng [43].
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i.i.d. Transit Time

Consider the basic model. Similar to serial systems (Section 3.1.1), such a system is difficult
for exact analysis unless s0 = 0. Various approximations are proposed where the basic idea
is to decompose the system into multiple single-stage systems with the input parameters
depending on other stages.

A simple approximation (METRIC, [21])works as follows: first, apply the single-stage
results (Section 2.1) to the DC by noting that IO0 is a Poisson random variable with parameter∑

j∈Jλj ·E(L0). By (2.1)–(2.3), one can characterize IL0, I0, and B0. By Little’s law, the expected
stockout delay at DC is E(X0) = E(B0)/

∑
j∈Jλj . Second, for each retailer j, regarding its

supply system as an infinite server queue with a mean service time E(X0) + E(Lj), one can
again apply the single-stage results to obtain the distribution of IOj , Ij , and Bj . Clearly, the
second step is an approximation because the orders placed by the retailers are satisfied by the
DC on a FCFS basis.

Muckstadt [58] generalizes METRIC to include a hierarchical or indentured product
structure (MOD-METRIC): when an assembly needs repair, then exactly one of its subassem-
blies (modules) needs repair. To illustrate the idea, let us consider a single-stage systemwith a
single assembly and its modules k ∈ K. Let s0 (sk) be the stock-level of the assembly (module
k) and R0 (Rk) its repair time. Assume the assembly failure rate is λ with probability pk that
module k needs repair, then the expected total repair time for an assembly is E(R̃0) = E(R0) +∑

k∈KpkE(Xk), where E(Xk) = E(Bk)/(pkλ) is the expected delay due to stockout of mod-
ule k. E(Bk) is the expected backorders of module k which can be computed by (2.1) and
(2.3) and the fact that IOk follows Poisson (E(Rk)pkλ) (Section 2.1). Once E(R̃0) is known,
one can use METRIC to compute the performance measure at the assembly.

Sherbrooke [59] considers a similar model as Muckstadt [58] but utilizes a different
approximation (VARI-METRIC). The key difference is to compute the first 2 moments (rather
than the first moment) of the backorders at the depot and the outstanding orders at each base
then fit their distributions by negative binomial distributions. Numerical study shows that
VARI-METRIC improves the accuracy of METRIC. For a thorough literature review on inven-
tory control in supply chains with repairable items, see Muckstadt [24].

Sequential Transit Time

Consider again the basic model. Note that each order placed by the retailers faces statistically
the same stockout delay at the DC (by the independent Poisson demand and the FCFS rule),
the exact analysis works as follows: first, compute the distribution of IO0 by L0 and the
demand process at DC by Proposition 2.3. Then, determine the distribution of B0 (by (2.3)).
The distribution of X0 can be determined by the fact that demand during X0 (from all retail-
ers) has the same probability distribution as B0 (by the proof of Proposition 2.3). For any re-
tailer j, the total replenishment lead time L̃j = X0 + Lj . Given the demand process at retailer
j, one can compute the distribution of IOj and then Bj and Xj in a similar way. Svoronos and
Zipkin [20] develop exact expressions of system performance for phrase-type transit times
and present a two-moment approximation based on negative binomial distributions.

For compound Poisson demand, although the probability distribution of backorders
may differ from that of the demand during stockout delay [29], the latter serves as a
good approximation to the former. Zipkin [29] generalizes the 2-moment approximation of
Svoronos and Zipkin [20] to distribution systems and presents an exact analysis based on the
flow-unit method for phrase-type transit times and demand sizes (see also Section 3.2.3).
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3.2.2. The Lead-Time Demand Method

Consider the basic model with sequential lead times (Definition 2.1). Applying (2.5) to DC
yields IL0(t) = IP0(t − L0) −D0(t − L0, t], where D0(t − L0, t] is the lead time demand for DC.
By Proposition 2.4 and Corollary 3.2, we can determine the distribution of D0(∞ | L0], IL0,
B0, and I0. For the retailers, we consider two cases.

Base-Stock Policy

By (3.8), B0,j(t−Lj)+ITj(t−Lj)+ILj(t−Lj) = IPj(t−Lj) ≡ sj , j ∈ J. By the lead-time demand
method, at time t, all outstanding orders except B0,j(t−Lj)will be delivered to stage j, yielding

ILj(t) = sj − B0,j
(
t − Lj

) −Dj

(
t − Lj, t

]
, (3.9)

whereDj(t−Lj, t] is the lead-time demand for retailer j. Since the distribution of B0,j is known
(“binomial decomposition”, Section 3.2.1), one can exactly characterize the distribution of
Ij and Bj for all j [51, 56]. For fast computation, a two-moment approximation is proposed
that fits B0,j + D(∞ | Lj) by a negative binomial distribution. In a numerical study, Graves
[51] shows that the 2-moment approximation is more accurate than “METRIC” which only
utilizes the first moment.

Exact analysis is feasible for distribution systems where each retailer has multiple
supply modes, for example, upon arrival of a demand, a retailer can order a unit either from
the DC (mode 1) or from mode 2 with constant lead time L′′ [56]. The decision for each order
is independent of others, so the total demand at stage j can be split into two independent
Poisson processes each is served by a supply mode. LetD′

j(t−Lj, t] (D′′
j (t−L′′

j , t]) be the lead-
time demand served by mode 1 (2.2), then ILj(t) = sj −B0,j(t−Lj)−D′

j(t−Lj, t]−D′′
j (t−L′′

j , t],
where all random variables on the right-hand side are independent.

Consider the basic model but assume that each stage utilizes a periodic-review base-
stock policy. An important issue here is how to allocate DC’s on-hand inventory to the
retailers when the total demand exceeds the supply. The optimal allocation rule does not
have a simple form, see, for example, Clark and Scarf [60] and Federgruen and Zipkin [61].
Therefore, most work so far focuses on heuristic rules, such as the “myopic” allocation rule
[61], the random allocation rule [62, section 3.2.3], and the “virtual allocation” rule [63]. The
“virtual allocation” rule works as follows: the DC observes external demand at all retailers
and commits its stock in the sequence of external demand arrivals rather than the sequence
of retailers’ orders. An exact procedure is developed to characterize the inventory levels at
all stages. Numerical study shows that virtual allocation has good performance although it is
not optimal.

Batch Ordering Policy

As we mentioned at the beginning of Section 3.2, one of the challenges in distribution system
is that the DC’s demand process is a superposition of the retailers’ order processes. This
demand process becomes difficult to characterize when the retailers’ use batch-ordering pol-
icies. Even for a simple system with identical retailers, the DC’s demand process is a super-
position of |J| many independent Erlang processes (by Corollary 3.2), thus it is nonrenewal
[64]. Inspired by the “METRIC” approach, Deuermeyer and Schwarz [64], Lee and
Moinzadeh [65, 66], and Svoronos and Zipkin [67] decompose the distribution system
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into single-stage systems and propose various approximations for the retailers’ lead-time
demand. The key idea here is to characterize the moments of the DC backorders and then
approximately determine either the delay due to stock at DC or the retailer j’s share of the
DC backorder. Finally, utilize either (2.5) or (3.9) to determine the moments of the lead-time
demand at each retailer. See Axsater [16] for an extended discussion.

Chen and Zheng [43] consider the basic model with echelon batch ordering policies
where the retailers may not be identical. The paper presents an exact analysis for Poisson
demand and approximations for compound Poisson demand. To illustrate the idea, let IPej
(or ILej ) be the echelon inventory position (echelon inventory level) at stage j ∈ {0}⋃J
where IPe0 = IO0+I0+

∑
j∈J[ITj +ILj] and IL

e
0 = IP

e
0 −IO0. First, one has ILe0(t) = IP

e
0 (t−L0)−

D0(t − L0, t] and B0(t) = [
∑

j∈JIP
e
j (t) − ILe0(t)]+. The distribution of B0 can be determined by

the fact that IPej , j ∈ {0}⋃J are independent (due to randomized initial conditions). Then,
decompose the DC’s backorders to each retailer to obtain B0,j , j ∈ J. Finally, ITej = IPej − B0,j

and ILej = IT
e
j −Dj(∞ | Lj], see (3.6).

3.2.3. The Flow-Unit Method

The flow-unit method enables exact analysis for a wide range of distribution systems. Con-
sider first the basic model with the sequential lead time (Definition 2.1). Suppose a demand
arrives at retailer j ∈ J at time t, the stockout delay for this demand and the inventory holding
time for the product that satisfies this demand are given by (2.9)-(2.10), Xj = (L̃j − Tj(sj))

+

andWj = (Tj(sj) − L̃j)
+
, where L̃j is the total replenishment lead time for the order placed by

stage j at time t− Tj(sj). For this order, the stockout delay and the inventory holding time for
the corresponding item at the DC are X0 = (L0 − T0(s0))+ andW0 = (T0(s0) − L0)

+. There-
fore, L̃j = X0+Lj . Note that Tj(sj) is based on the demand of retailer j while T0(s0) is based on
the demand at DC. Because of Poisson demand, T0(s0) (and thus X0) is statistically the same
for all retailer orders. Because Tj(sj), j ∈ J are not overlapping with T0(s0), Tj(sj) ⊥ T0(s0).
This implies that the distribution system can be decomposed into single-stage systems where
one can first evaluate the performance of the DC and then the performance of each retailer,
see, for example, Axsater [28], Zipkin [29], and Simchi-Levi and Zhao [31].

For compound Poisson demand, let us consider the kth unit of a demand at node
j. One needs to identify not only the corresponding order placed by stage j but also the
corresponding unit in that order that satisfies this demand unit. By Zhao [33], Xj(k) =
(X0(Mj(k)) + Lj − Tj(Jj(k)))+ and Wj(k) = (Tj(Jj(k)) − Lj −X0(Mj(k)))

+, where X0(m) =
(L0 − T0(J0(m)))+. Here, Jj(k) is the index of the corresponding order defined in Section 2.3,
and Mj(k) is the index of the unit in the corresponding order that satisfies the kth demand
unit at node j. The analysis extends to a periodic-review systems with base-stock policy and
virtual allocation rule (see Axsater [35] for Poisson demand and Forsberg [32] for compound
Poisson demand).

We point out that for the special case of serial systems, the lead-time demand method
handles Poisson demand and compound Poisson demand in the same way (3.4) but the flow-
unit method becomes considerably more complex. On the other hand, for compound Poisson
demand, the flow-unit method handles the serial and distribution systems in the same way
but the lead-time demand method becomes much involved (the “Binomial decomposition”
fails) as one moves from serial to distribution systems [57].

Batch-ordering policy complicates the analysis considerably due to the complex
demand process faced by the DC. To see this, let us consider the basic model with identical
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retailers and installation batch-ordering policy. The number of system demand (i.e., the
demand of all retailers) between two consecutive retailers’ orders is now random (versus
a constant in the case of a single retailer). Forsberg [68] provides an exact analysis for distri-
bution systems with batch ordering policy and Poisson demand. Axsater [36, 54] provides
various approximations.

For distribution systems with both batch ordering policy and compound Poisson
demand, Axsater [37] presents an exact analysis for installation policies and Axsater [42]
considers echelon policies. The exact evaluation is, however, time consuming. Let m be a
multiplier of the batch sizes. The computational effort is O(|J|5) and O(m2) [68], O(|J|2)
and O(m4) [37], and O(|J|5/2) and O(m2) [42]. Cachon [62] provides an exact analysis for
a periodic-review system with installation batch ordering policy, identical retailers, and i.i.d.
demand, where the DC randomly allocates stock to orders received in the same period but
follows the FCFS rule to serve orders in consecutive periods.

Because the flow-unit method requires the FCFS rule and the assumptions that orders
are replenished in the sequence as they are placed, it is not clear how to apply this method
to problems where these assumptions fail, for example, systems with multiple supply modes
(Section 3.2.2), systems with reverse material flows [69], and systems with rationing rules
[70]. For these systems, the lead-time demand method still applies.

3.3. Assembly Systems

In this section, we consider both pure assembly systems where each stage has at most one
customer and two-level general networks where each stage can have multiple customers or
suppliers.

In a two-level general network, stages in I are suppliers and stages inJ are customers.
Supply-demand relationship exists only between sets I and J. It is convenient to call the set
I components and the set J products. Let Ij = {j ∈ J | ai,j > 0} be the component set for
product j, and Ji = {j ∈ J | ai,j > 0} the product set served by component i. Let Li (Lj) the
transit time at stage i ∈ I (j ∈ J), and Li,j be the transit time (e.g., transportation lead time)
from stage i ∈ I to stage j ∈ J. Note that each stage i ∈ I is performing a distribution opera-
tion and each stage j ∈ J is performing an assembly operation. We assume that a product can
be assembled only when all necessary components are available.

The two-level general network includes the following important special cases: (i) pure
assembly systems where |J| = 1. Here, we index the unique stage in J by 0. (ii) Assemble-
to-order (ATO) systems where Li,j = 0 for all i, and j, Lj = 0 for all j and all stages in J carry
zero inventory. This model can be applied to CTO (configure-to-order) systems, repairable
items with multiple failure [71], and the “pick and ship” systems in B2C e-commerce.

The optimal policies on ordering or allocation in such a network are either not known
or state-dependent and thus too complex to implement [72]. In practice, only suboptimal but
simple ordering policies (e.g., installation policies) and simple allocation rules (e.g., FCFS)
are implemented. Here, we focus on installation policies and FCFS rule unless otherwisemen-
tioned.

Assembly systems pose a significant challenge for policy evaluation because of the
common demand processes shared by different components. One has to address the question
of how to characterize the dependence among components? And what is the impact of the
dependence on system performance?

We define the basic model for assembly systems as follows: each stage utilizes an
installation base-stock policy, external demand follows independent Poisson processes with
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rates λj , j ∈ J, all transit times are constant. Let ai,j be either zero or one unless otherwise
mentioned.When a stage j ∈ J places an order and some of its suppliers have on-hand inven-
tory but others do not, we assume that the available stocks are shipped to stage j immediately.
Clearly, each stage j ∈ Jmay hold inventory for components i ∈ Ij which is not yet processed
due to shortages of other components. We call this inventory the “committed stock” [15].

3.3.1. The Queueing-Inventory Method

Consider the two-level general network under Assumption 2.2, by (2.1) and (2.3), IOl(t) +
ILl(t) = IPl(t) and Bl(t) = ILl(t)

−, l ∈ I⋃J. Let Bi,j be the orders placed by stage j back-
logged at stage i. Similar to (3.7),

Bi(t) =
∑

j∈Ji

Bi,j(t). (3.10)

For each product j ∈ J, let ITi,j be the inventory in-transit from stage i to j during time Li,j ,
ITj the inventory in-transit during Lj , and Ii,j the committed stock of component i at stage j.
Then,

IOj(t) = max
i∈Ij

{
Bi,j(t) + ITi,j(t)

}
+ ITj(t), i ∈ I,

Ii,j(t) = max
l∈Ij

{
Bl,j(t) + ITl,j(t)

} − Bi,j(t) − ITi,j(t).
(3.11)

In the special case of ATO systems, the backorders at stage j, Bj(t), and the on-hand plus com-
mitted inventory of component i, Ĩi(t), are given by

Bj(t) = max
i∈Ij

{
Bi,j(t)

}
, (3.12)

Ĩi(t) = ILi(t) +
∑

j∈Ji

[
Bj(t) − Bi,j(t)

]
= IPi(t) − IOi(t) +

∑

j∈Ji

Bj(t). (3.13)

If |J| = 1 in the ATO systems, then (3.12)-(3.13) reduce to

B0(t) = max
i∈I

{Bi(t)}, (3.14)

Ĩi(t) = IPi(t) − IOi(t) + B0(t). (3.15)

Because the ATO systems capture the dependence among the components in the two-
level general networks, we focus on ATO systems for the rest of Section 3.3.

Consider first the basic model for ATO systems with i.i.d. transit times and |J| = 1. The
stages i ∈ I form |I| parallelM/G/∞ queues with common demand arrivals. The objective
of the queue-inventory method is to characterize the joint distribution of the outstanding
orders (i.e., job in queues): IO = (IOi, i ∈ I). Once IO is known, B0 is given by (3.14), Ĩi is
given by (3.15), and the order-based fill rate f0 = Pr{si − IOi >, ∀i ∈ I}.
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The analysis of IO is based on the following observation (see, e.g., [73]). For simplicity,
let I = 2. Define ψi(·) (orΨi(·)) to be the pdf (cdf) function of Li, for all i. LetΨc

i (u) = 1−Ψi(u).
Consider an arbitrary demand arrival in [0, t]. Due to Poisson demand, the arrival time of
this demand is uniformly distributed in [0, t]. Conditioning on the arrival time 0 ≤ u ≤ t, the
probability that both queues (i = 1, 2) are still processing the job triggered by this demand at
t is p1,2(u) = Pr{L1 > t − u}Pr{L2 > t − u} which equals to Ψc

1(t − u)Ψc
2(t − u). Similarly, the

probability that only queue 1 (or 2) is still processing the job at t is p1(u) = Ψc
1(t − u)Ψ2(t − u)

(p2(u) = Ψ1(t − u)Ψc
2(t − u), resp.). Finally, the probability that both queues finish the job at t

is p0(u) = Ψ1(t − u)Ψ2(t − u). Unconditioning on u, p1,2 = (1/t)
∫ t
0 Ψ

c
1(t − u)Ψc

2(t − u)du, same
logic applies to p1, p2, and p0.

Let Ñ(t) be the total jobs up to time t. Among these jobs, letN1,2(t) be those in process
in both queues j = 1 and 2, N1(t) (or N2(t)) those in process only in queue 1 (or 2, resp.),
and N0(t) those left both queues. Because all arrivals are independent, conditioning on
Ñ(t) = n, (N1,2(t),N1(t),N2(t),N0(t)) follows multinomial distribution with parameters
n, p1,2, p1, p2, p0. Clearly, IOi(t) = N1,2(t) +Ni(t), i = 1, 2, and IOis are dependent due to the
common element,N1,2. Applying the logic to ATO systems with any |I| and let t → ∞,

IOi =
∑

∀Ω⊆I|i∈Ω
N(λ0θΩ). (3.16)

Here, N(·)s are independent Poisson random variables and θΩ =
∫∞
0 [

∏
i∈ΩΨ

c
i (u)] ·

[
∏

i∈I\ΩΨi(u)]du. Note that there are 2|I| − 1 Poisson random variables.
Lu et al. [74] generalize the result to ATO systems with multiple products and provide

the generating function for IO and bounds for the order-based fill rates. Lu et al. [75] present
bounds for the order-based backorders. Interestingly, the lower bound on E(Bj) is related
to the “binomial decomposition” in distribution systems (Section 3.2.1). Due to independent
Poisson demand and FCFS rule, Bi,j in (3.10) follows a binomial distribution for any given Bi.
By (3.12), E(Bj) ≥ maxi∈Ij{E(Bi,j)} = maxi∈Ij{E(Bi)λj/

∑
l∈Ji

λl}.
Lu and Song [76] formulate a nonconstrained cost-minimization problem for the

model, where the total cost includes backorder cost and holding cost for both on-hand and
committed stock. It is shown that the total cost is submodular in si, i ∈ I. For other types
of ATO systems, Gallien and Wein [77], Cheung and Hausman [71], and Dayanik et al. [78]
characterize the distribution of IO which leads to either exact analysis or bounds on the key
performance measure. See Song and Zipkin [15] for an extended discussion.

To date, it is not clear how to use the queueing-inventory method to characterize ATO
systems with either stochastic sequential lead times or batch-ordering policies because the
joint distribution of the outstanding orders is difficult to characterize and (IOi, i ∈ I) depends
on (IPi, i ∈ I). Fortunately, some of these systems can be handled by the lead-time demand
method and the flow-unit method.

3.3.2. The Lead-Time Demand Method

We first consider the basic model for the ATO systems with |J| = 1. Let us index the
components i ∈ I in a nondecreasing order of their lead times, that is, L1 ≤ L2 ≤ · · · ≤ L|I|.
By (2.5), ILi(t) = si −D(t − Li, t], i ∈ I. Since all components face identical demand process,
by Zipkin [9, Section 8.4.5],

D(t − Li, t] = D(t − Li, t − Li−1] +D(t − Li−1, t], i = 2, 3, . . . , |I|. (3.17)
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By (3.14) and (3.17), B0(t) = maxi∈I{[D(t − L1, t] +
∑i

l=2D(t − Ll, t − Ll−1] − si]+}. For compo-
nent i, the on-hand inventory is IL+

i and the committed inventory is B0 − Bi where Bi = IL−
i .

Analogous to (3.15), the total on-hand plus committed inventory of component i is Ĩi(t) =
si−D(t−L1, t]−

∑i
l=2D(t−Ll, t−Ll−1] + B0(t). BecauseD(t−L1, t] andD(t−Li, t−Li−1] are in-

dependent, exact analysis is feasible. The key idea here is to identify the common lead-time
demand shared by different components.

This approach can be generalized to multiproduct ATO systems with constant lead
times. Consider the basic model withJ |> 1. Because the demand processes for different com-
ponents may not be completely identical, (3.17) no longer holds. Consider two components,
i and ı. There are 4 cases.

(1) Ji
⋂Jı = ∅. Then, D(t − Li, t] ⊥ D(t − Lı, t].

(2) Ji = Jı. This case can be handled by (3.17).

(3) Ji ⊂ Jı. Consider the following two subcases.

(i) If Li < Lı, Dı(t − Lı, t] = Dı(t − Lı, t − Li] +Di(t − Li, t] +DJı\Ji(t − Li, t] where
DJı\Ji(t − Li, t] is total demand of products in set Jı \ Ji during (t − Li, t].

(ii) If Li ≥ Lı, Dı(t − Lı, t] = Di(t − Lı, t] +DJı\Ji(t − Lı, t] and Di(t − Li, t] = Di(t −
Li, t − Lı] +Di(t − Lı, t].

All lead-time demand on the right-hand side of the equations are independent.

(4) Ji
⋂Jı /= ∅ butJi/⊂Jı andJı/⊂Ji. This case is more complex but still tractable see, for

example, [79]. The key idea is to identify the common lead-time demand for both
components.

Using convolution, Song [79] presents exact expressions for the order-based fill rates fj =
Pr{si − Di(t − Li, t] > 0, i ∈ Ij}. It is also shown that fj ≥ ∏

i∈IjPr{si − Di(t − Li, t] > 0}.
This inequality implies that ignoring the correlation among components results in under-
estimating the fill rates.

To determine the expected order-based backorders, Song [80] utilizes the relation be-
tween the fill rate and the stockout delay. Let Xj be the stockout delay for product j. Clearly,
0 ≤ Xj ≤ max{Li, i ∈ Ij}, and, by (2.6), Pr{Xj ≤ x} = Pr{Di(t − Li + x, t) < si, i ∈ Ij and x <
Li}. By Little’s law, one can translate the problem of the expected backorders to the problem
of the expected stockout delays. See Song [80] for a detailed discussion.

Consider the basic model for the ATO systems except that stage i ∈ I utilizes a batch
ordering policy (ri, Qi). If external demand follows a compound multivariate Poisson pro-
cess, Song [81] shows that the inventory position vector of all components, (IPi, i ∈ I),
is uniformly distributed in ⊗i∈I{ri + 1, ri + 2, . . . , ri + Qi} if the CTMC of (IPi, i ∈ I) is
irreducible and aperiodic. Therefore, the expected order-based backorders and fill rates, of a
batch-ordering ATO system, can be expressed as the average of the counterparts of multiple
base-stock systems.

For ATO systems under periodic review, the idea is similar: identify common lead-
time demand shared by components. However, the allocation rule for common components
becomes an important issue. Hausman et al. [27] consider a multi-item system where
Di(n), the demand in nth period, follows multivariate normal random distribution. Assum-
ing constant lead times, FCFS rule, and independent demand across periods, the probability
of satisfying all demand in period nwithin τ periods of time is Pr{Di[n−Li+τ, n] ≤ si, i ∈ I}
by (2.8). Zhang [82] considers a different allocation rule, the “fixed-priority” rule: while
demands in consecutive periods are served on a FCFS basis, demands in the same period are
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served based on their priority. Let j � j denote that demand j has higher priority over demand
ı. The fill rate for customer type j is given by Pr{Di[n−Li, n−1s]+

∑
l∈J,l�jai,lDl(n) ≤ si, i ∈ Ij},

where Dl(n) is the demand of product l at period n. Since high dimensional multivariate
normal distributions are computationally intensive, bounds on the fill rates are developed.
Agrawal and Cohen [83] study the “fair-share” rule for demand in the same period: if
component i has a shortage in period n, then the fraction of component i’s available stock
allocated to product j equals toDj(n)/Di(n). The resulting order-based fill rate is identical to
that of Hausman et al. [27].

de Kok [84] imposes an “ideal” product structure on themodel of Hausmans et al. [27]:
if Lı ≤ Li, then either Jı

⋂Ji = ∅ or Jı ⊆ Ji. An ATO system is “strongly ideal” if it has an
idea product structure and satisfies the condition that for any product j ∈ Jı

⋂Ji, ai,j = aı,j .
Further assume a linear allocation rule and demand occuring at the end of each period, it is
shown that the order-based fill rates satisfy Pr{∑Li−1

l=0

∑
k∈Jai,kDk(n − l) ≤ si, i ∈ Ij}, for all

j. If the ATO system is strongly ideal, then fill rates have the form of Pr{∑m
l=1Zl ≤ cm, m =

1, 2, . . . ,M} which is a generalized finite horizon nonruin probability studied extensively in
the actuarial literature.

Unlike serial and distribution systems (Sections 3.1-3.2), extensions from constant lead
times to stochastic sequential lead times (by the lead-time demand method) is not straight-
forward because it is difficult to determine the common lead time demand. The flow-unit
method, which separates demand from the lead time, provides a simpler and cleaner analysis.

3.3.3. The Flow-Unit Method

Consider the basic model for ATO systems with stochastic sequential lead times where the
component inventory is managed by either continuous-time base-stock policies or batch-
ordering policies. We refer to the latter as a batch-ordering system and the former as a base-
stock system. The following discussion is based on Zhao and Simchi-Levi [30].

Single-Product Base-Stock Systems

Let |J| = 1. Consider components i and ı. Without loss of generality, let si ≤ sı. Suppose
a demand arrives at time t, then the corresponding orders of the components i and ı that
satisfy this demand are placed at time t − T(si) and t − T(sı), respectively (the “backward
method”, see Section 2.3). It is easily seen that T(si) overlaps with T(sı) over the time period
[t − T(si), t], and therefore T(sı) = T(si) + T(sı − si). The dependence among the arrival times
t − T(si) + Li, i ∈ I, is quite intuitive: if the interarrival times are short for recent demands,
and as a result T(si) is small for all i ∈ I, then all components are likely to be out of stock.

Indexing the components in the nondecreasing order of their base-stock levels, for any
sequence of t1 ≤ t2 ≤ · · · ≤ t|I|, the joint probability density function of T(si), i ∈ I, is given by

Pr
{
T(s1) = t1, T(s2) = t2, . . . , T

(
s|I|

)
= t|I|

}

= Pr{T(s1) = t1}

× Pr{T(s2 − s1) = t2 − t1} · · ·Pr
{
T
(
s|I| − s|I|−1

)
= t|I| − t|I|−1

}
.

(3.18)

For other sequences of t1, t2, . . . , t|I|, Pr{T(s1) = t1, T(s2) = t2, . . . , T(s|I|) = t|I|} = 0.
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By (3.18), we can derive the probability distribution for the product stockout delay,
X0 = [maxi∈I{Li − T(si)}]+. For any service time τ(≥ 0), conditioning on L = l = (l1, l2, . . . ,
l|I|) yields

Pr{X0 ≤ τ} = Pr
{
T(s1) ≥ (l1 − τ)+, T(s1) + T(s2 − s1) ≥ (l2 − τ)+, . . . ,

T(s1) + T(s2 − s1) + · · · + T(s|I| − s|I|−1
) ≥ (

l|I| − τ
)+}

.

(3.19)

The waiting time of component i, i ∈ I, is determined byWi = X − Li + T(si).
The backward method may work better for assembly systems than the forward

method because, in the latter, the orders (of components) triggered by a demand will satisfy
different demand in the future; while in the former, we focus on a demand and identify all
the orders placed beforehand that satisfy this demand. The flow-unit method separates the
demand process from the lead times rather than putting them together as lead time demand.
Thus, the demand process determines T(si), i ∈ I, whose joint distribution can be easily
characterized, and the supply system determines Li, i ∈ I, which need not be independent.

Multiproduct Base-Stock Systems

Let |I| > 1. Assuming that a demand of product type j ∈ J arrives at time t, then the cor-
responding order of component i ∈ Ij that satisfies this demand is placed at time t − Ti,j(si),
where Ti,j(si) is determined by starting at time t, counting backward demand arrivals of all
products that require component i until the total number of arrivals reaches si. Because of the
lead time, an order placed at time t − Ti,j(si)will arrive at time t − Ti,j(si) + Li.

For each product j ∈ J, the stockout delay is Xj = [maxi∈Ij{Li − Ti,j(si)}]+, and com-
ponent i’s waiting time, when it is committed to product j, isWi,j = Xj −Li +Ti,j(si). Thus, the
multiproduct ATO system can be decomposed into |J| single-product subsystems with each
subsystem corresponding to a product j ∈ J and its component set Ij . It is important to note
that these single-product subsystems are not identical to the single-product assembly systems
because Ti,j(si) is associated with the superposition of the demand processes of all products
that require component i. Close-form expressions are derived for the covariance matrix of
Ti,j(si), i ∈ Ij . Zhao [33] characterizes their joint probability distribution.

Zhao and Simchi-Levi [30] proposes two numerical methods to evaluate system per-
formance. The first method is based on Monte Carlo simulation while the second method is
based on a two-moment approximation. A numerical study of an example inspired by a real
world problem, theDimension 2400 Pentium of Dell, shows that the simulation-based method
is scalable and can evaluate large size, real world ATO systems; while the method based on
the 2-moment approximation can handle up to medium size ATO systems with multiple pro-
ducts.

Multiproduct Batch-Ordering Systems

Now assume that inventory of each component is controlled by a continuous-time batch-
ordering policy. Let Sj = ⊗i∈Ij{ri + 1, ri + 2, . . . , ri +Qi}. Based on Song [81], Zhao and Simchi-
Levi [30] prove the following proposition.

Proposition 3.3. Assume that the Markov chain of the inventory position vector of the components
is irreducible and aperiodic. Suppose that a demand for product j ∈ J arrives at time t, then the
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corresponding order of component i, i ∈ Ij , that satisfies this demand is placed at time t − Ti,j(Si),
where the random vector (Si, i ∈ Ij) is uniformly distributed in Sj .

Based on Proposition 3.3, the order-based fill rates and the expected stockout delays
can be expressed as the averages of their counterparts in the base-stock systems. However, the
number of the corresponding base-stock systems is exponential in the number of components.
By exploring the problem structure, Zhao and Simchi-Levi [30] develop efficient numerical
methods based on Monte Carlo simulation. Given the sample size, the number of products,
and the reorder points, the computational complexity of the methods is no more than that of
sorting a set of real numbers, where the set size equals to the sum of the batch sizes of all com-
ponents.

3.4. General Supply Networks

In this section, we discuss extensions of the three generic methods to general supply chains.

Supply Chain Characteristics

A supply chain consists of facilities and products. To specify a network, we need to know the
processing cycle time for each product at each facility and the transportation lead time be-
tween every two facilities. We also need to know the BOM structure, external demand pro-
cesses, target service levels (e.g., the committed service times and the target fill rates), and
the value added at each facility for each product.

Network Classification

A node (or a stage) refers to a unique combination of facility and product, and an arc refers
to a pair of nodes with direct supply-demand relationship. A tree network is the one where
breaking any arc results in two separate subnetworks. A tree network includes serial dis-
tribution and pure assembly as special cases. Networks with at most one directed path be-
tween every two nodes include tree as a special case but are not limited to tree, for example,
the two-level general networks (Section 3.3). An acyclic network is more general which al-
lows multiple directed paths between two nodes. Finally, supply chains may have feedback
loops or reverse flows which form into close loop networks.

Unless otherwise mentioned, we assume that Assumption 2.2 holds. In addition, each
node utilizes an installation base-stock policy, ai,j equals either zero or one, and external de-
mand follows independent Poisson processes in case of continuous review or is i.i.d. random
variables in case of periodic-review.

3.4.1. The Lead-Time Demand Method

We follow the development of the literature by first considering the lead-time demand meth-
od. The idea here is the same as “METRIC”: breaking a network intomultiple single-stage sys-
tems with the input parameters depending on each other.

Lee and Billington [1] analyze the Hewlett-Packard DeskJet printer supply chain with
the objective of providing tools for managers to evaluate various stock positioning strateg-
ies. Each stage in the supply chain utilizes a periodic-review base-stock policy, the transit
times in manufacturing and transportation processes are stochastic and sequential. Demand
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process at each stage can be obtained by aggregation of the BOM. For each node j, the
total replenishment lead time L̃j consists of three parts: the processing time at node j, trans-
portation lead times, and stockout delays from immediate suppliers. For assembly systems,
it is assumed that at most one supplier can be out of stock in each period. Let fi be the fill rate
at stage i. Hence,

E
(
L̃j
)
≈

∑

(i,j)∈A
ai,jE

(
Li,j

)
/

∑

(i,j)∈A
ai,j +

∑

(i,j)∈A

(
1 − fi

)
E(Xi) + E

(
Lj
)
. (3.20)

Similarly, V (L̃j) can be determined by the first two moments of Xi, Lj , and Li,j .
Let RP be the length of one review period. One can compute the first 2 moments of the

lead-time demand at node j by [E(L̃j) + RPj]μj and [E(L̃j) + RPj]σ2
j + μ

2
j V (L̃j), respectively.

Here, μj (or σj) is themean (standard deviation) of demand in one period. Approximating the
lead time demand by a normal random variable, then the on-hand inventory is determined
by Proposition 2.4; E(Xj) and V (Xj) are computed based on (2.8) where L is replaced by
E(L̃j).

3.4.2. The Queueing-Inventory Method

Ettl et al. [85] applies the queueing-inventory method to supply chains where each stage util-
izes a continuous-time base-stock policy, all transit times are i.i.d. random variables, and the
external demand follows compound Poisson process. For each node j, L̃j is given by

L̃j = max
(i,j)∈A

{Xi} + Lj. (3.21)

To compute the moments of L̃j , it is assumed that at most one supplier can be out of
stock at any time [1]. Then, the supply process at node j is approximated by a MY/G/∞
queue with L̃j being the service time. By queueing theory, one can derive expressions for the
moments of IOj , which in turn yields the statistics of Ij , Bj (see (2.1)–(2.3)), and customer
service levels. Since it is a challenge to determine E(Xj), an upper bound based onM/M/∞
queue is utilized.

In addition to performance evaluation, Ettl et al. [85] optimize the total inventory in-
vestment, that is, the sum of expected work-in-process and finished goods inventory, in the
supply chain subject to meeting certain service requirements of the external customers. Us-
ing the safety factors (service levels) as decision variables, the authors developed analytic ex-
pressions for the gradients, and therefore the constrained nonlinear optimization problem can
be solved by the conjugate gradient method. Numerical studies show that this problem has
many local optimal solutions, and the strategy of setting high fill rates at all stages can per-
form poorly relative to the optimal solution (an average of roughly 20% gap is recorded).

3.4.3. The Flow-Unit Method

Applying the flow-unit (backward)method, one can provide exact analysis of supply chains
with exogenous, stochastic, and sequential transit times (Definition 2.1).
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Simchi-Levi and Zhao [31] consider tree networks with independent Poisson demand
and continuous-review base-stock policies and develop exact recursive equations for the
stockout delays at all stages of the supply chain. At node j, we must have, (see (2.9)),

Xj =
(
L̃j − Tj

(
sj
))+

,

L̃j = max
(i,j)∈A

{
Xi + Li,j

}
+ Lj.

(3.22)

Clearly, Xi = (L̃i − Ti(si))
+
where Ti(si) may be dependent (see, e.g., (3.18)). The key

idea here is that, for each external demand, we look backward in time to identify the corres-
ponding order placed by each stage in the supply chain that eventually satisfies the demand.
Thus, the recursive equations hold not only for systems in steady state, but also for systems
in transient states with time varying and/or temporally correlated demand.

If supplier i is in turn supplied by other node(s) in the system, then L̃i may be cor-
related across nodes i where (i, j) ∈ A, and L̃i may also be correlated with Tı(sı) for i /= ı.
Indeed, the stockout delays of parallel branches in a multistage assembly system can be cor-
related. See Simchi-Levi and Zhao [31] for an indepth analysis of the correlations. The fol-
lowing proposition characterizes the impact of the correlations on system performance.

Proposition 3.4. Consider a tree-structure supply chain. If external demand follows independent
Poisson processes, then any assembly node in the system has stochastically shorter backorder delay
and longer inventory holding time than their counterparts in an analogous system with independent
lead times.

Based on the recursive equations, Simchi-Levi and Zhao [31] prove the following pro-
perties.

Theorem 3.5. Given two serially linked nodes, node 2 (supplier) and node 1 (customer), in a tree sup-
ply network. Let s2 > 0. Then, moving one unit of inventory from node 2 downstream to node 1 yields
(i) stochastically shorter backorder delay (equivalently, stockout delay) at node 1 and (ii) stochasti-
cally shorter inventory holding time for any item traveling through both nodes.

This theorem holds for any tree-structure supply chain facing point demand processes
under the assumption that demand and supply can be split. One application of this theorem
is that moving inventory from all upstream stages to themost downstream stage reduces (sto-
chastically) the total inventory holding time for any item in the system as well as the
backorder delays to the external customers.

Proposition 3.6. Under Definition 2.1 and the assumption of independent Poisson demand processes,
L̃j is independent of Tj(sj) at every node j ∈ N.

Guided by the exact analysis, Simchi-Levi and Zhao [31] present two-moment approx-
imations and tractable decompositions that lead to an efficient evaluation and optimization
algorithm for general tree-structure supply chains. The algorithm computes the first two mo-
ments of the stockout delay at each stage of the network according to Proposition 3.6 and
(3.22). To identify the optimal or near optimal stock levels in the supply chain that minimize
system-wide inventory cost subject to service level constraints, the algorithm employs a dy-
namic programming routine to evaluate all stages sequentially.
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The algorithm is tested in various supply chains including a 22-stage and 21-arc
assembly network inspired by a real world problem, the Bulldozer supply chain, see
Graves and Willems [11]. Comparing to simulation results, the approximations are suf-
ficiently accurate for a wide range of system parameters, and the algorithm computes the op-
timal or near optimal stock levels efficiently. It is shown that the lead time uncertainties have
significant impact on the stock levels and stock positions, and ignoring lead time uncer-
tainties can lead to substantial errors.

Zhao [33] extends the analysis and approximation to compound Poisson demand and
networks with at most one directed path between every two nodes. Shi and Zhao [86] con-
sider acyclic supply chain and discover some simple yet unique properties.

4. Conclusion

We conclude the paper by pointing out some extensions of the models and methodologies
and some of the remaining challenges.

General Supply Network with Batch Ordering Policy

In practice, economies of scale in production or transportation costs may drive batch ordering
policies across the supply chain. General supply networks, for example, tree, with batch
ordering policies and lead times have not been studied in the literature. Indeed, Ettl et al.
[85] and Muckstadt [24] call for models and algorithms to handle these systems.

Supply Chains with Multiple Products: Design of Network and BOM

For exact analysis of general structure supply chains with multiple products, two challenges
remain: (1) the mapped network may be acyclic and (2) ai,j may be any nonnegative integer.
Resolving these challenges requires an extension of the stochastic, sequential lead timemodel
(Definition 2.1) to include joint probability distributions for the transit times [33].

Despite these challenges, inventory positioning in multiproduct supply chains with
common components deserves attentions as it holds the promises of jointly optimizing BOM,
network, and inventory. Without doubt, the design of network such as selection of sup-
pliers, transportation modes, manufacturing capabilities, and locations of facilities greatly
affect the inventory costs and service levels. Moreover, the implementation of strategies such
as component commonality, modular design, and postponement has made significant im-
pact on real-world supply chains, see, for example, Feitzinger and Lee [87]. Given recent
developments in the inventory positioning literature (in particular, in assembly systems and
general networks), we see huge opportunities in this direction.

Supply Chains with Reverse Material Flows

The reverse material flows can be caused by returns, recycling, or feedbacks. Supply chains
with returns are different from those handling repairable items because, in the latter, a re-
turned defected item is always accompanied by a demand for a workable item and the de-
fected item cannot be reused immediately. So far, researchers have applied the lead-time de-
mand method to supply chains with returns, see, for example, Fleischmann et al. [69] for sin-
gle-stage systems, DeCroix et al. [88] for serial systems and DeCroix and Zipkin [89] for as-
sembly systems. It is not clear, though, how the other two methods can be applied here.
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Supply Chains with Processing Capacity Constraints

Positioning inventory in supply chains with processing (e.g., production) capacity con-
straints poses a substantial challenge. To see this, let us consider the basic model for serial sys-
tems with an exponential server at each stage. The transit time at stage j depends on the
departure process at stage j + 1 which is not even renewal [90]. For ATO system, intro-
ducing capacitated suppliers significantly complicates the way components interact, see, for
example, Song et al. [91] and Zhao and Simchi-Levi [30]. Exact evaluation and optimization
of capacitated supply chains are difficult, we refer to Buzacott et al. [90], Lee and Zipkin [92],
Glasserman and Tayur [93] and Liu et al. [94] for various approximations, and to Glasserman
and Tayur [95] for a simulation-based optimization algorithm.

Supply Chains with Nonstationary and/or Correlated Demand

So far, we assume that demand processes are stationary and uncorrelated. In practice,
demand can be nonstationary (due to seasonality or short product life-cycle) and correlated,
and demand forecast can be updated. Supply networks with nonstationary and/or correlated
demand pose significant analytical and numerical challenges. For instance, in a periodic-re-
view system with nonstationary demand, one has to determine stock levels not only across
facilities but also across time. See Ettl et al. [85] for a rolling horizon approach and Graves
and Willems [96] for an extension of the guaranteed service model.

Supply chains with correlated demand is difficult because they generally cannot be
decomposed into single-stage systems. Erkip et al. [97] provide a decomposition result under
the “balanced assumption” [98]. Dong and Lee [99] considers a serial system and provide a
low bound for the optimal base-stock levels. Truong et al. [100] provide a simple heuristic
policy (by tracing flow-units) with a constant worst performance guarantee.

Other Inventory Control Policies

Clearly, the base-stock and batch ordering policies are not the only ones studied in literature
and used in practice. For instance, the periodic-review (s, S) policy, known as the min-max
policy in practice, has received lots of attention in the literature (see, e.g., Zipkin [9]). In
practice, the inventory control policies can be far more complex than these simple policies
because one has to take the batch sizes and the minimum and maximum order quantities
into account. In addition, many allocation rules other than FCFS are used in practice and
studied in the literature, such as priority rules, fair-share rules, and the FCFS rule without
the “committed stock” (Section 3.3). It would be interesting to apply the existing methods
or develop new method to characterize and evaluate supply chains with these policies and
allocation rules.

Appendix

Proof of Proposition 2.3. We can regard the supply system as a queue with IO(t) being the
number of jobs in system at time t. Due to the Poisson demand, IO has the same distribution
as the number of jobs in the queue seen by a departing job in steady state because all depar-
tures see the system in its time averages [34, Theorems 7.1–7.2]. Indeed, the latter is the de-
mand during the transit time of the departing job which has a distribution identical toD(∞ |
L] (again due to Poisson demand).
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Proof of Proposition 3.1. To prove the first statement, note that the CTMC of IP is ergodic (due
to finite state space) and it has a unique steady-state distribution. Because the uniform distri-
bution is stationary for the inventory position vector [101, page 64], IP is uniformly distri-
buted in S. The uniform distribution of IP immediately implies the independence of the in-
ventory positions.

Clearly, the interarrival times between two orders placed by stage j may not follow
exponential distribution. Thus, to prove the third statement, we utilize “ASTA” by Melamed
and Whitt [102]. By the second statement, IPj+1 is independent of the order placement at
stage j. Therefore, the weak lack of anticipation assumption (see [102, Definition 1]) holds
for IPj+1 and the order process by stage j. Because E(IPj+1) does not depend on t, it follows
from Theorem 2 of Melamed and Whitt [102] that, in steady state, each order placed by stage
j sees IPj+1 in its time averages.
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