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The main objective of this paper is to develop a two-warehouse inventory model with partial
backordering and Weibull distribution deterioration. We consider inflation and apply the
discounted cash flow in problem analysis. The discounted cash flow (DCF) and optimization
framework are presented to derive the optimal replenishment policy that minimizes the total
present value cost per unit time. When only rented or own warehouse model is considered, the
present value of the total relevant cost is higher than the case when two-warehouse is considered.
The results have been validated with the help of a numerical example. Sensitivity analysis with
respect to various parameters is also performed. From the sensitivity analysis, we show that
the total cost of the system is influenced by the deterioration rate, the inflation rate, and the
backordering ratio.

1. Introduction

Deterioration is the change, damage, decay, spoilage, evaporation, obsolescence, pilferage,
and loss of utility or loss of marginal value of a commodity that results in decreasing
usefulness from the original one. Most products such as medicine, blood, fish, alcohol,
gasoline, vegetables, and radioactive chemicals have finite shelf life and start to deteriorate
once they are replenished. In addition, for certain types of commodities, deterioration is
usually observed during their normal storage period. In most of the inventory models it is
unrealistically assumed that during stockout either all demand is backlogged or all is lost. In
reality often some customers are willing to wait until replenishment, especially if the wait will
be short, while others are more impatient and go elsewhere. The backlogging rate depends
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on the time to replenishment the longer customers must wait, the greater the fraction of lost
sales.

The classical inventory models usually assume that the available warehouse has
unlimited capacity. In many practical situations, there exist many factors like temporary price
discounts making retailers buy a capacity of goods exceeding their own warehouse (OW). In
this case, retailers will either rent other warehouses or rebuild a new warehouse. However,
from economical point of views, they usually choose to rent other warehouses. Hence, an
additional storage space known as rented warehouse (RW) is often required due to limited
capacity of showroom facility. In recent years, various researchers have discussed a two-
warehouse inventory system. This kind of system was first proposed by Hartely [1]. In this
system, it was assumed that the holding cost in RW is greater than that in OW. By assuming
constant demand rate, Sarma [2] developed a deterministic inventory model for a single
deteriorating itemwith shortages and two levels of storage. Pakkala and Achary [3] extended
the two-warehouse inventory model for deteriorating items with finite replenishment rate
and shortages. Besides, the ideas of time-varying demand for deteriorating items with two
storage facilities were considered by Benkherouf [4] and Bhunia and Maiti [5].

Most research on inventory do not consider the time value ofmoney. This is unrealistic,
since the resource of an enterprise depends very much on time value of money and this
is highly correlated to the return of investment. Therefore, taking into account the time
value of money should be critical especially when investment and forecasting are considered.
Buzacott [6] was the first author to include the concept of inflation in inventory modeling.
He developed a minimum cost model for a single-item inventory with inflation. Misra [7]
simultaneously considered both the inflation and the time value of money for internal as
well as external inflation rate and analyzed the influence of interest rate and inflation rate on
replenishment strategy. Chandra and Bahner [8] extended the result in Misra’s [7] model to
allow for shortages. Sarker and Pan [9] assumed a finite replenishment model and analyzed
the effects of inflation and time value of money on order quantity in which shortages were
allowed. Hariga [10] extended the study to analyze the effects of inflation and time value of
money on an inventory model with time-dependent demand rate and shortages. Bose et al.
[11] developed an EOQ model for deteriorating items with linear time-dependent demand
rate and shortages under inflation and time discounting. Van Delft and Vial [12] proposed
a simple economic order quantity model for inventory with a short and stochastic lifetime.
Their approach was performed in the framework of the total discounted cost criterion. Moon
and Lee [13] discussed different types of inventory models with the effects of inflation. For
the first time the effect of inflation in two-warehouse system was discussed by Yang [14]. In
her study, she considered the constant rate of deterioration in both warehouses with constant
demand rate and shortages were completely backlogged. Wee et al. [15] developed two-
warehouse inventory model with partial backordering andWeibull distribution deterioration
under inflation. In their study, they assumed that the demand and backlogging rate are
constant but is not always the case in real life. Yang [16] presented two-warehouse partial
backlogging inventory models for deteriorating items under inflation with constant demand
rate. Dey et al. [17] developed two storage inventory problems with inflation and time value
of money. Ghosh and Chakrabarty [18] suggested an order-level inventory model with two
levels of storage for deteriorating items and shortages were fully backlogged. Recently, Jaggi
and Verma [19] developed a two-warehouse inventory model with linear trend in demand
under the inflationary conditions. In their model, shortage was allowed and completely
backlogged. Patra [20] presented a two-warehouse inventory model with constant rate of
deterioration and time value of money. In his model, shortages are completely backlogged.
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Singh et al. [21] presented a deterministic two-warehouse inventory model for deteriorating
items with partial backlogging. Yang [22] extended Yang [16] model to incorporate three-
parameter Weibull deterioration distribution with constant demand.

It has been observed that most researchers on inventory models do not consider
time-varying rate of deterioration, inflation, and partial backordering simultaneously. Since
this phenomenon is not uncommon in real life, the researchers should also incorporate
them in their problem development. In this paper, the researcher has considered a two-
warehouse inventory system for deteriorating items. Here, shortages are allowed and
partially backlogged. The holding cost at RW is higher as compared to OW. The rate
of deterioration in both warehouses is different and follows a two-parameter Weibull
distribution. Further, this study takes inflation and applies the discounted cash flow (DCF)
approach for problem analysis. In this study, the demand rate is exponentially increasing
with time and shortages are partially backlogged with exponential backlogging rate. The
discounted cash flow and optimization framework are presented to derive the optimal
replenishment policy that minimizes the total present value cost. A numerical example and
sensitivity analysis are presented to illustrate all the models. When only rented or own
warehouse is considered, the present value of the total relevant cost is higher than the case
when two-warehouse model is considered. From the sensitivity analysis, the total cost of the
system is influenced by the deterioration rate, the inflation rate, and the backordering ratio.

2. Assumptions and Notations

In developing the mathematical models of the inventory system for this study, the following
common assumptions were used.

(1) Demand rate is known and is equal to aebt, where a > 1 and 0 < b < 1 (a > b) are
constants.

(2) Shortages are allowed and backlogging rate is e−λt, when inventory is in shortage.
The backlogging parameter λ is positive constant and 0 < λ � 1.

(3) Deterioration of the item follows a two-parameter Weibull distribution.

(4) Deterioration occurs as soon as items are received into inventory.

(5) There is no replacement or repair of deteriorating items during the period under
consideration.

(6) Product transactions are followed by instantaneous cash flow.

(7) The holding costs in RW are higher than those in OW.

(8) The OW has a fixed capacity of W units and the RW has unlimited capacity.

(9) Lead time is zero and initial inventory level is zero.

(10) The replenishment rate is infinite.

The following notations were used throughout the paper.

W : Capacity of OW

α: Scale parameter of the deterioration rate in OW

β: Shape parameter of the deterioration rate in OW

g: Scale parameter of the deterioration rate in RW, α > g
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h: Shape parameter of the deterioration rate in RW

r: Inflation rate

A: Ordering cost per order ($/order)

H: Holding cost per unit per unit time in OW ($/unit/unit time)

F: Holding cost per unit per unit time in RW ($/unit/unit time), F > H

s: Shortage cost per unit time ($/unit/unit time)

π : Shortage cost for lost sales per unit ($/unit)

C: Item cost per unit ($/unit)

Q0: The order quantity in OW

Qr : The order quantity in RW

Ir : Maximum inventory level in RW

T2: Time with positive inventory in RW

T1 + T2: Time with positive inventory in OW

T3: Time when shortage occurs in OW

T : Length of the cycle, T = T1 + T2 + T3

I0i(ti) : Inventory level in OW at time ti, 0 ≤ ti ≤ Ti, i = 1, 2, 3

Ir(t1): Inventory level in RW at time t1, 0 ≤ t1 ≤ T1

TUC: The present value of the total relevant cost per unit time.

The rate of deterioration is given as follows.

t: Time to deterioration, t > 0

f(t): Probability density function (pdf) of product life

F(t): Cumulative distribution function (cdf) of product life

R(t): Reliability

Z(t): Instantaneous rate of deterioration.

From the reliability theory, one has R(t) = 1 − F(t), Z(t) = f(t)/R(t), and R(0) = 1. The
product life t is assumed to follow a two-parameter Weibull distribution. The researcher has
assumed x as scale parameter, y as shape parameter, and x, y > 0. Then one has

f(t) = xyty−1e−xt
y

,

F(t) =
∫ t

−∞
f(t)dt = 1 − e−xt

y

,

R(t) = 1 − F(t) = e−xt
y

,

Z(t) =
f(t)
R(t)

=
xyty−1e−xt

y

e−xty
= xyty−1.

(2.1)

The instantaneous rate of deterioration Z(t) = xyty−1 is used in the following model
development.
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When y > 1, deteriorating rate increases with time. When y < 1, deteriorating rate
decreases with time. And when y = 1, deteriorating rate is constant. The two-parameter
Weibull distribution reduces to the exponential distribution.

3. Formulation and Solution of the Model

The OW inventory system in Figure 1 can be divided into three phases depicted by T1 to T3.
For each replenishment, a portion of the replenished quantity is used to backorder shortage,
while the rest enters the system. W units of items are stored in the OW and the rest is
dispatched to the RW. The RW is therefore utilized only after OW is full, but stocks in RW are
dispatched first. Stock in the RW depletes due to demand and deterioration until it reaches
zero. During that time, the inventory in OW decreases due to deterioration only. The stock in
OW depletes due to the combined effect of demand and deterioration during time T2. During
the time T3, both warehouses are empty, and part of the shortage is backordered in the next
replenishment.

The OW inventory system can be represented by the following differential equations

I ′01(t1) = −αβtβ−11 I01(t1), 0 ≤ t1 ≤ T1,

I ′02(t2) = −aebt2 − αβt
β−1
2 I02(t2), 0 ≤ t2 ≤ T2,

I ′03(t3) = −e−λt3aebt3 = −ae(b−λ)t3 , 0 ≤ t3 ≤ T3.

(3.1)

The first-order differential equations can be solved using the boundary conditions, I01(0) =

W , I01(T1) = I02(0) = We−αT
β

1 , and I03(0) = 0, one has

I01(t1) = We−αt
β

1 , 0 ≤ t1 ≤ T1, (3.2)

I02(t2) =
We−αT

β

1 − a
∫ t2
0 ebu+αu

β
du

eαt
β

2

, 0 ≤ t2 ≤ T2, (3.3)

I03(t3) =
a

b − λ

(
1 − e(b−λ)t3

)
, 0 ≤ t3 ≤ T3. (3.4)

The RW inventory system can be represented by the following differential equation

I ′r(t1) = −aebt1 − ghth−11 Ir(t1), 0 ≤ t1 ≤ T1. (3.5)

The first-order differential equation can be solved using the boundary condition, Ir(0) = Ir ,
one has

Ir(t1) =
Ir − a

∫ t1
0 ebu+gu

h
du

egt
h
1

, 0 ≤ t1 ≤ T1, (3.6)
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Figure 1: Graphical representation of the OW inventory system.
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Figure 2: Graphical representation of the RW inventory system.

where

Ir = a

∫T1

0
ebu+gu

h

du = a

(
T1 +

bT2
1

2
+
gTh+1

1

h + 1

)
. (3.7)

(1) From Figure 1, replenishment is made at t1 = 0, the present worth ordering cost is

OR = A. (3.8)



Advances in Operations Research 7

(2) Inventory occurs during T1 and T2 time periods. The present worth inventory cost
in OW is

HOOW = H

{∫T1

0
I01(t1)e−rt1dt1 +

∫T2

0
I02(t2)e−r(T1+t2)dt2

}

= HW

⎛
⎝T1 −

αT
β+1
1

β + 1
− rT2

1

2

⎞
⎠ +H

⎡
⎣W(1 − αT

β

1 − rT1
)
T2

+
(−W − a + arT1)T2

2

2
+
(
ar − ab

2
+
abα

2

)
T3
2

3

+
abrT4

2

8
− WαT

β+1
2(

β + 1
) +

aαβT
β+2
2(

β + 1
)(
β + 2

)

+
abαT

β+3
2

2
(
β + 3

)
⎤
⎦.

(3.9)

(3) Shortages occur during T3 time period. The present worth shortage cost in OW is

SC = s

{∫T3

0
[−I03(t3)]e−r(T1+T2+t3)dt3

}
= sa

[
(1 − rT1 − rT2)T2

3

2
− rT3

3

3

]
. (3.10)

(4) Lost sales occur during T3 time period. The present worth lost sale cost in OW is

LS = π

{∫T3

0

(
1 − e−λt3

)
aebt3e−r(T1+T2+t3)dt3

}
= πaλ

[
(1 − rT1 − rT2)T2

3

2
− rT3

3

3

]
. (3.11)

(5) Replenishment occurs at t = 0 and t = T1 + T2 + T3 = T . The item cost includes loss
due to deterioration as well as the cost of the item sold. The present worth item cost in OW is

IT0 = C

(
W − a

b − λ

(
1 − e(b−λ)T3

)
e−r(T1+T2+T3)

)
= C{W + aT3[1 − r(T1 + T2 + T3)]}. (3.12)

(6) From Figure 2, inventory occurs during T1 time periods. The present worth
inventory cost in RW is

HORW = F

{∫T1

0
Ir(t1)e−rt1dt1

}

= Fa

[
T2
1

2
+
bT3

1

3
− rT3

1

6
− brT4

1

8
+

ghTh+2
1

(h + 1)(h + 2)
− bgTh+3

1

(h + 1)(h + 3)

]
.

(3.13)
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(7) Replenishment occurs at t = 0. The item cost therefore includes loses due to
deterioration as well as the cost of the item sold. The present worth cost in RW is

ITr = CIr = C

(
a

∫T1

0
ebu+gu

h

du

)
= Ca

[
T1 +

bT2
1

2
+
gTh+1

1

h + 1

]
. (3.14)

(8) The present value of the total relevant cost during the cycle is

TUC(T1, T2, T3) =
1
T
{OR + (HOOW +HORW) + SC + LS + (IT0 + ITr)}, (3.15)

TUC(T1, T2, T3) =
1
T

⎧⎨
⎩A +HW

⎛
⎝T1 −

αT
β+1
1

β + 1
− rT2

1

2

⎞
⎠

+H

[
W
(
1 − αT

β

1 − rT1
)
T2 +

(−W − a + arT1)T2
2

2

+
(
ar − ab

2
+
abα

2

)
T3
2

3
+
abrT4

2

8
− WαT

β+1
2(

β + 1
)

+
aαβT

β+2
2(

β + 1
)(
β + 2

) + abαT
β+3
2

2
(
β + 3

)
⎤
⎦

+ sa

[
(1 − rT1 − rT2)T2

3

2
− rT3

3

3

]

+ πaλ

[
(1 − rT1 − rT2)T2

3

2
− rT3

3

3

]

+ C[W + aT3(1 − r(T1 + T2 + T3))]

+ Fa

[
T2
1

2
+
bT3

1

3
− rT3

1

6
− brT4

1

8
+

ghTh+1
1

(h + 1)(h + 2)
− bgTh+3

1

(h + 1)(h + 2)

]

+Ca

(
T1 +

bT2
1

2
+
gTh+1

1

h + 1

)}
.

(3.16)

The optimization problem can be formulated as:

Minimize : TUC(T1, T2, T3),

Subject to : T1 ≥ 0, T2 ≥ 0, T3 ≥ 0.
(3.17)
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Figure 3: Graphical representation of the RW inventory system (one warehouse-rented).

In the above expression, TUC is the objective function which we have to minimize,
which is the function of T1, T2, and T3. To minimize the objective function, the solution
methodology is presented in Section 6.

4. When the System Has Only Rented Warehouse (RW)

Figure 3 shows the graphical representation of the RW inventory system having only rented
warehouse. The RW inventory level function during T1 and T2 time periods is similar to (3.6)
and (3.4). The ordering cost and holding cost of the system are similar to (3.8) and (3.13).

Shortages occur during T2 time period. The present worth shortage cost in RW is

SC = s

{∫T2

0

(
− a

b − λ

(
1 − e(b−λ)t2

))
e−r(T1+t2)dt2

}
= sa

[
(1 − rT1)T2

2

2
− rT3

2

3

]
. (4.1)

Lost sales occur during T2 time period. The present worth lost sales cost in RW is

LS = π

{∫T2

0

(
1 − e−λt2

)
aebt2e−r(T1+t2)dt2

}
= πaλ

{
(1 − rT1)T2

2

2
− rT3

2

3

}
. (4.2)

Replenishment occurs at t = 0 and t = T1 + T2 = T . The item cost therefore includes loss
due to deterioration as well as the cost of the item sold. The present worth item cost in RW is

ITr = C

[
Ir − a

b − λ

(
1 − e(b−λ)T2

)
e−r(T1+t2)

]
= Ca

[(
T1 +

bT2
1

2
+
gTh+1

1

h + 1

)
+ T2(1 − r(T1 + t2))

]
.

(4.3)
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The order quantity in RW per order is

Qr = Ir − a

b − λ

(
1 − e(b−λ)T2

)
= a

(
T1 +

bT2
1

2
+
gTh+1

1

h + 1

)
+ aT2. (4.4)

Noting that T = T1 + T2, the total present value of the total relevant cost per unit time
during the cycle is the sum of ordering cost, holding cost, shortage cost, lost sale cost, and
item cost.

TUCr(T1, T2) =
1
T
{OR +HORW + SC + LS + ITr},

TUCr(T1, T2) =
1
T

{
A + Fa

[
T2
1

2
+
bT3

1

3
− rT3

1

6
− brT4

1

8
+

ghTh+2
1

(h + 1)(h + 2)
− bgTh+3

1

(h + 1)(h + 3)

]

+ sa

[
(1 − rT1)T2

2

2
− rT3

2

3

]
+ πaλ

{
(1 − rT1)T2

2

2
− rT3

2

3

}

+Ca

[(
T1 +

bT2
1

2
+
gTh+1

1

h + 1

)
+ T2(1 − r(T1 + t2))

]}
.

(4.5)

In the above expression, TUCr is the objective function which we have to minimize,
which is the function of T1 and T2. To minimize the objective function, the solution
methodology is presented in Section 6.

5. When the System Has Only Own Warehouse (OW)

Figure 4 shows the graphical representation of the OW inventory system having only own
warehouse. TheOW inventory level function during T1 and T2 time periods is similar to (3.6)
and (3.4). The ordering cost, holding cost, shortage cost, and lost sale cost of the system are
similar to (3.8), (3.9), (3.10), and (3.11). The order quantity in OW per order is

Q0 = W − a

b − λ

(
1 − e(b−λ)T2

)
= W + aT2. (5.1)

Replenishment occurs at t = 0 and t = T1 +T2. The item cost therefore includes loss due
to deterioration as well as the cost of the item sold. The present worth item cost in OW is

ITr = C

(
W − a

b − λ

(
1 − e(b−λ)T2

)
e−r(T1+T2)

)
= C{W + aT2[1 − r(T1 + T2)]}. (5.2)
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Figure 4: Graphical representation of the OW inventory system (one warehouse-own).

Noting that T = T1 + T2, the total present value of the total relevant cost per unit time
during the cycle is the sum of ordering cost, holding cost, shortage cost, lost sale cost, and
item cost

TUC0(T1, T2) =
1
T
{OR +HOOW + SC + LS + IT0},

TUC0(T1, T2) =
1
T

⎧⎨
⎩A +H

⎛
⎝T2

1

2
+
bT3

1

3
− rT3

1

6
− brT4

1

8
+

αβT
β+2
1(

β + 1
)(
β + 2

) − bαT
β+3
1(

β + 1
)(
β + 3

)
⎞
⎠

+ sa

[
(1 − rT1)T2

2

2
− rT3

2

3

]
+ πaλ

{
(1 − rT1)T2

2

2
− rT3

2

3

}

+C[W + aT2(1 − r(T1 + T2))]

⎫⎬
⎭.

(5.3)

In the above expression, TUC0 is the objective function which we have to minimize,
which is the function of T1 and T2. To minimize the objective function, the solution
methodology is presented in Section 6.

6. Solution Procedure

To derive the optimal solutions, the following classical optimization technique was used.

Step 1. Take the partial derivatives of TUC(T1, T2, T3)with respect to T1, T2, and T3 and equate
the results to zero. The necessary conditions for optimality are

∂TUC(T1, T2, T3)
∂T1

= 0,
∂TUC(T1, T2, T3)

∂T2
= 0,

∂TUC(T1, T2, T3)
∂T3

= 0. (6.1)
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Step 2. The simultaneous equations above can be solved for T ∗
1 , T

∗
2 , and T ∗

3 .

Step 3. With T ∗
1 , T

∗
2 , and T ∗

3 found in Step 2, derive TUC∗(T ∗
1 , T

∗
2 , T

∗
3 ).

7. Numerical Example

Optimal replenishment policy to minimize the total present value cost is derived by using
the methodology given in the preceding section. The following parameters are assumed: a =
400, b = 0.05, ordering cost = 100, holding cost inOW = 2, holding cost in RW = 25, shortage
cost = 25, lost sale cost = 10, item cost = 10, inflation rate = 0.06, own warehouse capacity
= 100, fraction backordered = 0.8, and the deterioration parameters α = 0.05, β = 1.8, g =
0.02, and h = 1.8.

From the below Table 1 and Figure 5, the main observations drown from the numerical
example are as follows:

For Model 1

(1) From Table 1, when all the given conditions and constraints are satisfied, the
optimal solution is found. In this example, the minimal value of the total present
value cost per unit time is $1006.31, while the respective optimal values of
T ∗
1 , T

∗
2 , T

∗
3 , and T ∗ are 0.53, 4.31, 3.41, and 8.25, respectively.

(2) When there is only rented warehouse, the minimal value of the total present value
cost per unit time is $2112.41, while the respective optimal period of positive and
negative inventory levels are 0.04 and 0.11, respectively.

(3) When there is only own warehouse with fixed capacity W units, the minimal value
of the total present value cost per unit time is $3378.63, while the respective optimal
periods of positive and negative inventory levels are 5.52 and 3.67, respectively. The
system has no space to store excess unit and its TUC is higher than our example due
to holding cost and shortage cost.

For Model 2

(1) From Table 1, when all the given conditions and constraints are satisfied, the
optimal solution is found. In this example, the minimal value of the total present
value cost per unit time is $1786.38, while the respective optimal values of
T ∗
1 , T ∗

2 , T ∗
3 , and T ∗ are 0.67, 6.42, 4.11, and 11.20, respectively.

(2) When there is only rented warehouse, the minimal value of the total present value
cost per unit time is $3755.68, while the respective optimal periods of positive and
negative inventory levels are 0.58 and 0.12, respectively.

(3) When there is only own warehouse with fixed capacityW units, the minimal value
of the total present value cost per unit time is $5302.62, while the respective optimal
periods of positive and negative inventory levels are 6.27 and 4.23, respectively. The
system has no space to store excess unit and its TUC is higher than our example due
to holding cost and shortage cost.

For Model 3

(1) From Table 1, when all the given conditions and constraints are satisfied, the
optimal solution is found. In this example, the minimal value of the total present
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Table 1: Comparison of models with different demand patterns.

Model Demand Warehouse T1 T2 T3 TUC

I
Exponential
increasing demand
rate, that is, aebt

Two warehouses 0.53 4.31 3.41 1006.31
One warehouse (rented) 0.04 0.11 — 2112.41
One warehouse (own) 5.52 3.67 — 3378.63

II
Linearly increasing
demand rate, that is,
a + bt

Two warehouses 0.67 6.42 4.11 1786.38
One warehouse (rented) 0.58 0.12 — 3755.68
One warehouse (own) 6.27 4.23 — 5302.62

III Constant demand
rate (a)

Two warehouses 0.82 9.49 5.06 2506.38
One warehouse (rented) 0.09 0.13 — 4912.22
One warehouse (own) 8.52 5.76 — 6078.92
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Figure 5: Graphical representation of total cost for different demand rates.

value cost per unit time is $2506.38, while the respective optimal values of
T ∗
1 , T ∗

2 , T ∗
3 , and T ∗ are 0.82, 9.49, 5.06, and 15.30, respectively.

(2) When there is only rented warehouse, the minimal value of the total present value
cost per unit time is $4912.22, while the respective optimal periods of positive and
negative inventory levels are 0.09 and 0.13, respectively.

(3) When there is only own warehouse with fixed capacityW units, the minimal value
of the total present value cost per unit time is $6078.92, while the respective optimal
periods of positive and negative inventory levels are 8.52 and 5.76, respectively. The
system has no space to store excess unit and its TUC is higher than our example due
to holding cost and shortage cost.
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Table 2: The sensitivity analysis data showing various parameters.

Parameter % T1 T2 T3 TUC PCI (%)

W

20 0.52 4.35 3.38 1015.31 0.89
10 0.52 4.32 3.40 1010.06 0.37
−10 0.53 4.30 3.43 1002.82 −0.34
−20 0.53 4.28 3.44 998.74 −0.72

r

20 0.23 3.67 2.97 384.75 −61.76
10 0.41 4.01 3.48 658.76 −34.53
−10 0.73 4.98 5.03 1349.81 34.14
−20 0.92 5.67 5.98 1643.78 63.34

α

20 0.60 4.04 3.58 1921.46 90.94
10 0.57 4.21 3.49 1435.53 42.65
−10 0.48 4.67 3.20 800.69 −20.43
−20 0.43 5.32 3.18 506.23 −49.69

β

20 0.73 2.46 4.25 2365.46 135.06
10 0.63 3.21 3.80 1686.47 67.58
−10 0.38 4.67 3.03 754.87 −24.98
−20 0.27 5.09 2.68 456.23 −54.66

g

20 0.52 4.31 3.41 1006.96 0.06
10 0.53 4.31 3.41 1006.75 0.04
−10 0.53 4.31 3.41 1005.86 −0.04
−20 0.54 4.31 3.41 1005.68 −0.06

h

20 0.53 4.31 3.41 1006.96 0.06
10 0.53 4.31 3.41 1006.75 0.04
−10 0.53 4.31 3.41 1005.86 −0.04
−20 0.53 4.31 3.41 1005.68 −0.06

8. Sensitivity Analysis

In order to study how the parameters affect the optimal solution, the sensitivity analysis is
carried out with respect to the various parameters. The results of the sensitivity analysis are
presented in Table 2, Figure 6 and Figure 7.

The main observations drawn from the sensitivity analysis are as follows:

(1) the value of PCI is the most sensitive to the shape parameter (β) of the deterioration
rate and the inflation rate (r). When β increases by 20%, the value of PCI increases
by over 135%. When r increases by 20%, the value of PCI decreases by over 61%.

(2) the values of PCI are quite sensitive to the parameters α and are not so sensitive to
the parameters h, g, and W .

(3) the parameters α, β, g, h,W , and B increase proportional to the value of PCI. The
PCI is inversely proportional to the parameters r.

(4) a high parameter value of β results in a high value of T1 and T3. A high parameter
value of r results in a small value of T1, T2, and T3.
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Figure 6: Percentage change in the total cost with respect to the parameters W and r.
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Figure 7: Percentage change in the total cost with respect to the parameters α, β, g, and h.

9. Conclusion

In this study, an inventory model is presented to determine the optimal replenishment cycle
for two-warehouse inventory problem under inflation, varying rate of deterioration, and
partial backordering. The model assumes limited warehouse’s capacity of the distributors.
Here, shortages are allowed and partially backlogged. The holding cost at RW is higher as
compared to OW. The rate of deterioration in both warehouses is different and follows a
two-parameter Weibull distribution. The DCF approach permits a proper recognition of the
financial implication of the lost sale in inventory analysis. Some items such as fashionable
goods, luxury items, and electronic products are easily identifiable with such kind of a setup,
the demand rate is exponentially increasingwith time and shortages are allowed and partially
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backlogged with exponential backlogging rate. The discounted cash flow (DCF) and classical
optimization technique are used to derive the optimal replenishment policy. A numerical
example and sensitivity analysis are implemented to illustrate the model with the help of
MATHEMATICA-5.2. When there is only rented or own warehouse in the inventory system,
the total present values of the total relevant cost per unit time are higher than the two-
warehouse model. From the numerical example, we could finally conclude that model 1 is
more profitable in comparison to model 2 and model 3 for two-warehouse inventory system.
As the backlogging and deterioration rate increases, the total cost of the system also increases.
But as the inflation rate increases, the total cost of the system decreases. From the sensitivity
analysis, it is evident that the deterioration rate, the inflation, and the backordering rate affect
the total cost of the system. In order to optimize the system, the decision maker must develop
the most economical replenishment strategy.

There is ample scope for further extension of the present research study in fuzzy
environments, trade credits, and situations of stock-dependent demand.
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