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Let S be a closed convex set of matrices and C be a given matrix. The matrix nearness problem
considered in this paper is to find a matrix X in the set S at which max {|xij − cij |} reaches its
minimum value. In order to solve the matrix nearness problem, the problem is reformulated to a
min-max problem firstly, then the relationship between the min-max problem and a monotone
linear variational inequality (LVI) is built. Since the matrix in the LVI problem has a special
structure, a projection and contraction method is suggested to solve this LVI problem. Moreover,
some implementing details of the method are presented in this paper. Finally, preliminary
numerical results are reported, which show that this simple algorithm is promising for this matrix
nearness problem.

1. Introduction

Let C = (cij) ∈ Rn×n be a given symmetric matrix and

Sn
Λ =

{
H ∈ Rn×n | HT = H,λminI � H � λmaxI

}
, (1.1)

where λmin, λmax are given scalars and λmin < λmax, I is the identity matrix, andA � B denotes
that B − A is a positive semidefinite matrix. It is clear that Sn

Λ is a nonempty closed convex
set. The problem considered in this paper is

min
{‖X − C‖inf | X =

(
xij

) ∈ Sn
Λ

}
, (1.2)
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where

‖X − C‖inf = max
{∣∣xij − cij

∣∣ | i = 1, . . . , n, j = 1, . . . , n
}
. (1.3)

Throughout the paper we assume that the solution set of problem (1.2) is nonempty.
Note that when λmin = 0 and λmax = +∞, the set Sn

Λ reduces to the semidefinite cone

Sn
+ =

{
H ∈ Rn×n | HT = H, H � 0

}
. (1.4)

Using the terminology in interior point methods, Sn
+ is called semidefinite cone, and thus the

related problem belongs to the class of semidefinite programming [1].
Problem (1.2) can be viewed as a type of matrix nearness problem, that is, the problem

of finding a matrix that satisfies some property and is nearest to a given one. A survey on
matrix nearness problems can be found in [2]. The matrix nearness problems have many
applications especially in finance, statistics, and compressive sensing. For example, one
application in statistics is to make adjustments to a symmetric matrix so that it is consistent
with prior knowledge or assumptions, and is a valid covariance matrix [3–8]. Paper [9]
discusses a new class of matrix nearness problems that measure approximation error using
a directed distance measure called a Bregman divergence and proposes a framework for
studying these problems, discusses some specific matrix nearness problems, and provides
algorithms for solving them numerically.

Note that a different norm is used in this paper than in these published papers [3–7]
and this makes the objective function of problem (1.2) be nonsmooth, and the problem (1.2)
cannot be solved very easily. In the next section, we will find that the problem (1.2) can
be converted into a linear variational inequality and thus can be solved effectively with
the projection and contraction (PC) method which is extremely simple both in theoretical
analysis and numerical implementations [10–15].

The paper is organized as follows. The relationship between the matrix nearness prob-
lem considered in this paper and a monotone linear variational inequality (LVI) is built in
Section 2. In Section 3, some preliminaries on variational inequalities are summarized. The
projection and contraction method for the LVI associated with the considered problem is
suggested. In Section 4, the implementing details for applying the projection and contraction
method to the matrix optimization problems are studied. Preliminary numerical results and
some concluding remarks are reported in Sections 5 and 6, respectively.

2. Reformulating the Problem to a Monotone LVI

For any d ∈ Rm, we have

‖d‖∞ = max
ξ∈B1

ξTd, (2.1)

where B1 = {ξ ∈ Rm | ‖ξ‖1 ≤ 1} and ξTd is the Euclidean inner-product of ξ and d.
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In order to simplify the following descriptions, let vec(A) be a linear transformation
which converts the matrix A ∈ Rl×n into a column vector in Rln obtained by stacking the
columns of the matrix A on top of one another, that is,

vec(A) = (a11, . . . , al1, a12, . . . , al2, . . . , a1n, . . . , aln)T , (2.2)

and let mat(vec(A)) be the original matrix A, that is,

mat(vec(A)) = A. (2.3)

Based on (2.1) and the fact that the matrix X and C are symmetric, problem (1.2) can
similarly be rewritten as the following min-max problem:

min
X∈Sn

Λ

max
Z∈B

vec (Z)T (vec(X) − vec(C)), (2.4)

where

B =

⎧
⎨
⎩Z ∈ Rn×n | Z = ZT ,

n∑
i=1

n∑
j=1

∣∣zij
∣∣ ≤ 1

⎫
⎬
⎭. (2.5)

Remark 2.1. Since X and C are both symmetric matrices, we can restrict the matrices in set B
to be symmetric.

Let

Ω1 =
{
x = vec(X) | X ∈ Sn

Λ

}
, (2.6)

Ω2 = {z = vec(Z) | Z ∈ B}. (2.7)

Since Sn
Λ and B are both convex sets, it is easy to prove that Ω1 and Ω2 are also convex sets.
Let (X∗, Z∗) ∈ Sn

Λ × B be any solution of (2.4) and x∗ = vec(X∗), z∗ = vec(Z∗). Then

zT (x∗ − c) ≤ z∗T (x∗ − c) ≤ z∗T (x − c), ∀(x, z) ∈ Ω, (2.8)

where c = vec(C) and Ω = Ω1 × Ω2. Thus, (x∗, z∗) is a solution of the following variational
inequality: find (x∗, z∗) ∈ Ω such that

(x − x∗)Tz∗ ≥ 0,
(z − z∗)T (−x∗ + c) ≥ 0,

∀ (x, z) ∈ Ω. (2.9)

For convenience of coming analysis, we rewrite the linear variational inequality (2.9) in the
following compact form: find u∗ ∈ Ω such that

(u − u∗)T
(
Mu∗ + q

) ≥ 0, ∀u ∈ Ω, (2.10)
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where

u∗ =
(
x∗

z∗

)
, u =

(
x
z

)
, M =

(
0 I
−I 0

)
, q =

(
0
c

)
. (2.11)

In the following, we denote the linear variational inequality (2.10)-(2.11) by LVI(Ω,M, q).

Remark 2.2. Since M is skew-symmetric, the linear variational inequality LVI(Ω,M, q) is
monotone.

3. Projection and Contraction Method for Monotone LVIs

In this section, we summarize some important concepts and preliminary results which are
useful in the coming analysis.

3.1. Projection Mapping

Let Ω be a nonempty closed convex set of Rm. For a given v ∈ Rm, the projection of v onto Ω,
denoted by PΩ(v), is the unique solution of the following problem:

min
u

{‖u − v‖ | u ∈ Ω}, (3.1)

where ‖·‖ is the Euclidian norm. The projection under an Euclidean norm plays an important
role in the proposed method. A basic property of the projection mapping on a closed convex
set is

(v − PΩ(v))T (u − PΩ(v)) ≤ 0, ∀v ∈ Rm, ∀u ∈ Ω. (3.2)

In many cases of practical applications, the closed convex setΩ has a simple structure,
and the projection onΩ is easy to carry out. For example, let e be a vector whose each element
is 1, and

B∞ = {ξ ∈ Rm | ‖ξ‖∞ ≤ 1}. (3.3)

Then the projection of a vector d ∈ Rm on B∞ can be obtained by

PB∞(d) = max{−e,min{d, e}}, (3.4)

where the min and max are component wise.
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3.2. Preliminaries on Linear Variational Inequalities

We denote the solution set of LVI(Ω,M, q) (2.10) byΩ∗ and assume thatΩ∗ /= ∅. Since the early
work of Eaves [16], it is well known that the variational inequality LVI(Ω,M, q) problem is
equivalent to the following projection equation:

u = PΩ
[
u − (Mu + q

)]
. (3.5)

In other words, to solve LVI(Ω,M, q) is equivalent to finding a zero point of the continuous
residue function

e(u) := u − PΩ
[
u − (Mu + q

)]
. (3.6)

Hence,

e(u) = 0 ⇐⇒ u ∈ Ω∗. (3.7)

In the literature of variational inequalities, ‖e(u)‖ is called the error bound of LVI. It
quantitatively measures how much u fails to be in Ω∗.

3.3. The Projection and Contraction Method

Let u∗ ∈ Ω∗ be a solution. For any u ∈ Rm, because PΩ[u − (Mu + q)] ∈ Ω, it follows from
(2.10) that

(
PΩ
[
u − (Mu + q

)] − u∗)T(Mu∗ + q
) ≥ 0, ∀u ∈ Rm. (3.8)

By setting v = u − (Mu + q) and u = u∗ in (3.2), we have

(
PΩ
[
u − (Mu + q

)] − u∗)T{u − (Mu + q
) − PΩ

[
u − (Mu + q

)]} ≥ 0, ∀u ∈ Rm. (3.9)

Adding the above two inequalities, and using the notation of e(u), we obtain

{(u − u∗) − e(u)}T{e(u) −M(u − u∗)} ≥ 0, ∀u ∈ Rm. (3.10)

For positive semi-definite (not necessary symmetric) matrix M, the following theorem
follows from (3.10) directly.

Theorem 3.1 (Theorem 1 in [11]). For any u∗ ∈ Ω∗, we have

(u − u∗)Td(u) ≥ ‖e(u)‖2, ∀u ∈ Rm, (3.11)

where

d(u) = MTe(u) + e(u). (3.12)
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For u ∈ Ω \ Ω∗, it follows from (3.11)-(3.12) that −d(u) is a descent direction of the
unknown function (1/2)‖u − u∗‖2. Some practical PC methods for LVI based on direction
d(u) are given in [11].

Algorithm 3.2 (Projection and Contraction Method for LVI Problem (2.10)). Given u0 ∈ Ω. for
k = 0, 1 . . ., if uk /∈ Ω∗, then do the following

uk+1 = uk − γα
(
uk
)
d
(
uk
)
, (3.13)

where γ ∈ (0, 2), d(u) is defined in (3.12), and

α(u) =
‖e(u)‖2
‖d(u)‖2

. (3.14)

Remark 3.3. In fact, γ is a relaxation factor and it is recommended to be taken from [1, 2). In
practical computation, usually we take γ ∈ [1.2, 1.9]. The method was first mentioned in [11].
Among the PC methods for asymmetric LVI(Ω,M, q) [10–13], this method makes just one
projection in each iteration.

For completeness sake, we include the theorem for LVI (2.10) and its proofs.

Theorem 3.4 (Theorem 2 in [11]). The method (3.13)-(3.14) produces a sequence {uk}, which
satisfies

∥∥∥uk+1 − u∗
∥∥∥
2 ≤

∥∥∥uk − u∗
∥∥∥
2 − γ

(
2 − γ

)
α
(
uk
)∥∥∥e

(
uk
)∥∥∥

2
. (3.15)

Proof. It follows from (3.11) and (3.14) that

∥∥∥uk+1 − u∗
∥∥∥
2
=
∥∥∥uk − u∗ − γα

(
uk
)
d
(
uk
)∥∥∥

2

=
∥∥∥uk − u∗

∥∥∥
2 − 2γα

(
uk
)(

uk − u∗
)T

d
(
uk
)
+ γ2α2

(
uk
)∥∥∥d

(
uk
)∥∥∥

2

≤
∥∥∥uk − u∗

∥∥∥
2 − 2γα

(
uk
)∥∥∥e

(
uk
)∥∥∥

2
+ γ2α2

(
uk
)∥∥∥d

(
uk
)∥∥∥

2

=
∥∥∥uk − u∗

∥∥∥
2 − γ

(
2 − γ

)
α
(
uk
)∥∥∥e

(
uk
)∥∥∥

2
.

(3.16)

Thus the theorem is proved.

The method used in this paper is called projection and contraction method because it
makes projections in each iteration and the generated sequence is Fejér monotone with
respect to the solution set.

For skew-symmetric M in LVI (2.10), it is easy to prove that α(u) ≡ 1/2. Thus, the
contraction inequality (3.15) can be simplified to

∥∥∥uk+1 − u∗
∥∥∥
2 ≤

∥∥∥uk − u∗
∥∥∥
2 − γ

(
2 − γ

)

2

∥∥∥e
(
uk
)∥∥∥

2
. (3.17)
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Following (3.17), the convergence results of the sequence {uk} can be found in [11] or be
proved similarly to that in [17].

Since the above inequality is true for all u∗ ∈ Ω∗, we have

dist2
(
uk+1,Ω∗

)
≤ dist2

(
uk,Ω∗

)
− γ

(
2 − γ

)

2

∥∥∥e
(
uk
)∥∥∥

2
, (3.18)

where

dist(u,Ω∗) = min{‖u − u∗‖ | u∗ ∈ Ω∗}. (3.19)

The above inequality states that we get a “great” profit from the kth iteration, if ‖e(uk)‖ is
not too small; conversely, if we get a very small profit from the kth iteration, then ‖e(uk)‖ is
already very small and uk is a “sufficiently good” approximation of a u∗ ∈ Ω∗.

4. Implementing Details of Algorithm 3.2 for Solving Problem (1.2)

Weuse the Algorithm 3.2 to solve the linear variational inequality (2.10) arising from problem
(1.2). For a given u = (x, z) ∈ Ω, the process of computing a new iterate is listed as follows:

Mu + q =
(

z
c − x

)
,

e(u) =
(
ex(u)
ez(u)

)
=
(

x − PΩ1[x − z]
z − PΩ2[z + (x − c)]

)
,

d(u) =
(
dx(u)
dz(u)

)
= MTe(u) + e(u) =

(
ex(u) − ez(u)
ex(u) + ez(u)

)
,

unew =
(
xnew

znew

)
=

⎛
⎜⎜⎝

x − γdx(u)
2

z − γdz(u)
2

⎞
⎟⎟⎠, γ ∈ (0, 2).

(4.1)

The key operations here are to compute PΩ1[x − z] and PΩ2[z + (x − c)], where
mat(x), mat(z), and mat(z+ (x− c)) are symmetric matrices. In the following, we first focus
on the computing method of PΩ1[v], where mat(v) is a symmetric matrix.

Since mat(v) is a symmetric matrix, we have

PΩ1[v] = arg min
x

{
‖x − v‖2 | x ∈ Ω1

}
= vec

(
arg min

X

{
‖X − V ‖2F | X ∈ Sn

Λ

})
, (4.2)

where V = mat(v). It is known that the optimal solution of problem

min
{
‖X − V ‖2F | X ∈ Sn

Λ

}
(4.3)
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is given by

QΛ̃QT, (4.4)

where

VQ = QΛ, Λ = diag(λ11, . . . , λnn),

Λ̃ = diag
(
λ̃11, . . . , λ̃nn

)
, λ̃ii = min{max{λii, λmin}, λmax},

(4.5)

and ‖ · ‖F is the Frobenius norm. Thus, we have

PΩ1[v] = vec
(
QΛ̃QT

)
. (4.6)

Now we move to consider the technique of computing PΩ2[v], where mat(v) is a symmetric
matrix.

Lemma 4.1. Ifmat(v) is a symmetric matrix and x∗ is the solution of the problem

min
x

{
‖x − v‖ |

m∑
i=1

|xi| ≤ 1

}
(4.7)

then we have

mat(x∗) = mat(x∗)T . (4.8)

Proof. Since

arg min
x

{
‖x − v‖ |

m∑
i=1

|xi| ≤ 1

}
= vec

⎛
⎝arg min

X

⎧
⎨
⎩‖X − V ‖F |

n∑
i=1

n∑
j=1

∣∣xij

∣∣ ≤ 1

⎫
⎬
⎭

⎞
⎠ (4.9)

and V = V T , where V = mat(v), we have that if x∗ is the solution of problem (4.7), then
vec(mat(x∗)T ) is also the solution of problem (4.7). As it is known that the solution of problem
(4.7) is unique. Thus, x∗ = vec(mat(x∗)T ), and the proof is complete.

Lemma 4.2. If x∗ is the solution of problem

min
x

{∥∥x − sign(v) ◦ v∥∥ |
m∑
i=1

xi ≤ 1, x ≥ 0

}
, (4.10)

where sign(v) = (sign(v1), sign(v2), . . . , sign(vm))
T , sign(vi) is the sign of real number vi, and

sign(v) ◦ v =
(
sign(v1)v1, sign(v2)v2, . . . , sign(vm)vm

)T = |v|, (4.11)
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then sign(v) ◦ x∗ is the solution of the problem

min
x

{
‖x − v‖ |

m∑
i=1

|xi| ≤ 1

}
. (4.12)

Proof. The result follows from

‖x − v‖ =
∥∥sign(v) ◦ (x − v)

∥∥,
m∑
i=1

∣∣ sign(vi)xi

∣∣ =
m∑
i=1

|xi| ≤ 1.
(4.13)

Lemma 4.3. Let v ≥ 0, T be a permutation transformation sorting the components of v in descending
order, that is, the components of v = Tv are in descending order. Further, suppose that x∗ is the
solution of the problem

min
x

{
‖x − v‖ |

m∑
i=1

xi ≤ 1

}
, (4.14)

then x∗ = T−1x∗ is the solution of the problem

min
x

{
‖x − v‖ |

m∑
i=1

xi ≤ 1

}
. (4.15)

Proof. Since T is a permutation transformation, we have that

T−1 = T, (4.16)

and the optimal values of objective function of problem (4.14) and (4.15) are equal.
Note that

‖x∗ − v‖ = ‖T(x∗ − v)‖ =
∥∥x∗ − v

∥∥,
m∑
i=1

x∗
i =

m∑
i=1

x∗
i ≤ 1.

(4.17)

Thus, x∗ is the optimal solution of problem (4.15). And the proof is complete.
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Remark 4.4. Suppose that mat(v) ∈ Rn×n is a symmetric matrix for a given v ∈ Rm. Let ṽ =
T(sign(v)◦v), where T is a permutation transformation sorting the components of sign(v)◦v
in descending order. Lemmas 4.1–4.3 show that if x̃∗ is the solution of the following problem

min
x

{
1
2
‖x − ṽ‖2 |

m∑
i=1

xi ≤ 1, x ≥ 0

}
, (4.18)

then

PΩ2[v] = sign(v) ◦ (Tx̃∗). (4.19)

Hence, to solve the problem (4.18) is a key work to obtain the projection PΩ2[v]. Let
e = (1, 1, . . . , 1)T ∈ Rm, then problem (4.18) can be rewritten as

min
x

{
1
2
‖x − ṽ‖2 | eTx ≤ 1, x ≥ 0

}
. (4.20)

The Lagrangian function for the constrained optimal problem (4.20) is defined as

L
(
x, y,w

)
=

1
2
‖x − ṽ‖2 − y

(
1 − eTx

)
−wTx, (4.21)

where scale y and vector w ∈ Rm are the Lagrange multipliers corresponding to inequalities
eTx ≤ 1 and x ≥ 0, respectively. By KKT condition, we have

x − ṽ + ye −w = 0,

y ≥ 0, 1 − eTx ≥ 0, y
(
1 − eTx

)
= 0,

w ≥ 0, x ≥ 0, wTx = 0,

(4.22)

that is,

y ≥ 0, 1 − eTx ≥ 0, y
(
1 − eTx

)
= 0,

x ≥ 0, x + ye − ṽ ≥ 0, xT(x + ye − ṽ
)
= 0.

(4.23)

It is easy to check that if eT ṽ ≤ 1, then (x̃∗, ỹ∗) = (ṽ, 0) is the solution of problem (4.23). Now
we assume that eT ṽ > 1. In this case, let

Δv = (ṽ1 − ṽ2, ṽ2 − ṽ3, . . . , ṽm−1 − ṽm, ṽm)
T . (4.24)
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Note that Δv ≥ 0 and

m∑
i=1

i ×Δvi =
m∑
i=1

ṽi > 1. (4.25)

Thus, there exists a least-integer K such that

K∑
i=1

i ×Δvi ≥ 1. (4.26)

Since

K∑
i=1

ṽi =

⎧
⎪⎪⎨
⎪⎪⎩

K∑
i=1
i ×Δvi +K × ṽK+1, 1 ≤ K < m,

K∑
i=1
i ×Δvi, K = m,

(4.27)

we have that

K∑
i=1

ṽi ≥ 1. (4.28)

Let

ỹ∗ =
1
K

(
K∑
i=1

ṽi − 1

)
, (4.29)

x̃∗ =
(
ṽ1 − ỹ∗, ṽ2 − ỹ∗, . . . , ṽK − ỹ∗, 0, . . . , 0

)T ∈ Rm. (4.30)

Theorem 4.5. Let x̃∗ and ỹ∗ be given by (4.30) and (4.29), respectively, then (x̃∗, ỹ∗) is the solution
of problem (4.23), and thus

PΩ2[v] = sign(v) ◦ (Tx̃∗). (4.31)

Proof. It follows from (4.26), (4.27), and (4.29) that

ỹ∗ =
1
K

(
K∑
i=1

ṽi − 1

)
≥ 1

K

K∑
i=1

(ṽi − i ×Δvi)

=

{
ṽK+1, 1 ≤ K < m,

0, K = m,

ỹ∗ =
1
K

(
K∑
i=1

ṽi − 1

)
≤ 1

K

(
K∑
i=1

ṽi −
K−1∑
i=1

i ×Δvi

)
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=
1
K

(
K−1∑
i=1

ṽi −
K−1∑
i=1

i ×Δvi + ṽK

)

= ṽK.

(4.32)

Following from (4.32) it is easy to check that (x̃∗, ỹ∗) is a solution of problem (4.23). Note that
problem (4.18) is convex, thus (x̃∗, ỹ∗) is the solution of problem (4.18). Further, according to
Remark 4.4, we have

PΩ2[v] = sign(v) ◦ (Tx̃∗). (4.33)

The proof is complete.

Remark 4.6. Note that if X̃∗ is the solution of problem

min
{∥∥∥∥X − 1

β
C

∥∥∥∥
inf

| X =
(
xij

) ∈ S̃n
Λ

}
, (4.34)

where β > 0 is a given scalar, and

S̃n
Λ =

{
H ∈ Rn×n | HT = H,

λmin

β
I � H � λmax

β
I

}
, (4.35)

then X∗ = βX̃∗ is the solution of problem (1.2). Thus, we can find the solution of problem
(1.2) by solving problem (4.34).

Let

Ω̃1 =
{
x = vec(X) | X ∈ S̃n

Λ

}
. (4.36)

Now, we are in the stage to describe the implementing process of Algorithm 3.2 for problem
(1.2) in detail.

Algorithm 4.7 (projection and contraction method for problem (1.2)).
Step 1 (Initialization). Let C = (cij) ∈ Rn×n be a given symmetric matrix, λmin, λmax, β >

0 be given scalars. Choose arbitrarily an initial point x0 = vec(X0), z0 = vec(Z0), and u0 =(
x0

z0

)
, where X0 ∈ Ω̃1, Z0 ∈ Ω2, Ω̃1, and Ω2 are defined by (4.36) and (2.7), respectively. Let

γ ∈ (0, 2), k = 0, and ε > 0 be a prespecified tolerance.
Step 2 (Computation). Compute PΩ̃1

[xk − zk] and PΩ2[z
k + (xk − c)] by using (4.6) and

(4.31), respectively.
Let

ex(uk) = xk − PΩ̃1
[xk − zk],

ez(uk) = zk − PΩ2[z
k + (xk − c)],
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Table 1: Numerical results of example 1.

n λ1 λn k CPU time (s) ‖e(u)‖∞ ‖vec(X − C)‖∞/‖vec(C)‖∞
10 0.2947 2.2687 55 0.06 9.2699 × 10−8 1.9768 × 10−7

20 −0.5849 2.8134 58 0.17 7.3282 × 10−8 2.7002 × 10−7

30 −0.9467 2.9938 65 0.35 7.5651 × 10−8 2.8008 × 10−7

40 −1.2405 3.4024 75 0.49 9.6325 × 10−8 5.0350 × 10−7

50 −1.7593 3.7925 89 0.67 8.5592 × 10−8 3.9993 × 10−7

60 −2.0733 4.1648 106 1.29 8.9517 × 10−8 6.1197 × 10−7

70 −2.3450 4.3352 121 2.00 9.5952 × 10−8 6.6696 × 10−7

80 −2.5817 4.5194 140 3.56 8.3927 × 10−8 3.7658 × 10−7

90 −2.8345 4.7512 160 5.23 8.3227 × 10−8 4.8914 × 10−7

100 −2.9193 5.1780 181 7.43 9.3473 × 10−8 6.2160 × 10−7

150 −4.1850 5.7006 302 35.90 7.4435 × 10−8 6.1552 × 10−7

200 −4.6721 6.7545 446 119.07 7.8171 × 10−8 8.4093 × 10−7

Table 2: Numerical results of example 2.

n λ1 λn k CPU time (s) ‖e(u)‖∞ ‖vec(X − C)‖∞/‖vec(C)‖∞
10 0.0090 9.0559 74 0.08 9.9036 × 10−8 4.2676 × 10−9

20 0.0048 19.4004 107 0.30 9.4778 × 10−8 4.2266 × 10−7

30 0.0184 33.6477 7617 17.98 9.9976 × 10−8 7.0348 × 10−2

40 0.0004 46.4279 162 0.76 9.9938 × 10−8 1.2216 × 10−1

50 0.0045 55.7072 192 1.46 9.4131 × 10−8 1.8517 × 10−1

60 0.0020 73.8863 1259 15.18 9.9708 × 10−8 2.4254 × 10−1

70 0.0084 86.8784 245 4.28 8.9912 × 10−8 3.3916 × 10−1

80 0.0021 100.3238 614 14.13 9.0897 × 10−8 3.8534 × 10−1

90 0.0002 108.6724 384 10.38 7.7490 × 10−8 4.7801 × 10−1

100 0.0011 130.7923 326 9.03 9.0180 × 10−8 5.2592 × 10−1

150 0.0001 195.6736 2214 98.28 7.0598 × 10−8 6.6452 × 10−1

200 0.0013 261.9417 1582 165.29 7.1460 × 10−8 7.4489 × 10−1

dx(uk) = ex(uk) − ez(uk),

dz(uk) = ex(uk) + ez(uk),

where uk =
(

xk

zk

)
.

Step 3. (Verification). If ‖e(uk)‖∞ < ε, then stop and output the approximate solution
X = βmat(xk), where e(uk) =

(
ex(uk)
ez(uk)

)
.

Step 4. (Iteration).

xk+1 = xk − γdx(uk)/2,

zk+1 = zk − γdz(uk)/2,

k := k + 1, goto Step 2.

5. Numerical Experiments

In this section, some examples are provided to illustrate the performance of Algorithm 4.7
for solving problem (1.2). In the following illustrative examples, the computer program for
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implementing Algorithm 4.7 is coded in Matlab and the program runs on IBM notebook
(R51).

Example 5.1. Consider problem (1.2)with C = (C̃+ C̃T )/2+ eye(n), λmin = −50, and λmax = 50,
where C̃ = rand(n) − 0.5, rand and eye are both the Matlab functions, and n is the size of
problem (1.2). Let γ = 1.5, ε = 1 × 10−7, then we have

β =
√
n‖vec(C)‖∞, x0 = vec

(
1
2

(
λ̃1 + λ̃2

)
× eye(n)

)
, z0 = vec(zeros(n)), (5.1)

where zeros is also the Matlab function, λ̃1 = max{λ1/β, λmin/β}, λ̃2 = min{λn/β, λmax/β},
and λ1, λn are the smallest and the largest eigenvalue ofmatrixC, respectively. Table 1 reports
the numerical results of Example 5.1 solved by Algorithm 4.7, where k is the number of
iterations, the unit of time is second, and X is the approximate solution of problem (1.2)
obtained by Algorithm 4.7.

Example 5.2. Consider problem (1.2) with C = C̃C̃T , λmin = 0, and λmax = 20, where C̃ =
2 × rand(n) − 1. In this test example, let γ , ε be same as that in Example 5.1, β, x0, and z0 be
also given according to (5.1). Table 2 reports the numerical results of Example 5.2 and shows
the numerical performance of Algorithm 4.7 for solving problem (1.2).

6. Conclusions

In this paper, a relationship between the matrix nearness problem and the linear variational
inequality has been built. Thematrix nearness problem considered in this paper can be solved
by applying an algorithm for the related linear variational inequality. Based on this point, a
projection and contraction method is presented for solving the matrix nearness problem, and
the implementing details are introduced in this paper. Numerical experiments show that the
method suggested in this paper has a good performance, and the method can be improved
by setting the parameters in Algorithm 4.7 properly. Thus, further studying of the effect of
the parameters in Algorithm 4.7 maybe a very interesting work.
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