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In today’s competitive markets, selling price and purchasing cost are usually fluctuating with
economic conditions. Both selling price and purchasing cost are vital to the profitability of a firm.
Therefore, in this paper, I extend the inventory model introduced by Teng and Yang (2004) to
allow for not only the selling price but also the purchasing cost to change from one replenishment
cycle to another during a finite time horizon. The objective is to find the optimal replenishment
schedule and pricing policy to obtain the profit as maximum as possible. The conditions that
lead to a maximizing solution guarantee that the existence, uniqueness, and global optimality
are proposed. An efficient solution procedure and some theoretical results are presented. Finally,
numerical examples for illustration and sensitivity analysis for managerial decision making are
also performed.

1. Introduction

In today’s time-based competitive market, the unit selling price of product may increase
significantly while its demand increases such as fashionable or valuable goods. On the other
hand, the selling prices of items may drop dramatically throughout their life cycles due to
advances in technology, competition, and so forth. Thus, the selling price is fluctuating. From
the other aspect, some products of the purchasing cost decreases as the demand increases
such as the unit cost of a high-tech product declines significantly over its short product life
cycle. For example, the cost of a personal computer drops constantly as shown in Lee et al. [1].
Furthermore, the purchasing cost as a percentage of sales is often substantial, which had been
mentioned in Heizer and Render [2]. Therefore, from an integrated logistics management
perspective, taking the varying selling price and purchasing cost into account is essential.
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Moreover, in reality, for fashionable commodities and high-tech products with short
life cycles, the backorder rate is diminishing with the length of waiting time. Customers who
experience stock-out will be less likely to buy again from the suppliers, they may turn
to another store to purchase the goods. The sales for the product may decline due to the
introduction of more competitive product or the change in consumers’ preferences. The
longer the waiting time, the lower the backlogging rate is. This leads to a larger fraction
of lost sales and a less profit. As a result, take the factor of partial backlogging into account is
necessary. Abad [3] proposed an optimal pricing and lot-sizing policy under the conditions
of perishability and partial backordering. Teng et al. [4] considered the partial backlogging
inventory model with time varying demand and purchasing cost. Chang et al. [5] considered
the inventory model with selling price and purchasing cost and then provided an optimal
replenishment policy for a retailer to achieve its maximum profit. To study the effect of
the factors (selling pricing and/or purchasing cost), several authors had developed various
models with the related issue. For example, Teng and Yang [6] proposed the inventory lot-size
models with time varying demand and purchasing cost under generalized holding cost. Abad
[7] added the pricing strategy into consideration and provided the optimal price and lot-size
for a retailer when the demandwas a function of the selling price. Recently, Sana [8] provided
the optimal pricing policy for partial backlogging inventory model with price-dependent
demand. Das Roy et al. [9] proposed an optimal shipment strategy for imperfect items in
a stock-out situation. Das Roy et al. [10] again provided an economic-order quantity model
of imperfect quality items with partial backlogging. The major assumptions and objective
used in the above research articles are summarized in Table 1.

Thus, in contrast to the above articles mentioned, the inventory model here is de-
veloped as introduced by Teng and Yang [11] to allow for not only selling price but also
purchasing cost to be fluctuating, which are changed from one replenishment cycle to
another during a finite time horizon. The objective is to find the optimal replenishment
schedule and pricing policy to obtain the maximum profit rather than minimum cost. The
total profit associated with the inventory system is a concave function of the number of
replenishments, which simplifies the search for the optimal number of replenishments to find
a local maximum. Moreover, an intuitively estimate for finding the optimal replenishment
number is provided. Some numerical examples for illustration and sensitivity analysis for
managerial decision making are performed. Finally, summary and suggestions for future
research are provided.

2. Assumptions and Notation

The mathematical model of the inventory replenishment problem is based on the following
assumptions:

(1) The planning horizon of the inventory problem here is finite and is taken asH time
units. The initial and the final inventory levels are both zero during the time horizon
H.

(2) Replenishment is instantaneous and lead time is zero.

(3) In reality, the item may deteriorate with time varying. For simplicity, we assume
that the deterioration rate here is constant and there is no repair or replacement of
the deteriorated items.
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(4) Shortages are allowed. Unsatisfied demand is backlogged, and the fraction of short-
ages backordered is a decreasing function of time t, denoted by β(t), where t is the
waiting time up to the next replenishment, and 0 ≤ β(t) ≤ 1 with β(0) = 1. Note that
if β(t)= 1 (or 0) for all t, then shortages are completely backlogged (or lost).

(5) In the lost-sales case, the opportunity cost due to lost sale is the sum of the revenue
loss and the cost of lost goodwill. Hence, the opportunity cost due to lost sale here
is greater than the unit purchasing cost. For details, see Teng et al. [4].

(6) In today’s global high competition environment, we here assume that the selling
price and purchasing cost are fluctuating with time and changed from one replen-
ishment cycle to another during a finite time horizon.

For convenience, the following notation is used throughout this paper:

H: the time horizon under consideration,

f(t): the demand rate at time t, without loss of generality, we here assume that f(t)
is increase, positive, differentiable in [0,H],

cv(t): the purchasing cost per unit at time t, which is positive, differentiable in
[0,H],

p(t): the selling price per unit at time t, which is positive, differentiable in [0, H],

θ: the deterioration rate,

cf : the fixed ordering cost per order,

ch: the inventory holding cost per unit per unit time,

cb: the backlogging cost per unit per unit time, if the shortage is backlogged,

cl: the unit opportunity cost of lost sales, if the shortage is lost. We assume without
loss of generality that cl > cv(t),

n: the number of replenishments over [0, H] (a decision variable),

ti: the ith replenishment time (a decision variable), i = 1, 2, . . . , n,

si: the time at which the inventory level reaches zero in the ith replenishment cycle
(a decision variable), i = 1, 2, . . . , n.

3. Mathematical Model

For simplicity, we use the same inventory model as in Teng and Yang [11], which is shown in
Figure 1.

As a result, we obtain the time-weighted inventory during the ith cycle as

Ii =
1
θ

∫si

ti

[
eθ(t−ti) − 1

]
f(t)dt, i = 1, 2, . . . , n. (3.1)

Similarly, the time-weighted backorders due to shortages during the ith cycle is

Bi =
∫ ti

si−1
(ti − t)β(ti − t)f(t)dt, i = 1, 2, . . . , n, (3.2)
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Figure 1: Graphical representation of inventory model.

and the total number of lost sales due to shortages during the ith cycle is

Li =
∫ ti

si−1

[
1 − β(ti − t)

]
f(t)dt, i = 1, 2, . . . , n. (3.3)

The order quantity and unit sold at ti in the ith replenishment cycle is

Qi =
∫ ti

si−1
β(ti − t)f(t)dt +

∫si

ti

eθ(t−ti)f(t)dt, i = 1, 2, . . . , n, (3.4)

and unit sold at ti in the ith replenishment cycle is

Si =
∫ ti

si−1
β(ti − t)f(t)dt +

∫si

ti

f(t)dt, i = 1, 2, . . . , n. (3.5)

Therefore, the purchasing cost during the ith replenishment cycle is

Pi = cf + cv(ti)Qi

= cf + cv(ti)

[∫ ti

si−1
β(ti − t)f(t)dt +

∫si

ti

eθ(t−ti)f(t)dt

]
,

(3.6)

and the revenue realized in the ith replenishment cycle is

Ri = p(ti)

[∫ ti

si−1
β(ti − t)f(t)dt +

∫ si

ti

f(t)dt

]
, i = 1, 2, . . . , n. (3.7)
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Hence, if n replenishment orders are placed in [0, H], then the total realized profit of the
inventory system during the planning horizon H is

TP(n, {si}, {ti}) =
n∑
i=1

(Ri − Pi − chIi − cbBi − clLi)

=
n∑
i=1

∫ ti

si−1

{[
p(ti) − cv(ti) − cb(ti − t) + cl

]
β(ti − t) − cl

}
f(t)dt − ncf

+
n∑
i=1

∫si

ti

[
p(ti) − cv(ti) −

(
ch
θ

+ cv(ti)
)(

eθ(t−ti) − 1
)]

f(t)dt,

(3.8)

with 0 = s0 < t1 and sn = H. The problem is to determine n, {si}, and {ti} such that
TP(n, {si}, {ti}) in (3.8) is maximized.

4. Theoretical Results and Solution

For a fixed value of n, the necessary conditions for TP(n, {si}, {ti}) to be maximized are:
∂TP(n, {si}, {ti})/∂ti = 0 for i = 1, 2, . . . , n, and ∂TP(n, {si}, {ti})/∂si = 0, for. i = 1, 2, . . . , n− 1.
Consequently, we obtain

∫ si

ti

{
p′(ti) +

[
ch + θcv(ti) − c′v(ti)

]
eθ(t−ti)

}
f(t)dt

= −
∫ ti

si−1

{[
p′(ti) − c′v(ti) − cb

]
β(ti − t) +

[
p(ti) + cl − cv(ti) − cb(ti − t)

]
β′(ti − t)

}
f(t)dt,

(4.1)
[
p(ti+1) − cv(ti+1) − cb(ti+1 − si)

]
β(ti+1 − si) − cl

[
1 − β(ti+1 − si)

]

= p(ti) − cv(ti) −
[
ch
θ

+ cv(ti)
](

eθ(si−ti) − 1
)
,

(4.2)

respectively. Note that (4.1) and (4.2) are coincident with the following articles’

(1) Equations (12) and (11) in Teng and Yang [11], if p(t) = 0,

(2) Equations (15) and (14) in Teng et al. [4], if p(t) = 0 and cv(t) = cv,

(3) Equations (11) and (10) in Chang et al. [5], if p(t) = p and cv(t) = cv.

Thus, the model here proposed is a generalization of the above three mentioned
models. For simplicity, from (4.2), let the marginal resultant profit per unit during no-
shortage and shortage period be

R(t, u) = p(t) − cv(t) −
[
ch
θ

+ cv(t)
](

eθ(u−t) − 1
)
, (4.3)

with t ≤ u, and

P(s, t) =
[
p(t) − cv(t) − cb(t − s)

]
β(t − s) − cl

[
1 − β(t − s)

]
, (4.4)
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with s ≤ t, respectively. Taking the partial derivative of R(t, u) and P(s, t) with respect to t
respectively, we obtained the following results:

Rt(t, u) = p′(t) +
[
ch + θcv(t) − c′v(t)

]
eθ(u−t), (4.5)

Pt(s, t) =
[
p′(t) − c′v(t) − cb

]
β(t − s) +

[
p(t) + cl − cv(t) − cb(t − s)

]
β′(t − s). (4.6)

Note that the longer the waiting time, the lower the marginal resultant profit. Consequently,
P(s, t) is a decreasing function of t. Thus, we may assume without loss of generality that
Pt(s, t) < 0, for all t > s. Then, we obtain the following result.

Lemma 4.1. For any given n, if Rti (ti, t) ≤ 0, with t ≥ ti, and Pti (t, ti) < 0, with t ≤ ti, i =
1, 2, . . . , n, then the optimal solution is n∗ = 1 and t∗1 = 0 (i.e., purchase at the beginning).

Proof. See Appendix A.

The results in Lemma 4.1 can be interpreted as follows. The condition Rti (ti, t) ≤ 0
implies that p′(t) + [ch + θcv(t)]eθ(u−t) ≤ c′v(t)e

θ(u−t). This means that the increasing rate of
the unit purchasing cost is higher than or equal to the sum of the marginal selling price and
marginal inventory carrying cost per unit (which includes inventory and deterioration costs).
Therefore, buying and storing a unit and then selling now are more profitable than buying
and selling it later.

Theorem 4.2. For any given n, if Rti (ti, t) > 0, with t ≥ ti, and Pti(t, ti) < 0, with t ≤ ti, i =
1, 2, . . . , n, then the solution that satisfies the system of (4.1) and (4.2) exists uniquely and 0 ≤ si−1 <
ti < si, for i = 1, 2, . . . , n.

Proof. See Appendix B.

The result in Theorem 4.2 reduces the 2n-dimensional problem of finding {s∗i } and {t∗i }
to a one-dimensional problem. Since s0 = 0, we only need to find t∗1 to generate s∗1 by (4.1), t∗2
by (4.2), and then the rest of {s∗i } and {t∗i } uniquely by repeatedly using (4.1) and (4.2). For
any chosen t∗1, if s

∗
n = H, then t∗1 is chosen correctly. Otherwise, we can easily find the optimal

t∗1 by standard search techniques.
Having calculated the second partial derivatives of the function TP(n, {si}, {ti}) shows

that the Hessian matrix is negative definite if

∂2TP

∂t2i
≤ −
[
∂2TP

∂si∂ti
+

∂2TP

∂ti∂si−1

]
< 0, for i = 1, 2, . . . , n, (4.7)

∂2TP

∂s2i
≤ −
[
∂2TP

∂si∂ti
+

∂2TP

∂ti+1∂si

]
< 0, for i = 1, 2, . . . , n. (4.8)

Theorem 4.3. For any given n, if Rti(ti, t) > 0, with t ≥ ti, and Pti (t, ti) < 0, with t ≤ ti, i =
1, 2, . . . , n, under conditions (4.7)-(4.8), then the solution that satisfies the system of (4.1) and (4.2)
is a global maximum solution.

Proof. See Appendix C.
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Next, we show that the total profit TP(n, {s∗i }, {t∗i }) is a concave function of the number
of replenishments. As a result, the search for the optimal replenishment number, n∗, is
reduced to find a local maximum. For simplicity, let

TP(n) = P
(
n,
{
s∗i
}
,
{
t∗i
})

. (4.9)

By applying Bellman’s principle of optimality [12], we have the following theorem:

Theorem 4.4. TP(n) is concave in n.

Proof. The proof is similar to that of Teng and Yang [11], the reader can easily prove it.

By a similar discussion as in Teng and Yang [11], I here use the average backlogging
rate β, unit purchasing cost cv and average unit selling price p to replace β(ti+1−si), cv(ti) and
p(ti), respectively. the estimate of the number of replenishments is obtained as

n1 = rounded integer of

⎡
⎢⎣
(ch + θcv)

[
cbβ +

(
cl − cv + p

)(
1 − β

)]
HQ(H)

2cf
[
ch + θcv + cbβ +

(
cl − cv + p

)(
1 − β

)]
⎤
⎥⎦

1/2

, (4.10)

where Q(H) =
∫H
0 f(t)dt. It is obvious that searching for n∗ by starting with n in (4.10)

will speed the computational efficiency significantly, comparing to starting with n = 1.
The algorithm for determining the optimal number of replenishments n∗ and schedule is
summarized as follows.

Algorithm for Finding Optimal Number and Schedule

Step 1. Choose two initial trial values of n∗, say n as in (4.10) and n − 1. Use a standard
search method to obtain {t∗i } and {s∗i }, and compute the corresponding TP(n) and TP(n − 1),
respectively.

Step 2. If TP(n) ≥ TP(n − 1), then compute TP(n + 1), TP(n + 2), . . ., until we find TP(k) >
TP(k + 1). Set n∗ = k and stop.

Step 3. If TP(n) < TP(n − 1), then compute TP(n − 2), TP(n − 3), . . ., until we find TP(k) >
TP(k − 1). Set n∗ = k and stop.

5. Numerical Examples

Example 5.1. Let f(t) = 200 + 20t, H = 3, p(t) = 200 + 30t, cv(t) = 150 + 10t, cf = 250, ch = 40,
cb = 50, cl = 200, θ = 0.08, β(t) = e−0.4t in appropriate units. After calculation, we have
p = 245, cv = 165, and β = 0.582. By (4.10), we obtain the estimate number of replenishments
n1 = 12. From computational results, we have TP(13) = 49021.79, TP(14) = 49044.31, and
TP(15) = 49030.61. Therefore, the optimal number of replenishments is 14, and the optimal
profit is 49044.31. The optimal replenishment schedule is shown in Table 2.
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Table 2: The optimal replenishment schedule for Example 5.1.

i 1 2 3 4 5 6 7

ti 0.0849 0.3160 0.5437 0.7683 0.9899 1.2086 1.4245
si 0.2330 0.4626 0.6889 0.9121 1.1323 1.3497 1.5644
p(ti) 202.55 209.48 216.31 223.05 229.70 236.26 242.73
cv(ti) 150.85 153.16 155.44 157.68 159.90 162.09 164.24

i 8 9 10 11 12 13 14

ti 1.6378 1.8485 2.0569 2.2629 2.4666 2.6682 2.8676
si 1.7765 1.9861 2.1933 2.3982 2.6009 2.8015 3.0000
p(ti) 249.13 255.46 261.71 267.89 274.00 280.05 286.03
cv(ti) 166.38 168.49 170.57 172.63 174.67 176.68 178.68

Table 3: Sensitivity analysis on parameters changed for Example 5.2.

Parameter Parameter value % change in
parameter Estimated n1 Optimal n∗ TP ∗(n∗) % change in

TP ∗ (n∗)

cf
200 −20 14 16 49787.47 1.52
300 +20 11 13 48371.79 −1.37

ch
30 −25 12 13 49379.80 0.68
50 +25 13 15 48748.20 −0.60

cb
40 −20 12 14 49135.56 0.19
60 +20 13 14 48961.05 −0.17

cl
150 −25 12 14 49238.33 0.40
250 +25 13 14 48883.42 −0.33

θ
0.06 −25 12 14 49152.16 0.22
0.1 +25 13 14 48939.71 −0.21

β(t) e−0.6t −50 13 15 48673.26 −0.76
e−0.2t +50 12 13 49719.47 1.38

Example 5.2. To understand the effect of changes in parameters cf , ch, cb, cl, θ, β(t) on the
optimal solution, the sensitivity analysis is performed by changing one parameter at a time
and keeps the others unchanged. The parameter values are the same as in Example 5.1. The
results obtained are shown as in Table 3.

From Table 3, the following phenomena can be obtained.

(1) The optimal maximum profit decreases as cf , ch, cb, cl, θ increases, however, it
increases as the backlogging rate β(t) increases.

(2) The optimal maximum profit is more sensitive on parameters cf than others.

(3) The optimal replenishment number is very slightly sensitive to the change of these
parameters except cf and β(t).

(4) The estimated number n1 is very close to the optimal replenishment number n∗, no
matter what magnitude of the parameters changed.

Example 5.3. Using the same numerical values as in Example 5.1, we consider the influence of
changes of the rate of change of selling price p(t) and purchasing cost cv(t) on the total profit.
The results are obtained as shown in Table 4.
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Table 4: Sensitivity analysis on rate of change for Example 5.3.

p(t), cv(t)
% change in rate

of change Estimated n1 Optimal n∗ TP ∗ (n∗) % change in
TP ∗ (n∗)

p(t) = 200 + 30t — 12 14 49044.31 0.00
cv(t) = 150+10t —

p(t) = 200 + 45t +50 13 15 64887.92 32.30
cv(t) = 150+10t —

p(t) = 200 + 15t −50 12 14 33314.34 −32.07
cv(t) = 150+10t —

p(t) = 200 + 30t — 12 14 43768.8 −10.76
cv(t) = 150+15t +50

p(t) = 200 + 30t — 12 14 54329.55 10.78
cv(t) = 150 + 5t −50

From Table 4, it is obviously that the phenomena are obtained.

(1) The percentage change in total maximum profit is significantly sensitive on the
variation of rate of change.

(2) The total profit increases as the rate of change of selling price increases, while de-
creases as the rate of change of purchasing cost increases.

(3) The estimated number n1 is also close to the optimal replenishment number n∗.

(4) The optimal replenishment number is slightly sensitive to the change of rate of
change.

6. Conclusions

In this paper, a partial-backlogging inventory lot-size model for deteriorating items with time
dependent demand, fluctuating selling price and purchasing cost is considered. We show
that the optimal replenishment schedule exists uniquely and the total profit associated with
the inventory system is a concave function of the number of replenishments. An intuitively
estimate for finding the optimal replenishment number is provided. From the sensitivity
analysis, the results indicate that the effect of variation of rate of change of the selling
price and purchasing cost on the system behavior is significant. Thus, to incorporate the
selling price and purchasing cost into the inventory model is vital, especially in the present
changeable market.

With more practical features, the model developed here can be further extended by
incorporating with other kind of functions or parameters, such as considering the demand
as a function of selling price or stock dependent, or time varying deterioration rate, or to
develop the model by employing other factors, such as inflation and price discount.
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Appendices

A. Proof of Lemma 4.1

Let

TPi(si−1, ti, si) =
∫ ti

si−1

{[
p(ti) − cv(ti) − cb(ti − t) + cl

]
β(ti − t) − cl

}
f(t)dt

+
∫ si

ti

{
p(ti) − cv(ti) −

[
ch
θ

+ cv(ti)
](

eθ(t−ti) − 1
)}

f(t)dt

=
∫ ti

si−1
P(t, ti)f(t)dt +

∫ si

ti

R(ti, t)f(t)dt.

(A.1)

We then have

∂TPi

∂ti
=
∫ ti

si−1
Pti(t, ti)f(t)dt +

∫si

ti

Rti(ti, t)f(t)dt. (A.2)

If Rti (ti, t) ≤ 0, then we know from (A.2) that ∂TPi/∂ti ≤ 0. Therefore, for any given i,
TPi is decreasing with ti. This implies that TPi(si−1, si−1, si) ≥ TPi(si−1, ti, si) for any fixed i.
Consequently, we obtain

TP(n, {si}, {ti}) =
n∑
i=1

TPi(si−1, ti, si) − ncf

≤
n∑
i=1

TPi(si−1, si−1, si) − ncf =
n∑
i=1

∫ si

si−1
R(si−1, t)f(t)dt − ncf

≤
n∑
i=1

∫si

si−1
R(0, t)f(t)dt − ncf (since Rti(ti, t) ≤ 0)

≤
∫H

0
R(0, t)f(t)dt − cf .

(A.3)

This completes the proof.

B. Proof of Theorem 4.2

For any given si−1 and ti, from (4.1), we set

F(x) =
∫x

ti

{
p′(ti) +

[
ch + θcv(ti) − c′v(ti)

]
eθ(t−ti)

}
f(t)dt

+
∫ ti

si−1

{[
p′(ti) − c′v(ti) − cb

]
β(ti − t) +

[
p(ti) + cl − cv(ti) − cb(ti − t)

]
β′(ti − t)

}
f(t)dt

=
∫x

ti

Rti(ti, t)f(t)dt +
∫ ti

si−1
Pti(t, ti)f(t)dt, with x ≥ ti ≥ si−1.

(B.1)
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We then have

F(ti) =
∫ ti

si−1
Pti(t, ti)f(t)dt < 0, (B.2)

and limx→∞F(x) > 0. Taking the first derivatives of F(x)with respect to x, we obtain

F ′(x) = Rti(ti, x)f(x) > 0. (B.3)

As a result, we know that there exists a unique si (> ti) such that F(si) = 0. Thus, the solution
to (4.1) uniquely exists. Similarly, from (4.2), we set

G(x) =
[
p(x) − cv(x) − cb(x − si) + cl

]
β(x − si) −

[
p(ti) − cv(ti) + cl

]

+
[
ch
θ

+ cv(ti)
](

eθ(si−ti) − 1
)
= P(si, x) − R(ti, si), with x ≥ si ≥ ti.

(B.4)

We then have

G(si) = p(si) − cv(si) − R(ti, si) = R(si, si) − R(ti, si) > 0, (B.5)

since Rti (ti, t) > 0, and limx→∞G(x) = −cl < 0. By taking the first derivatives of G(x) with
respect to x, we obtain

G′(x) = Px(si, x) < 0. (B.6)

Consequently, there exists a unique ti+1 (>si) such thatG(ti+1) = 0, which implies that solution
to (4.2) uniquely exists. Therefore, we complete the proof.

C. Proof of Theorem 4.3

Taking the second derivatives with respect to ti and si on TP(n, {si}, {ti}), we have

∂2TP

∂t2i
=
[(
p(ti) + cl − cv(ti)

)
β′(0) − ch − θcv(ti) − cb

]
f(ti)

+
∫ ti

si−1

{[
p′′(ti) − c′′v(ti)

]
β(ti − t) + 2

[
p′(ti) − c′v(ti) − cb

]
β′(ti − t)

+
[
p(ti) + cl − cv(ti) − cb(ti − t)

]
β′′(ti − t)

}
f(t)dt
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+
∫si

ti

{
p′′(ti) +

[
θc′v(ti) − c′′v(ti) − θ

(
ch + θcv(ti) − c′v(ti)

)]
eθ(t−ti)

}
f(t)dt,

∂2TP

∂si−1∂ti
= −Pti(si−1, ti)f(si−1) > 0,

∂2TP

∂ti∂si
= Rti(ti, si)f(si) > 0,

∂2TP

∂s2i
=
{[
p(ti+1) + cl − cv(ti+1) − cb(ti+1 − si)

]
β′(ti+1 − si) − cbβ(ti+1 − si)

−[ch + θcv(ti)]eθ(si−ti)
}
f(si).

(C.1)

Let Δk be the principal minor of order k, then, under condition (4.7)-(4.8), it is clear that

Δ1 =
∂2TP

∂t21
≤ − ∂2TP

∂s1∂t1
= −Rt1(t1, s1)f(s1) < 0, (C.2)

which implies that Δ1 + (∂2TP/∂s1∂t1) < 0:

Δ2 =
∂2TP

∂t21

∂2TP

∂s21
− ∂2TP

∂s1∂t1

∂2TP

∂t1∂s1
≥ − ∂2TP

∂t2∂s1
Δ1 − ∂2TP

∂t1∂s1

(
Δ1 +

∂2TP

∂t1∂s1

)
> 0, (C.3)

which implies that Δ2 + (∂2TP/∂t2∂s1)Δ1 > 0. For principal minor of higher order, i = 2, 3, . . .,
it is not difficult to show that they satisfy the following recursive relation:

Δ2i−1 =
∂2TP

∂t2i
Δ2i−2 −

[
∂2TP

∂ti∂si−1

]2
Δ2i−3,

Δ2i =
∂2TP

∂s2i
Δ2i−1 −

[
∂2TP

∂si∂ti

]2
Δ2i−2,

(C.4)

with the initial Δ0 = 1. From (4.7)-(4.8) and the relation between second-order partial
derivatives, we have

Δ2i−1 ≤ − ∂2TP

∂si∂ti
Δ2i−2 − ∂2TP

∂ti∂si−1

(
Δ2i−2 +

∂2TP

∂ti∂si−1
Δ2i−3

)
,

Δ2i ≥ − ∂2TP

∂ti+1∂si
Δ2i−1 − ∂2TP

∂si∂ti

(
Δ2i−1 +

∂2TP

∂si∂ti
Δ2i−2

)
.

(C.5)
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For i = 2 in (C.5), we obtain

Δ3 +
∂2TP

∂s2∂t2
Δ2 ≤ − ∂2TP

∂t2∂s1

(
Δ2 +

∂2TP

∂t2∂s1
Δ1

)
< 0,

Δ4 +
∂2TP

∂t3∂s2
Δ3 ≥ − ∂2TP

∂s2∂t2

(
Δ3 +

∂2TP

∂s2∂t2
Δ2

)
> 0.

(C.6)

Thus,

Δ3 < − ∂2TP

∂s2∂t2
Δ2 < 0, Δ4 > − ∂2TP

∂t3∂s2
Δ3 > 0. (C.7)

Proceeding inductively, we have

Δ2i−1 +
∂2TP

∂si∂ti
Δ2i−2 < 0, Δ2i +

∂2TP

∂ti+1∂si
Δ2i−1 > 0. (C.8)

Therefore, Δ2i−1 < 0 and Δ2i > 0, for i = 2, 3, . . .. This completes the proof.
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