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This paper presents a novel application of operations research to support decision making in
blood distribution management. The rapid and dynamic increasing demand, criticality of the
product, storage, handling, and distribution requirements, and the different geographical locations
of hospitals and medical centers have made blood distribution a complex and important problem.
In this study, a real blood distribution problem containing 24 hospitals was tackled by the authors,
and an exact approach was presented. The objective of the problem is to distribute blood and its
products among hospitals and medical centers such that the total waiting time of those requiring
the product is minimized. Following the exact solution, a hybrid heuristic algorithm is proposed.
Computational experiments showed the optimal solutions could be obtained for medium size
instances, while for larger instances the proposed hybrid heuristic is very competitive.

1. Introduction

This paper presents a novel application of operations research to support decision making
in blood distribution management with the objective of minimizing the total waiting time of
those hospitals and medical centers requesting for blood products. The increasing demand
for healthcare services coupled with their importance and higher costs make it obligatory to
better utilize the medical resources and facilities. The rapid and dynamic increasing demand
for blood, criticality of the product, storage, handling, and distribution requirements and
limitations, and the different geographical locations of hospitals and medical centers have
made blood distribution a complex and very important problem. Furthermore, increasing
rate of surgeries coupled with the new advances in healthcare have magnified the complexity
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and importance of an efficient blood distribution system. If the right blood products are not
available at the hospital and medical centers at the right time, then health issues or delays
of operations may arise, which results in extra days of hospitalization and cost. Besides,
overstocking blood at hospitals and medical centers leads to low utilization, as most blood
products may only be used to a patient of the same blood type within 21 days of collection.
For these reasons, blood must be collected regularly. Thus, any low utilization increases costs
and wastes the scarce blood resource. The latter may have fatal consequences.

The human blood is one of the most important components of a healthcare system.
According to [1], the most important reasons for the need for this vital medical resource are
as follows.

(i) There is no exact substitute for human blood.

(ii) Blood and products made from blood play an important role in advances in life-
saving techniques.

(iii) Blood products cannot be stored for an indefinite period (e.g., according to [2], red
blood cells must be used within 35–42 days of collection; platelets have shorter life,
as they must be used within five days of collection).

Blood is composed of many components (red cells, white cells, platelets, plasma). Each
of these components supplies a separate function in the human organism and has a different
use in medical treatment. Despite the various requirements to the number of unit of blood,
almost all critical medical treatments and operations require this vital life resource, among
which are accidental victims and injuries, surgeries, organ transplantations, several cancer
treatments, and so forth. For instance, 8 units of platelets may be required on a daily basis by
a patient undergoing leukemia cancer treatment [1].

The previous studies on the blood products distribution have focused on the
inventory related problems [3–7]. However, there is a lack of study regarding the problem
of distributing blood and blood products among hospitals and medical centers with the
objective of minimizing the total waiting time of hospitals waiting for blood arrival. Delen
et al. studied blood supply chain management by analyzing inventory consumption patterns
and supply chain status. They implemented the approach in the supply chain facilities at
the two United States Air Force Bases [1]. Katsaliaki performed a simulation study towards
a more cost-effective management of blood supply chain in the United Kingdom. The
study revealed substantial improvements in inventory and distribution operations involved
and resulted in cost reductions and increased safety [8]. Katsaliaki and Brailsford studied
ordering policies with respect to reductions in shortages and wastage, associated costs, as
well as improving service levels and safety by applying a discrete-event simulation model
[9]. Hemmelmayr et al. studied the problem of a cost-effective delivery of blood products to
Austrian hospitals. They presented solution approaches based on integer programming and
Variable Neighborhood Search meta-heuristic [10]. Although less related, Rego and Sousa
performed a thorough study on the design of hospital supply chains systems and developed
a hybrid Tabu Search-Variable Neighborhood Search meta-heuristic for the problem [11].

In this study, a real-blood distribution problem was considered. The case was experi-
enced by authors in the city of Tehran, Iran. The authors were supposed to derive practical
solutions, preferably optimal distribution of blood products among hospitals and medical
centers, with the objective of minimizing total waiting time of those requiring the product.
As solution procedures, a mixed-integer programming formulation was presented followed
by a hybrid heuristic to find optimal distribution of blood products among hospitals and
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medical centers such that the total waiting time of those requiring the product is minimized.
Computational experiments showed the mixed-integer programming formulation is quite
capable of finding optimal solutions for medium-size instances, and for the real cases where
24 hospitals were serviced, while for larger random instances, the hybrid heuristic derives
near optimal solutions very quickly. The remainder of this paper is organized as follows.
In Section 2, we give an exact definition of the problem together with the notations used in
this paper. In Section 3, we develop a new mixed-integer programming formulation for the
problem. Following incapability of the exact procedures in deriving optimal solution for large
instances in reasonable time, Section 4 is devoted to the hybrid heuristic algorithm developed
to solve the large-scale instances of the problem. In Section 5, computational experiments are
reported. The paper ends with conclusion.

2. Problem Definition

This section defines the problem, and the notations used throughout this paper. Apart from
many improvements applied to blood donor service processes since its foundation in 1921,
blood products supply chain and distribution process are composed of the four steps:

(1) collection of blood from donors,

(2) testing, processing and storage of blood,

(3) delivery of blood products,

(4) consumption of blood products to recipients.

The problem studied in this paper is inherent in process three, and it is to deliver the
blood to hospitals and medical centers upon their requests such that the total waiting time
of those requesting for is minimized. For the sake of simplicity, when “hospital” is used, we
mean both hospitals and medical centers, or any other medical institute where blood and
blood products are required. Typically, a central blood transfusion depot distributes blood
among hospitals. Apart from impartiality in blood distribution to hospitals when a central
depot is implemented, the total costs and waiting times can be minimized while managing
the whole operation is much simpler. Besides, it is not appropriate to keep the blood for a
long time and several blood products have a very short life, hence, keeping them for even
days results in unusable blood products which cannot be transferred to patients. These limit
banking large volume of blood by hospitals. Apart from these limitations which build this
problem very interesting and challengeable, the operational limitations avoid a single blood
distribution vehicle to cover all hospitals on a single route. At the most, these operational
limitations arise from the fact that the blood should be delivered to hospitals before the latest
time (an upper bound on the delivery time), and also each vehicle has a limited capacity. In
fact, in reality each vehicle covers a set of hospitals where a route is built.

An example of the problem is illustrated in Figure 1 where a set of 50 hospitals are
served by two vehicles. The vehicles leave from blood transfusion depot (the black rect-
angle). Initial studies show that at least two vehicles are required to cover these 50 hospitals.
Thus, two decisions should be made: Which hospitals should be assigned to each vehicle?
What the objective function would be?, and How the permutation of visiting each hospital
by each vehicle (in fact, in each route) should be determined? (Again, what the objective
function would be?). In this study, these two decisions are made separately by employing
two different mathematical formulations, where, at first, hospitals are assigned to blood
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Depot
Hospitals

(a) The geographical location of 50 hospitals

Depot
Hospitals

(b) A set of 15 hospitals covered by vehicle 1 (the
visiting route is not shown)

Depot
Hospitals

(c) A set of 35 hospitals covered by vehicle 2 (the visit-
ing route is not shown)

Figure 1: An illustration of the problem where 50 hospitals are covered by two vehicles.

distribution vehicles (or simply constructing routes), and then permutation of visiting
hospitals by each vehicle are optimized, according to the appropriate objective function cri-
terion. To better understand the second problem, that is, optimal permutation of visiting hos-
pitals in each route, the following example is provided.

Assume the problem of Figure 1(b), where a set of 15 hospitals is covered by a single
vehicle (vehicle 1). Without loss of generality and for the sake of better understanding,
assume that the travel time is our only component of the objective function. Table 1 shows
these travel times as a symmetric travel time matrix. We hold “0” as the blood transfusion
depot of vehicles, or simply depot according to the traveling salesman problem (TSP) and
vehicle routing problem (VRP) literatures. We define the “arrival time” to a hospital as the
time required for the vehicle to visit this hospital from depot for the first time. For instance,
according to Figure 2(a), the permutation of visiting hospitals is

p3a = {0, 44, 16, 36, 39, 37, 25, 47, 41, 23, 27, 35, 45, 48, 7, 17, 0}. (2.1)

Thus arrival time to hospital 44 would be 64 (see Table 1). This is the total waiting time of
hospital 44 to be visited by the vehicle 1.

Similarly, the arrival time to the hospital 16 would be the arrival time to hospital 44 (as
hospital 16 cannot be visited any sooner than hospital 44 in permutation p3a) plus the travel
time from hospital 44 to hospital 16. Thus, a16 = 44 + t44,16 = 64 + 7 = 71.



Advances in Operations Research 5

Table 1: The symmetric travel time matrix of example in Figure 1(b).

0 7 16 17 23 25 27 35 36 37 39 41 44 45 47 48
0 0 73 67 66 90 84 110 85 81 73 74 78 64 75 81 69
7 0 99 35 74 85 59 42 107 96 100 72 92 46 79 11
16 0 114 54 34 95 77 14 10 7 41 7 64 37 88
17 0 103 110 94 75 125 114 117 97 108 75 104 42
23 0 21 44 35 52 45 50 14 48 28 16 63
25 0 65 52 30 24 29 13 29 41 6 74
27 0 25 95 87 92 54 88 36 59 52
35 0 80 71 76 39 70 13 45 32
36 0 10 8 42 18 68 36 96
37 0 5 33 9 58 28 85
39 0 38 10 63 33 89
41 0 35 27 7 60
44 0 57 32 81
45 0 34 35
47 0 68
48 0

16
44

36 39 37 23
41

45 35

7

17

48

0

Depot
Hospitals

25 2747

(a) A route of visiting 15 hospitals (Figure 1(b)).
Here, the direction of the route is from left to right

25

16 44

36 3937 23
41

45 35

27

7

17

48

0

Depot
Hospitals

47

(b) A route of visiting 15 hospitals (Figure 1(b))
where the direction of the route is from right to
left

Figure 2: Two permutations of visiting hospitals of Figure 1(b). Note that the permutation presented in (b)
has a worse objective function than the one in (a).

Obviously, this arrival time concept is similar to the waiting time concept. In fact, what
we are looking for is to decide how to locate the hospitals so as to minimize the total waiting
time of all hospitals assigned to a vehicle. It is not surprising that the most important issue
when developing healthcare systems, especially in an emergency situation, is the waiting
time. Figures 2(a) and 2(b) illustrate two examples of waiting time issue, where changing
only direction of visits in Figure 2(b) in comparisonwith Figure 2(a) leads to another solution
with a different objective function value (assuming routes are constructed). Minimizing the
total waiting time of hospitals waiting for blood can be modeled within the framework of
the traveling repairman problem ((TRP), (other names are minimum latency problem (MLP)
and travelling delivery-man problem (TDP)). The TRP has been proved to be NP-Hard and
even more difficult than the TSP [12, 13]. Recently, Salehipour and Sepehri have developed
a strong mixed-integer mathematical programming formulation for the problem based on
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the flow network problem [14]. Fischetti et al. [15] and Eijl [16] have developed two math-
ematical programming formulations for the TRP, however, their formulations are much
weaker than that of [14], as their models cannot solve even small instance size of 15 hospitals
in a reasonable time. Sarubbi and Luna presented a different mixed-integer mathematical
programming model at the International Network Optimization Conference in 2007 [17].
However, their model still lacked certain sets of constraints and resulted in infeasibility.
Mendez-Diaz et al. [18] formulated TRP based on the linear ordering problem. Although
model’s performance is much better than previous ones, its computational time is not
comparable to that of Salehipour and Sepehri [14]. Later, we report on dimensions (total
number of decision variables and constraints), and the computational performance of these
models.

Note that here a solution is represented as a permutation of hospitals starting from 0
and ending in 0, that is, p = {0, . . . , i, j, . . . , 0}. From this representation, the objective function
value can be easily calculated. Assume the solution p = {0, 1, 2, . . . , n, 0}with 1 being the first
hospital in the solution; 2, the second, and so on. The total arrival time (equivalently waiting
time) for this solution can be calculated as

Fp =
n∑

i=1

ai, (2.2)

where

ai =
j≤i∑

j=1

tj−1,j . (2.3)

Combining (2.2) and (2.3) and simplifying it result

Fp =
n∑

i=1

((n + 1) − i + 1)ti−1,i + tn,0. (2.4)

Equation (2.4) offers the advantage of making the calculations much easier and quicker,
especially in heuristic algorithms. Let us back to Example of Figure 2. The permutation p3a
has a better (lower) objective function value than the permutation p3b:

Fp3a =
n∑

i=0

ai

= 16(64) + 15(7) + 14(14) + 13(8) + 12(5) + 11(24) + 10(6) + 9(7)

+ 8(14) + 7(44) + 6(25) + 5(13) + 4(35) + 3(11) + 2(35) + 1(66)

= 2820,
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Fp3b =
n∑

i=0

ai

= 16(66) + 15(35) + 14(11) + 13(35) + 12(13) + 11(25) + 10(44)

+ 9(14) + 8(7) + 7(6) + 6(24) + 5(5) + 4(8) + 3(14) + 2(7) + 1(64)

= 3606.

(2.5)

2.1. Notations

We assume that the time component consists of the total traveling time of blood distribution
vehicles between every two arbitrary hospitals, i and j, and that the service time (the delivery
time) is assumed to be same for all vehicles and hospitals, and hence is ignored. Even not
ignored, this delivery time can be dealt with easily [19]. We also assume “0” as the initial
position of all vehicles.

2.1.1. Decision Variables

The following hold.

yij is a decision variable which takes 1 if the vehicle travels from hospital i to
hospital j; and 0, otherwise.

xij is a decision variable which takes n − u + 1, if hospital j is visited after hospital i
and is visited by a vehicle in order u; and 0, otherwise.

puj is a decision variable which takes 1 if hospital j is visited in order u; and 0,
otherwise.

δvi is a decision variable which takes 1 if hospital i is visited by vehicle v; and 0,
otherwise.

γv is a decision variable which takes 1 if vehicle v is used; and 0, otherwise.

2.1.2. Parameters and Indices

The following hold.

i Hospital i, i = 0, . . . , n, where i = 0 is a dummy hospital and corresponds to the
blood transfusion depot of vehicles (vehicles’ home).

n + 1 is total number of hospitals (including the depot).

ai is arrival time to hospital i, where a0 = 0.

Fp is total cumulative travel time for route p (permutation p).

cv is the cost of using vehicle v, v = 1, . . . , m.

UT is the upper bound on the total travel time of each vehicle (since we have m
vehicles, thus we have m routes).

tij is a parameter which states the total travel time from hospital i to hospital j.
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3. Problem Formulation

This section describes one of the two major contributions of this study by proposing an exact
solution approach for the problem. The idea is to decompose the problem into subproblems
using set covering formulations, and then to solve optimally each subproblem using TRP
formulations. Thus, at first hospitals are assigned to vehicles (route construction), and then
visiting order of hospitals inside each route is optimized. Computational complexity of the
problem restricts developing a single combined mathematical programming formulation
which assigns hospitals to vehicles while minimizes total waiting time inside each route.

3.1. Constructing Routes: A Location Covering Model

The assignment of hospitals to vehicles can be accomplished using the set covering formu-
lations. One of such formulations has appeared in [20]where the goal is to locate a least-cost
set of facilities such that each customer (hospital) can be reached within a maximum allowed
travel time from the closest facility (blood transfusion depot). To apply this formulation
to construct blood distribution routes, however, small modifications are required. These
modifications are performed by imposing a set of constraints inspired from operational limi-
tations and problem’s nature (see constraints (3.4) below), and several changes into the
model’s parameters. Furthermore, as all vehicles leave from a central blood transfusion depot,
the concept of closest facility as appeared in the location covering formulation is not appli-
cable here. However, applying the constraints (3.4) coupled with the location covering model
provided in [20] (see Model 1 below), ensures assignment of a set of hospitals to each vehicle
where minimum travel time is satisfied.

Model 1

Minimize z =
m∑

v=1

cvγv +
n∑

i=0

m∑

v=1

t0iδvi (3.1)

subject to

m∑

v=1

δvi ≥ 1, i = 0, . . . , n, (3.2)

n∑

i=0

δvi ≤ |n + 1|γv, v = 1, . . . , m, (3.3)

n∑

i=0

t0iδvi ≤ UT, v = 1, . . . , m, (3.4)

δvi, γv ∈ {0, 1}, i = 0, . . . , n, v = 1, . . . , m. (3.5)

Constraints (3.2) guarantee that all hospitals are visited, while constraints (3.3) ensure that
if vehicle v is not set up, then no hospital can be covered by it. Constraints (3.4) ensure that
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total travel time of each route associated with each vehicle satisfies operational limitations.
Constraints (3.5) state that all δvi and γv are binary.

3.2. Visiting Hospitals: A Traveling Repairman Model

After assigning hospitals to vehicles and constructing routes, optimal permutation of visiting
hospitals with respect to minimizing total waiting time (equivalently total cumulative travel-
ing time) of hospitals should be determined. This section describes a novel mixed-integer pro-
gramming formulation for this purpose (Model Flow-SP). The proposed formulation is
strong enough and allows optimal solutions for instances of up to 25 hospitals in a single
route, and very close to optimality for instances with 30 hospitals.

Model Flow-SP

Minimize z =
n∑

i=0

n∑

j=0

tij · xij (3.6)

subject to

n∑

i=0

yij = 1, j = 1, . . . , n, (3.7)

n∑

j=0

yij = 1, i = 1, . . . , n, (3.8)

n∑

i=1

yi0 = 1, (3.9)

n∑

i=1

y0j = 1, (3.10)

n∑

j=0

x0j = n + 1, (3.11)

n∑

j=0

xj0 = 1, (3.12)

n∑

i=0

xi0 −
n∑

j=0

x0j = 1 − (n + 1), (3.13)

n∑

i=0

xik −
n∑

j=0

xkj = 1, k = 1, . . . , n, (3.14)



10 Advances in Operations Research

n∑

i=0

n∑

j=0

xij =
n+1∑

s=1

s, (3.15)

xij ≤ (n + 1) · yij , i, j = 0, . . . , n, (3.16)

yij ∈ {0, 1}, i, j = 0, . . . , n, (3.17)

xij ≥ 0, i, j = 0, . . . , n, (3.18)

n∑

u=0

puj = 1, j = 0, . . . , n, (3.19)

n∑

j=0

puj = 1, u = 0, . . . , n, (3.20)

p00 = 1, (3.21)

n∑

j=0

pnj = 1, (3.22)

n∑

k=0

xjk − (n + 1 − (i + 1)) · pij ≥ 0, i, j = 0, . . . , n, (3.23)

n∑

j=0

yij −
n∑

u=0

pui ≥ 0, i = 0, . . . , n, (3.24)

pui ∈ {0, 1}, u, i = 0, . . . , n. (3.25)

Constraints (3.7) and (3.8) are the assignment problem constraints that ensure every hospital
is visited exactly once. Constraints (3.9) and (3.10) ensure that the vehicle starts from depot
and finishes at depot. Redundant constraints (3.11) and (3.12) together with constraints
(3.13), (3.14), and (3.15) define a network flow problem to remove subtours, that is, ensuring
feasibility of solutions. Constraints (3.19) to (3.25) are scheduling constraints working accord-
ing to the visiting order of the hospitals. Constraints (3.19) and (3.20) ensure that there is just
one hospital visited in position i and vice verse. Constraints (3.21) and (3.22) ensure that
the vehicle starts from depot and goes back to depot at the end of its service. Constraint
(3.16), and constraints (3.23) and (3.24), links variables xij to variables yij , and variables yij

to variables pui, respectively. The fact that all xij , pui, and yij variables are binary and non-
negative, respectively, is assured by constraints (3.17), (3.25), and (3.18).

Table 2 reports the dimensions of four mathematical models developed for TRP,
namely Model of Fischetti et al. [15], Model of Eijl [16], Model of Mendez-Diaz et al. [18],
and that of Salehipour and Sepehri [14] (also Model Flow-SP).

Apart from Table 2, another comparison regarding each model’s performance is
reported in Table 3. In this table, 50 problems in 10 different sizes ranging from 10 nodes to 50
nodes were solved. In each size, 5 instances were considered, where nodes’ coordinates were
randomly generated, and Euclidean costs were calculated and rounded down to the nearest
integer. For each size, mean, minimum, and maximum computational time in seconds (over
the five instances), and mean, minimum, and maximum gap in percent were reported. Note
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Table 2: Total number of decision variables and constraints of models proposed for TRP.

Models

1 Flow-SP Fischetti et al.
1993 [15] Eijl, 1995 [16] Mendez-Diaz et al.

2008 [18]

Number of variables n2 +m 3n2 2n2 2n2 − n n3 − n2 + n

Number of constraints n + 2m 2n2 + 6n + 5 n2 + 3n + 1 n2 + n − 1 n(n − 1)(8n + 5)
6

+ 1

n: Total number of nodes.
m: Total number of vehicles.

Table 3: Performance of the four models proposed for TRP over randomly generated instances.

Size Flow-SP Fischetti et al. 1993 [15] Eijl, 1995 [16] Mendez-Diaz, 2008 [18]
Time GAP Time GAP Time GAP Time GAP

Mean 14.37 0 325.28 0 661.51 0 34.65 0
10 Min 9.13 0 106.38 0 186.84 0 20.75 0

Max 17.73 0 890.12 0 1667.9 0 29.11 0

Mean 105.79 0 3507.02 19.53 3600 60.02 426.36 0
15 Min 23.79 0 3135.12 0 3600 49.76 112.84 0

Max 182.34 0 3600 41.02 3600 65.95 719.04 0

Mean 605.11 0 3600 43.47 3600 63.51 2639.94 9.64
18 Min 120.09 0 3600 35.98 3600 56.76 902.44 0

Max 1261.23 0 3600 51.88 3600 70.22 3600 12.57

Mean 208.59 0 3600 48.77 3600 68.96 3133.59 13.48
20 Min 59.27 0 3600 39.81 3600 63.12 2753.04 0

Max 393.13 0 3600 54.83 3600 72.77 3600 17.84

Mean 2718.98 3.84 3600 67.3 3600 82.54 3600 18.89
25 Min 1382.57 0 3600 63.46 3600 79.37 3600 14.35

Max 3600 7.39 3600 70.45 3600 87.2 3600 20.64

Mean 3600 14.16 3600 70.75 3600 83.46 3600 23.83
30 Min 3600 7.33 3600 65.58 3600 81.02 3600 19.72

Max 3600 19.93 3600 76.17 3600 84.6 3600 26.38

Mean 3600 19.82 3600 80.56 3600 86.74 3600 29.28
35 Min 3600 11.47 3600 78.9 3600 85.48 3600 26.63

Max 3600 30.37 3600 82.82 3600 87.86 3600 35.11

Mean 3600 20.68 3600 84.51 3600 87.48 3600 33.68
40 Min 3600 14.18 3600 79.25 3600 86.76 3600 27.82

Max 3600 22.4 3600 87.62 3600 88.27 3600 38.92

Mean 3600 23.46 3600 89.24 3600 89.09 3600 38.98
45 Min 3600 15.61 3600 86.28 3600 88.02 3600 34.79

Max 3600 29.02 3600 91.03 3600 89.8 3600 39.03

Mean 3600 26.37 3600 88.28 3600 91.52 3600 44.13
50 Min 3600 18.11 3600 85.84 3600 — 3600 37.04

Max 3600 33.33 3600 89.95 3600 92.26 3600 48.77
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that the limit on the computational time is set to be 1 hour. The commercial solver Cplex 9.0
from ILOG was implemented.

According to the table, the best results were reported by Model Flow-SP developed
by Salehipour and Sepehri [14]. The performance of Model of Mendez-Diaz et al. is quite
promising. Even ignoring the computational time, and gaps, Model of Mendez-Diaz et al. is
not still comparable to Model Flow-SP, as the largest size solved by Model Flow-SP has 25
nodes.

4. Heuristic Model

Despite a strong mixed-integer formulation developed in Section 3.2, the problem of finding
optimal permutation hospitals in a route (traveling repairman problem) is still very difficult
to solve. To derive near-optimal solutions formedium and larger instances, an efficient hybrid
heuristic algorithm is developed in this section. The basic idea is to control the improvement
procedure accomplished by the variable neighborhood search (VNS) algorithm using the
simulated annealing (SA) algorithm. The basis of the heuristics developed in the following
sections require finding the closest, second-closest, and so forth hospital to any given hospital.
We, therefore, preprocess the travel time data and maintain in memory a proximity matrix
that contains one row per hospital. The ith row of the matrix contains all hospitals (except for
hospital i) in order of proximity to hospital i. Followings are through details of this hybrid
algorithm.

4.1. The Construction Algorithm

The construction heuristic is the greedy randomized adaptive search procedure (GRASP)
developed by Feo and Resende [21, 22]. The motivation for using the GRASP for the TRP is
the observation that the first few hospitals in a route are more important than the later ones.
This immediately follows from (2.4), from which it is clear that the ith distance in the solu-
tion is multiplied by a factor (n + 1) − i + 1. Hence, it is expected that a greedy algorithm per-
forms well. A completely greedy algorithm on the other hand can be expected to miss some
interesting opportunities.

As the most distinguishing characteristic of the GRASP where greediness is combined
with randomness in the construction phase, a restricted candidate list (RCL) is built by select-
ing a subset of all elements (hospitals) in a greedy fashion. Assuming a minimization pro-
blem, the RCL contains the elements whose incorporation into the partially built solution
would yield the smallest increase in the objective function value. From the RCL, an element
is then selected at random, after which the RCL is updated to reflect the fact that a new
element was added to the solution and is no longer available for selection. Selection of an
element and update of the RCL are repeated until a complete solution has been built. From
this solution, an improvement procedure starts until a local optimum is found. The size of the
RCL, α, is a parameter of the GRASP algorithm that controls the balance between greediness
and randomness. If α is small, the search is relatively greedy. If α is large, it is relatively
random.

The RCL concept can be easily translated to the TRP, and efficiently implemented using
the proximity matrix. Starting from 0, the RCL is filled with the α closest hospitals. From this
RCL, a random hospital is chosen, and then the RCL is filled with the α hospitals closest to it,
removing any hospitals that have already been selected. If less than α hospitals remain, then
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U ← {0, v1, v2, . . . , vn};
vc ← 0;
Repeat

Create RCL with α vertices vi ∈ U closest to vc;
Select random vertex vr ∈ RCL;
U ← U{vr};
vc ← vr

Until U = ∅;

Algorithm 1: Outline of the GRASP for the TRP.

the size of the RCL is decreased. Algorithm 1 outlines the GRASP construction algorithm for
the TRP.

4.2. The Improvement Procedure: SA + VNS Algorithms

The improvement procedure includes the five local searches, acquired from the routing
literature and modified for this problem, changed in a systematic way using the variable
neighborhood search (VNS) meta-heuristic [23–26]. This VNS algorithm is itself controlled
by the simulated annealing (SA)meta-heuristic to avoid being trapped in local optima.

The VNS meta-heuristic systematically explores different neighborhood structures.
The main idea underlying the VNS is that a local optimum relative to a certain neighborhood
structure is not necessarily a local optimum relative to another neighborhood structure.
For this reason, escaping from a local optimum can be accomplished by changing the
neighborhood structure. Although this is not required, many implementations of VNS use a
sequence of nested neighborhoods,N1 toNkmax, in which each neighborhood in the sequence
is a superset of its predecessor, that is, Nk⊂Nk+1. The neighborhoods used in our VNS do
not possess this property. Furthermore, usually in the VNS algorithm larger neighborhoods
are only examined when all smaller neighborhoods have been depleted, that is, when the
current solution is a local optimum of all smaller neighborhoods. Another option is to use the
neighborhoods in the order of their effectiveness with respect to the problem at hand, which
can be established by a small pilot study. Algorithm 2 presents the pseudocode for a basic
VNS.

Based on our previous experience, we set kmax = 5 in the hybrid algorithm. These five
neighborhoods were applied according to the order presented in Table 4.

Introduced by Kirkpatrick et al. [27], the SA algorithm is one of the well-known
meta-heuristic algorithms where trapping in local optima is avoided by sometimes accepting
a neighborhood move which worsens the value of the objective function. The acceptance
or rejection of a move (even the worse moves) is determined by a sequence of random
numbers, but with a controlled probability. The probability of accepting a move, causing an
increase Δ in the objective function f , is called the acceptance function and is normally set to
e(−Δ)/T , where T is a control parameter corresponding to the temperature in the analogy with
physical annealing. This acceptance function implies that small increases in f are more likely
to be accepted than large increases. When T is high, most moves will be accepted, but as T
approaches zero most uphill moves will be rejected. Usually, the SA starts with a relatively
high value of T to avoid being trapped in a local optimum too early. The algorithm proceeds
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Input: Initial solution x;
Until the stopping criterion is met do

Initialize: k ← 1;
Until k = kmax repeat

Shake: Generate x́ randomly fromNk(x) and set it as the incumbent solution;
Local search: Apply some local search method on x́; Denote with x the so obtained local
optimum;
If x is better than the x then
x ← x and set k ← 1;
Else
k ← k + 1 (switch to another neighborhood);

Algorithm 2: Outline of the basic variable neighborhood search.

Input: Initial solution x
Select an initial temperature T > 0;
Repeat

Local search: x́ ← arg minN(x);
Calculate Δ = f(x́) − f(x);
If Δ < 0 then x ← x́;
Elseif random(0,1) < e−Δ/T , then x ← x́;
Else
Reject x́;
T = T(c);

Until stopping condition is met;

Algorithm 3: The outline of simulated annealing.

Table 4: The neighborhoods and their applied order in the VNS improvement scheme.

k Neighborhood
1 Swap-adjacent
2 Swap
3 Remove-insert
4 2-OPT
5 3-OPT

by attempting a certain number of neighborhood moves at each temperature (here, in a VNS
algorithm), while the temperature gradually drops. We implemented the SA algorithm as
a controlling scheme on local searches to avoid being trapped in local optima. The outline
of the SA is brought in Algorithm 3, and the outline of the hybrid algorithm is shown in
Algorithm 4.

4.3. Neighborhoods

Our search uses five neighborhood structures: swap-adjacent, swap, remove-insert, 2-opt,
and 3-opt. The swap heuristic attempts to swap the positions of each pair of hospitals in the
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Initial procedure GRASP, report the best found solution x;
Initial procedure SA + VNS;

Repeat
Local search: apply VNS procedure with the five neighborhoods, report the incumbent
solution x́;
Calculate Δ;
If Δ < 0 then x ← x́;
Elseif random(0,1) < e−Δ/T , then x ← x́;
Else Reject x́, and modify temperature;

Until stopping criterion is met;

Algorithm 4: The outline of hybrid algorithm.

permutation. The remove-insert heuristic examines randomly each hospital i in the solution
and places it at the end of the permutation. The swap-adjacent heuristic, a subset of the swap
heuristic, attempts to swap each pair of adjacent hospitals in the permutation. The 2-opt
heuristic removes each pair of edges (partial routes between two hospitals) from the solution
and reconnects the nodes (hospitals). The 3-opt heuristic removes each triplet of edges from
the solution and reconnects the solution in such a way that the orientation of the solution
parts is preserved.

4.4. Neighborhood Reduction

Several attempts are made to decrease the size of the neighborhoods to examine during
the improvement phase. The implemented neighborhood reduction scheme is based on the
observation that in a reasonably good solution, most improving moves will involve hospitals
that appear in relative proximity to each other in this solution. For example, in a good solution
it is unlikely that a swap will yield a better solution if it exchanges a hospital that appears
close to the depot with one that appears far from it.We, therefore, introduce a proximity factor
β to determine the maximum distance between hospitals that may be involved in a move.
The factor β has a slightly different influence, depending on the move. The neighborhood
reduction strategy is not used for the swap-adjacent and remove-insert heuristics.

5. Computational Results

In this Section, we provide detailed computational experiments of the mathematical
formulation provided in Section 3, and the hybrid heuristic of Section 4. In this study,
two datasets were considered, random datasets, and a real dataset. All computational
experiments were carried out on a Pentium 4 PC with 2GB of memory and 2.0GHz of CPU.
We employed solver Cplex 9.0 from ILOG. The hybrid heuristic was coded in C++.

5.1. Random Datasets

A set of 30 random instances were generated with sizes ranging of 50, 100, and 150 hospitals
(for each size, 10 problems were generated). For each problem, travel time among hospitals
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Table 5: The general details of the generated instances.

File name Number of hospitals (min, max)

TRP-S50-Rx
TRP-S100-Rx
TRP-S150-Rx

50
100
150

(0, 100)
(0, 100)
(0, 100)

Table 6: The best value of hybrid heuristic algorithm parameters.

Parameter Description Value

t0 Initial temperature 10

c Cooling rate (0 < c < 1) 0.01

iter Maximum number of
iterations in each temperature ∞

α
RCL size in GRASP
construction algorithm 2

has been generated randomly using uniform distribution in [1, 100]. Table 5 shows the gen-
eral details of the instances generated. In each problem, a maximum number of 10 blood
distribution vehicles are considered, although, according to Model 1 not all the vehicles may
be implemented in optimal solution. In all instance, we set UT (upper bound on the total
travel time of each vehicle) to be 1500.

To tune the parameters of our hybrid algorithms, that is, the GRASP algorithm para-
meter, and the SA algorithm parameters, we refer the interested readers to [14, 28] where a
comprehensive study regarding this tuning process for the TRP has been accomplished. The
best values for these parameters are shown in Table 6.

Table 7 reports the complete computational results of both mixed-integer mathemat-
ical programming and the hybrid heuristic. The forth column of the table, “OFV of Model
1” shows the objective function value associated with Model 1, that is, the minimum cost
associated with the constructed routes. The column “OFV of Model Flow-SP” refers to the
computational results of the Model Flow-SP, that is, optimal permutation of visiting hospitals
in each route. All reported computational times are in seconds, and we set the upper bound
on the CPU time to be 500 seconds. For each instance, under the “OFV of Model Flow-SP,” we
have shown average, minimum, andmaximumgap and time associatedwith each of the solu-
tions methods (mixed-integer programming and hybrid heuristic). All reported gaps for the
exact solution are those from Cplex solver. This gap is calculated from the lower bound
derived by the solver over the best objective function found by the solver (obviously, for
the optimal solution this gap is 0%). In fact, Cplex solver proves optimality of the solution
by using this gap. Thus, this gap can be a measure of strength of the formulation as the con-
vergence rate of this gap towards 0% in a reasonable amount of computational time is of
importance. It is worth mentioning that Model Flow-SP yielded an average gap of 14.63% for
instances with 50 hospitals, and around 18%, for instances with 100 and 150 hospitals, res-
pectively. The average of “Min. Gap” is even much lower as it is below 8%.
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According to the table, the hybrid heuristic exhibited much better performance, both
in CPU time and in reported gap, especially when the size of problem increased. This reveals
the strength of the developed heuristic for the problem. Here, the reported gapwas calculated
from the best lower bound found by Cplex solver over the best objective function found by
the heuristic. Furthermore, maintaining the same quality, even in many cases with a lower
gap, the hybrid heuristic rarely reached the upper bound on the computational time while for
instances with 100 and 150 hospitals, the mixed-integer programming formulation reached
this upper bound in several cases. Note that according to the table, Model Flow-SP is very
strong as for instances with 50 hospitals, its performance is well enough and its average gap
is below 15%. But due to the complexity of the problem, still the problems of 50 hospitals are
not solvable in a reasonable time.

The developed hybrid-heuristic performed quite well, and tracking back its perfor-
mance, we observed that implementing the GRASP has been a very good initialization.
Also powerful neighborhoods in the VNS meta-heuristic coupled with the SA algorithm has
magnified this performance which resulted in near optimal solutions very quickly.

5.2. Real Dataset: A Case Study in Tehran, Iran

Here, the method of Section 3 is applied to a real blood distribution problem, experienced by
the authors. In this study, 24 hospitals were considered in the city of Tehran, capital of Iran.
Generally, in Tehran a single blood transfusion depot supplies the demands of all hospitals,
in a way that each hospital sends its vehicle to deliver the demand. The data of this study
includes the travelling distances to reach each hospital, the daily demand (blood products)
of each hospital, the maximum travelling distance allowed for vehicles, and the vehicles’
capacity. Note that when considering the travelling cost of each vehicle, we take the travelling
distance instead, usually by taking into account the approximate travelling cost per kilo-
meter.

The travelling distances, in kilometer, are given in the appendix. For the sake of
simplicity, we assumed the table is symmetric. The distances were extracted by Google Map
service of Google. Typically, this service offers several routes between every two points,
among which we chose the shortest one.

We were restricted to provide the daily demands of hospitals to public domain. As
for vehicles’ capacity, we set 600 units of blood products per vehicle, although different
vehicles may hold different capacities. On a standard vehicle, it is common in practice that the
maximum travelling distance allowed for vehicle is reached before the capacity. Hence, from
practical viewpoint, the capacity may less affect the final decision. It is worth mentioning
that the maximum travelling distance allowed differs when different numbers of vehicles are
hired. In fact, as the demands of all hospitals should be met, this upper bound on travelling
distance should be set such that all demands are met. The maximum travelling distance
allowed when hiring different numbers of vehicles are shown in Table 8. Except the case
when there is only one vehicle, the data of the table reflect the concern of several hospitals.

According to the number of hospitals considered in this study, it is expected that at
most three vehicles could satisfy the demands of all hospitals. The routes, constructed by
hiring different numbers of vehicles, are depicted in Figures 3, 4, and 5. Table 9 elaborates
more on the results.

In the table, the first column shows the number of vehicles hired for supplying
demands while the second column shows the objective function of subproblem of Section 3.1.
The remaining columns which are same for each vehicle are interpreted as objective function
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Delivery order: {0, 14, 17, 4, 16, 21, 19, 9, 13,
15, 7, 12, 22, 3, 8, 24, 1, 2, 6, 11, 20, 23, 10, 18, 5, 0}

Figure 3: The best found delivery order when hiring one vehicle. Note that from location Y, the vehicle
must return to its origin, A.

(a) Optimal delivery order of vehicle 1: {0,4,7,8,24,3,6,2,1,23,
10,5,0}

(b) Optimal delivery order of vehicle 2: {0,
14,17,9,19,13,15,12,22,11,20,16,21,18,6,0}

Figure 4: The optimal delivery orders when hiring two vehicles, (a) vehicle 1, and (b) vehicle 2.

Table 8: The limit on travelling distances for vehicles.

Number of vehicle(s) Maximum allowed travelling distance

1 220 km
2 120 km
3 80 km

of the TRP (column OFV), total distances travelled by vehicle in kilometers (column Trv.
Dis.), and total travelling time of vehicle ignoring the delivery time (column Trv. Time).

5.3. Current Situation

Currently, in Tehran, each hospital maintains its own vehicle to deliver its demand. However,
an investigation performed by the authors revealed that the vehicle is not properly suited for
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(a) Optimal delivery order of vehicle 1: {0,2,6,24,23,5,0}

(b) Optimal delivery order of vehicle 2: {0,17,16,21,
19,18,22,24,20,0}

(c) Optimal delivery order of vehicle 3: {0,
14,4,9,13,15,7,12,8,3,10,11,0}

Figure 5: The optimal delivery orders when hiring three vehicles, (a) vehicle 1, (b) vehicle 2, and (c) vehicle
3.

Table 9: The experimental result of solving the blood product distribution problem for 24 hospitals.

Number of
vehicle
(route)

Vehicle no. 1 Vehicle no. 2 Vehicle no. 3
Vehicle
cost∗ OFV Trv Dis.

(km)
Trv Time
(hr:min) OFV Trv Dis.

(km)
Trv Time
(hr:min) OFV Trv Dis.

(km)
Trv Time
(hr:min)

1 304.75 922.314∗∗ 135.4 03:42 — — — — — —
2 404.75 386.36 103 02:22 331.15 92.8 02:40 — — —
3 504.75 192.10 89.9 02:24 235.7 63.2 01:53 206.5 45.7 01:25
∗The cost of each vehicle was assumed to be 100.
∗∗The Cplex was manually stopped after one hour of running; the reported gap was 10.7%.

this purpose, which may affect the quality of the service. The disadvantages of this scenario
(Scenario 2) are the follows.

(i) The central blood transfusion of Tehran which distributes blood products to all
hospitals is located in a highly crowded part of the city, where the traffic is limited.
Furthermore, only a few hospitals hire vehicles allocated for blood products deli-
very, which as emergency vehicles, are also allowed to freely enter this area. For
hospitals not hiring such vehicles, the most appropriate vehicle would be taxis.



Advances in Operations Research 21

Although, taxis are allowed to enter this area, they are not considered as emergency
vehicles. Thus, in case of an accident, traffic jam, or any other similar circumstances,
they will end up in delay, even to several hours, as an unofficial report by one hos-
pital states.

(ii) When hospitals hire taxis, obviously, the vehicles are not specifically designed
for the purpose of blood products distribution. Furthermore, the driver has not
been trained regarding any special conditions of keeping and transporting blood
products (e.g., appropriate temperature).

(iii) The human errors could make the situation much worse. For instance, the driver
cannot distinguish between different blood products, which probably results in
wrong delivery.

Apart from these disadvantages, this scenario incurs higher costs compared to case
where specific vehicles are sent to hospitals from blood transfusion depot (Scenario 1, see
also Section 2). For this purpose, Table 10 illustrates the associated costs.

The costs of the table are calculated by twice of the travelling distances in kilometers
plus 10% of this cost, as for delays in delivery. As the table shows, the total cost is 450.45
(kilometers). Interpreting this cost as the total travelling times of all vehicles, Table 10 shows
superiority of Scenario 1. Note that here the cost structure has also changed. In Scenario 1 the
blood transfusion depot covers the cost of delivery, whereas in Scenario 2 hospitals cover the
cost, such that each hospital covers for its own. Furthermore, Scenario 1 improves distribution
of blood products in several ways.

(i) Total flow time and transportation costs are minimized, as the blood products
distribution problem is modeled as Traveling Repairman Problem where the
objective is to minimize the total waiting time of the service to be delivered.

(ii) Delays in transportation are minimized. This is attained as special-purpose vehicles
are allocated for distributing of blood products, which are considered as emergency
vehicles and can overpass traffic limitations.

(iii) The highest level of quality of service is maintained compared to Scenario 2. This
is because vehicles are highly equipped and staffs are well trained. Obviously, this
reduces wrong delivery and improves on time delivery, and most importantly “as
ordered” delivery.

According to results (Tables 9 and 10), lower travelling time (equivalently travelling
distance) is reached when employing Scenario 1. Thus, it is not very far if we state Scenario 1
outperforms Scenario 2. Finally, considering both technical difficulties, which are much more
important than costs (as the problem concerns human lives), and also costs, Scenario 1 is
superior to Scenario 2. This is indeed very important, because on a real scale problem, like
city of Tehran, improvements are substantial. (Considering both private and public hospitals,
currently Tehran holds around 150 hospitals. Also note that we have solved random instances
of size 150 hospitals in reasonable amount of time, see Table 7.)

It is worthy to add that currently authors are negotiating with Iran Ministry of Health
to design a distribution network of blood products in Tehran. This not only requires software
infrastructure, but also hardware ones, most importantly, well-equipped vehicles and well-
trained staffs. Here, we believe solving the problem should not be an issue, although the
access to the appropriate data is.
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Table 10: Cost of each hospital maintaining its demands.

Hospital Cost (km)

Taleghani 22.66
Modarres 20.24
Motahhari 15.18
Sherkat-e-Naft 8.14
Dr. Lavasani 53.46
Erfan 31.9
Kasra 13.42
Khatam-ol-Anbiya 21.12
Arad 8.58
Mofid 28.38
Atiyeh 30.36
Dey 14.96
Apadana 6.6
Ariya 1.87
Asiya 10.56
Ashrafi Esfahani 15.62
Alborz 2.64
Al-Ghadir 31.46
Iranshahr 8.58
Rasol Akram 15.4
Akbar Abadi 25.08
Moheb 17.6
Milad 22.44
Vali-e-Asr 24.2

6. Conclusion

In this paper, we presented a new application of operations research in healthcare. The pro-
blem is to find optimal routes when distributing blood products among hospitals such that
the total waiting time of hospitals requiring them are minimized. We studied a real blood
distribution problem where 24 hospitals were to be served by a maximum of three vehicles.
The proposed solution approaches are a mixed-integer programming formulation and a
hybrid heuristic. Computational experiments showed the efficiency of the exact approach
in finding optimal solutions for the real case. For the purpose of providing high-quality
solutions for much larger instances, several random instances containing up to 150 hospitals
and 10 vehicles were generated. The performance of the developed hybrid heuristic on these
instances is promising, and near-optimal solutions were reported in a short time (almost 3
minutes on average for these problems). The proposed formulation and solution approach
provide a basis for many other home healthcare problems and applications. Currently, the
authors are working on these problems and applications.

Appendix

For more details see Table 11.
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