
Hindawi Publishing Corporation
Advances in Operations Research
Volume 2012, Article ID 635282, 13 pages
doi:10.1155/2012/635282

Research Article
Probabilistic Quadratic Programming Problems
with Some Fuzzy Parameters

S. K. Barik and M. P. Biswal

Department of Mathematics, Indian Institute of Technology, Kharagpur, Kharagpur 721 302, India

Correspondence should be addressed to M. P. Biswal, mpbiswal@maths.iitkgp.ernet.in

Received 11 October 2011; Revised 9 December 2011; Accepted 20 December 2011

Academic Editor: Shangyao Yan

Copyright q 2012 S. K. Barik and M. P. Biswal. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We present a solution procedure for a quadratic programming problem with some probabilistic
constraints where the model parameters are either triangular fuzzy number or trapezoidal fuzzy
number. Randomness and fuzziness are present in some real-life situations, so it makes perfect
sense to address decision making problem by using some specified random variables and fuzzy
numbers. In the present paper, randomness is characterized by Weibull random variables and
fuzziness is characterized by triangular and trapezoidal fuzzy number. A defuzzification method
has been introduced for finding the crisp values of the fuzzy numbers using the proportional
probability density function associatedwith themembership functions of these fuzzy numbers. An
equivalent deterministic crisp model has been established in order to solve the proposed model.
Finally, a numerical example is presented to illustrate the solution procedure.

1. Introduction

In real-world applications, it is very much difficult to know all the information about
the input parameters of the mathematical programming model because relevant data are
inexistent or scarce, difficult to obtain or to estimate, the system is subject to changes, and
so forth, that is, input parameters are uncertain. One of the best ways of modeling these
uncertainties in the form ofmathematical programming is known as stochastic programming.
It is widely used in several research areas such as agriculture, capacity planning, finance,
forestry, military, production control and scheduling, sport, telecommunications, transporta-
tion, environmental management planning.

It should also be noted, that in many practical situations, knowledge about the data
(i.e., the coefficients/parameters of the model) is not purely probabilistic or possibilistic but
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rather a mixture of both kinds. For an example consider a firm that desires to maximize its
profit by meeting all the customers demands which fluctuate due to random change in price.
By the stochasticity of the demand and the fact that the production may not fulfill all the
possible demands, this point cannot be satisfactorily answered by the true or false statement.
This optimization problem is related to two types of uncertainties, namely, randomness and
fuzziness, which motivates the proposed study in this direction.

Quadratic programming (QP) is an optimization technique where we mini-
mize/maximize a quadratic objective function of several variables subject to a set of linear
constraints. QP has a wide range of applications, such as portfolio selection, electrical
energy production, agriculture, and crop selection. Probabilistic quadratic programming is
applicable for financial and risk management. In this direction several important-related
literatures are found, which are cited below.

McCarl et al. [1] presented some of the methodologies where QP is applicable. Liu and
Wang [2] proposed an interval quadratic programming problem where the cost coefficients,
constraint coefficients, and right-hand sides are represented by interval parameters. Silva
et al. [3] developed an original and novel fuzzy sets based method that solves a class
of quadratic programming problems with vagueness. Liu [4] presented a fuzzy quadratic
programming problem where the cost coefficients, constraint coefficients, and right-hand
sides values are represented by fuzzy data. Ammar [5] proposed a multiobjective quadratic
programming problem having fuzzy random coefficient matrix in the objectives and
constraints, where the decision vector is treated as a fuzzy vector. Liu [6] discussed the fuzzy
quadratic programming problem where the cost coefficients, constraint coefficients, and
right-hand side parameters of the constraints are represented by convex fuzzy numbers. He
also described a solution procedure [7] for a class of fuzzy quadratic programming problems,
where the cost coefficients of the objective function, constraint coefficients, and right-
hand side parameters values are fuzzy numbers. Qin and Huang [8] presented an inexact
chance constrained quadratic programming model for stream water quality management.
Nasseri [9] defined a quadratic programming problem with fuzzy numbers where the cost
coefficients, constraint coefficients, and right-hand side parameters values are represented
by trapezoidal and/or triangular fuzzy numbers. An inexact fuzzy-stochastic quadratic
programmingmethod is developed by Guo andHuang [10] for effectively allocating waste to
a municipal solid waste management system by considering the nonlinear objective function
and multiple uncertainties on parameters in the constraints.

In this paper, we develop a new method for solving probabilistic quadratic
programming problems involving some of the coefficients that are triangular fuzzy
numbers and/or trapezoidal fuzzy numbers. Only the right- hand side parameters of the
constraints are considered asWeibull random variables with known probability distributions.
Both randomness and fuzziness are considered together within the QP framework. A
defuzzification method is introduced for finding the crisp values of the fuzzy numbers using
the Mellin transformation [11].

1.1. Probabilistic Fuzzy Quadratic Programming Problem

A probabilistic fuzzy quadratic programming problem is a modified QP having a quadratic
objective function and some linear constraints involving fuzziness and randomness in some
situations. When some of the input parameters of the QP are characterized by stochastic and
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fuzzy parameters, the problem is treated as a probabilistic fuzzy quadratic programming
problem. A general probabilistic fuzzy quadratic programming problem can be presented as

min : z =
n∑

j=1

c̃jxj +
1
2

n∑

i=1

n∑

j=1

q̃ijxixj (1.1)

subject to

Pr

⎛

⎝
n∑

j=1

ãijxj ≤ bi

⎞

⎠ ≥ 1 − αi, i = 1, 2, . . . , m, (1.2)

xj ≥ 0, j = 1, 2, . . . , n (1.3)

where 0 < αi < 1, i = 1, 2, . . . , m, are the specified probabilities. The coefficients c̃j , j =
1, 2, . . . , n, and q̃ij , i = 1, 2, . . . , n, j = 1, 2, . . . , n, are considered as triangular fuzzy numbers
but ãij , i = 1, 2, . . . , m, j = 1, 2, . . . , n, are consider as trapezoidal fuzzy number. Only bi,
i = 1, 2, . . . , m, are considered as random variables with known distributions. The decision
variables xj , j = 1, 2, . . . , n, are treated as deterministic in the problem. In the following
section, we discuss some useful preliminaries related to fuzzy numbers, then the method
of defuzzification is introduced.

2. Some Preliminaries

In this section, we present triangular and trapezoidal membership functions that are used in
the model formulation. Also we introduce the Mellin transform to find the expected value of
the function of a random variable using proportional probability density function associated
with the membership functions of the fuzzy numbers.

Definition 2.1 (triangular fuzzy number). A fuzzy number denoted by the triplet Ã =
(a1, a2, a3) is called a triangular fuzzy number with a piecewise linear membership function
μÃ(x) defined by

μÃ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, a1 ≤ x ≤ a2,

a3 − x

a3 − a2
, a2 ≤ x ≤ a3,

0, otherwise.

(2.1)
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Definition 2.2 (trapezoidal fuzzy number). A fuzzy number denoted by the quadruplet
Ã = (a1, a2, a3, a4) is called a trapezoidal fuzzy number with a piecewise linear membership
function μÃ(x) defined by

μÃ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,

a4 − x

a4 − a3
, a3 ≤ x ≤ a4,

0, otherwise.

(2.2)

2.1. Defuzzification with Probability Density Function and
Membership Function

Let F(R) be the set of all fuzzy numbers. Let (a1, a2, a3) and (a1, a2, a3, a4) be the triangular
and trapezoidal fuzzy numbers, respectively, in F(R). Now we define the method associated
with a probability density function for the membership function of Ã as follows [12, 13].

Proportional probability distribution: define a probability density function f1 = cμÃ(x)
associated with Ã, where c is a constant obtained by using the property of probability density
function, that is,

∫∞
−∞ f1(x)dx = 1, that is,

∫∞
−∞ cμÃ(x)dx = 1.

2.2. Mellin Transform

As we know that any probability density function with finite support is associated with an
expected value, the Mellin transform [12, 13] is used to find this expected value.

Definition 2.3. The Mellin transform MX(t) of a probability density function f(x), where x is
a positive, is defined as

MX(t) =
∫∞

0
xt−1f(x)dx, (2.3)

where the integral exists.

Nowwe find theMellin transform in terms of expected values. Recall that the expected
value of any function g(X) of the random variable X, whose probability density function is
f(x), is given by

E
[
g(X)

]
=
∫∞

−∞
g(x)f(x)dx. (2.4)

Therefore, it follows that MX(t) = E[Xt−1] =
∫∞
0 xt−1f(x)dx.

Hence, E[Xt] = MX(t + 1). Thus, the expected value of random variable X is E[X] =
MX(2).

For an example, if Ã1 = (a1, a2, a3) and Ã2 = (a1, a2, a3, a4) are the triangular and
trapezoidal fuzzy numbers, respectively, then their crisp values are calculated by finding
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expected values using the probability density function corresponding to the membership
functions of the given fuzzy number.

Now, the probability density function corresponding to triangular fuzzy number Ã1 =
(a1, a2, a3) is given as

fÃ1
(x) = c1μÃ1

(x), (2.5)

where μÃ1
(x) is defined as

μÃ1
(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, a1 ≤ x ≤ a2,

a3 − x

a3 − a2
, a2 ≤ x ≤ a3,

0, otherwise.

(2.6)

Now c1 is calculated as

∫∞

−∞
fÃ1

(x)dx = 1, (2.7)

that is,

∫∞

−∞
c1μÃ1

(x)dx = 1, (2.8)

that is,

c1

∫a2

a1

x − a1

a2 − a1
dx + c1

∫a3

a2

a3 − x

a3 − a2
dx = 1. (2.9)

On integration, we get

c1 =
2

a3 − a1
. (2.10)

The proportional probability density function corresponding to triangular fuzzy number Ã1

is given by

fXÃ1
(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2(x − a1)
(a2 − a1)(a3 − a1)

, a1 ≤ x ≤ a2,

2(a3 − x)
(a3 − a2)(a3 − a1)

, a2 ≤ x ≤ a3,

0, otherwise.

(2.11)

Graphically it is shown in Figure 1.
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fXÃ1
(x)

µÃ1
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Figure 1: Proportional probability density function of triangular fuzzy number.

Further, using the Mellin transform, we obtain

MX(t) =
∫∞

0
xt−1fXÃ1

(x)dx =
∫a2

a1

xt−1 2(x − a1)
(a2 − a1)(a3 − a1)

dx +
∫a3

a2

xt−1 2(a3 − x)
(a3 − a2)(a3 − a1)

dx.

(2.12)

On integration, we obtain

MXÃ1
(t) =

2
(a3 − a1)t(t + 1)

[
a3
(
at
3 − at

2

)

(a3 − a2)
− a1

(
at
2 − at

1

)

(a2 − a1)

]
. (2.13)

Thus the mean (μXÃ1
) and variance (σ2

XÃ1
) of the random variable XÃ1

can be obtained as

μXÃ1
= E

[
XÃ1

]
= MXÃ1

(2) =
a1 + a2 + a3

3
, (2.14)

σ2
XÃ1

= MXÃ1
(3) −

[
MXÃ1

(2)
]2

=
a2
1 + a2

2 + a2
3 − a1a2 − a2a3 − a3a1

18
. (2.15)

Further, the probability density function corresponding to trapezoidal fuzzy number Ã2 =
(a1, a2, a3, a4) is given as fÃ2

(x) = c2μÃ2
(x), where μÃ2

(x) is defined as

μÃ2
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,

a4 − x

a4 − a3
, a3 ≤ x ≤ a4,

0, otherwise.

(2.16)
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Now c2 is calculated as

∫∞

−∞
fÃ2

(x)dx = 1, (2.17)

that is,

∫∞

−∞
c2μÃ1

(x)dx = 1, (2.18)

that is,

c2

∫a2

a1

x − a1

a2 − a1
dx + c2

∫a3

a2

dx + c2

∫a4

a3

a4 − x

a4 − a3
dx = 1. (2.19)

On integration, we get

c2 =
2

a4 + a3 − a1 − a2
. (2.20)

The proportional probability density function corresponding to triangular fuzzy number Ã1

is given by

fXÃ2
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x − a1)
(a2 − a1)(a4 + a3 − a1 − a2)

, a1 ≤ x ≤ a2,

2
(a4 + a3 − a1 − a2)

, a2 ≤ x ≤ a3,

2(a4 − x)
(a4 − a3)(a4 + a3 − a1 − a2)

, a3 ≤ x ≤ a4,

0, otherwise.

(2.21)

Graphically it is shown in Figure 2.
Using the Mellin transform, we get

MÃ2
(t) =

∫∞

0
xt−1fXÃ2

(x)dx =
∫a2

a1

xt−1 2(x − a1)
(a2 − a1)(a4 + a3 − a1 − a2)

dx

+
∫a3

a2

xt−1 2
(a4 + a3 − a1 − a2)

dx +
∫a4

a3

xt−1 2(a4 − x)
(a4 − a3)(a4 + a3 − a1 − a2)

dx.

(2.22)

On integration, we obtain

MÃ2
(t) =

2
(a4 + a3 − a1 − a2)t(t + 1)

[(
at+1
4 − at+1

3

)

(a4 − a3)
−
(
at+1
2 − at+1

1

)

(a2 − a1)

]
. (2.23)
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Figure 2: Proportional probability density function of trapezoidal fuzzy number.

Thus, the mean (μXÃ2
) and variance (σ2

XÃ2
) of the random variable XÃ2

can be obtained as

μXÃ2
= E

[
XÃ2

]
= MXÃ2

(2) =
1
3

[
(a1 + a2 + a3 + a4) +

(a1a2 − a3a4)
(a4 + a3 − a2 − a1)

]
, (2.24)

σ2
XÃ2

= MXÃ2
(3) −

[
MXÃ2

(2)
]2

=
1
6

[(
a2
1 + a2

2 + a2
3 + a2

4

)
+
(a1 + a2)

(
a2
3 + a2

4

) − (a3 + a4)
(
a2
1 + a2

2

)

(a4 + a3 − a2 − a1)

]
−
(
μXÃ2

)2
.

(2.25)

2.3. Probabilistic Fuzzy Quadratic Programming Problem and
Its Crisp Model

Let c̃j = (c1j , c
2
j , c

3
j ), j = 1, 2, . . . , n, ãij = (a1

ij , a
2
ij , a

3
ij), i = 1, 2, . . . , m, j = 1, 2, . . . , n, and

q̃ij = (q1ij , q
2
ij , q

3
ij), i = 1, 2, . . . , n, j = 1, 2, . . . , n be triangular fuzzy numbers. The crisp values

of these fuzzy numbers obtained by using the method of defuzzification with probability
density function of given membership function as described in Section 2 are given as

ĉj =
c1j + c2j + c3j

3
, j = 1, 2, . . . , n,

âij =
a1
ij + a2

ij + a3
ij

3
, i = 1, 2, . . . , m, j = 1, 2, . . . , n,

q̂ij
q1ij + q2ij + q3ij

3
, i = 1, 2, . . . , n, j = 1, 2, . . . , n,

(2.26)

where the symbol ĉj represents the crisp value of the given fuzzy number c̃j and so on.
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Similarly, if all the coefficients are trapezoidal fuzzy numbers such as, c̃j =
(c1j , c

2
j , c

3
j , c

4
j ), j = 1, 2, . . . , n, ãij = (a1

ij , a
2
ij , a

3
ij , a

4
ij), i = 1, 2, . . . , m, j = 1, 2, . . . , n, and q̃ij =

(q1ij , q
2
ij , q

3
ij , q

4
ij), i = 1, 2, . . . , n, j = 1, 2, . . . , n, then the crisp values are given as

ĉj =
1
3

⎡
⎢⎣
(
c1j + c2j + c3j + c4j

)
+

(
c1j c

2
j − c3j c

4
j

)

(
c3j + c4j − c1j − c2j

)

⎤
⎥⎦, j = 1, 2, . . . , n,

âij =
1
3

⎡
⎢⎣
(
a1
ij + a2

ij + a3
ij + a4

ij

)
+

(
a1
ija

2
ij − a3

ija
4
ij

)

(
a3
ij + a4

ij − a1
ij − a2

ij

)

⎤
⎥⎦, i = 1, 2, . . . , m, j = 1, 2, . . . , n

q̂ij =
1
3

⎡
⎢⎣
(
q1ij + q2ij + q3ij + q4ij

)
+

(
q1ijq

2
ij − q3ijq

4
ij

)

(
q3ij + q4ij − q1ij − q2ij

)

⎤
⎥⎦, i = 1, 2, . . . , n, j = 1, 2, . . . , n.

,

(2.27)

Thus, the probabilistic quadratic programming problem having crisp objective func-
tion can be stated as

min : z =
n∑

j=1

ĉjxj +
1
2

n∑

i=1

n∑

j=1

q̂ijxixj (2.28)

subject to

Pr

⎛

⎝
n∑

j=1

âijxj ≤ bi

⎞

⎠ ≥ 1 − αi, i = 1, 2, . . . , m, (2.29)

xj ≥ 0, j = 1, 2, . . . , n, (2.30)

where 0 < αi < 1, i = 1, 2, . . . , m.

2.4. Deterministic Model of the Probabilistic Quadratic
Programming Problem

It is assumed that the ith random variables bi, i = 1, 2, . . . , m follow the Weibull distribution
[14]. The probability density function (pdf) of the random variables bi is given by

f(bi) =

⎧
⎪⎨

⎪⎩

(
pi
si

)(
bi
si

)pi−1
e−(bi/si)

pi if bi ≥ 0, pi > 0, si > 0,

0, elsewhere,
(2.31)
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with

E(bi) = siΓ
(
1 +

1
pi

)
, pi > 0, si > 0, i = 1, 2, . . . , m, (2.32)

Var(bi) = s2i Γ
(
1 +

2
pi

)
−
[
siΓ
(
1 +

1
pi

)]2
, pi > 0, si > 0, i = 1, 2, . . . , m, (2.33)

where pi, i = 1, 2, . . . , m, and si, i = 1, 2, . . . , m, are called shape parameters and scale
parameters, respectively.

Now, using pdf of theWeibull distribution, the ith probability constraint can bewritten
as

∫∞

yi

f(bi)dbi ≥ 1 − αi, i = 1, 2, . . . , m, (2.34)

where yi =
∑n

j=1 âijxj and yi ≥ 0.
It can be further written as

∫∞

yi

(
pi
si

)(
bi
si

)pi−1
e−(bi/si)

pi
dbi ≥ 1 − αi, i = 1, 2, . . . , m, (2.35)

On integration, we obtain

e−(yi/si)
pi ≥ 1 − αi, i = 1, 2, . . . , m. (2.36)

It can be further simplified as

yi ≤ si

[ln(1 − αi)]
1/pi

, i = 1, 2, . . . , m, (2.37)

that is,

n∑

j=1

âijxj ≤ si

[ln(1 − αi)]
1/pi

, i = 1, 2, . . . , m, (2.38)

Thus, the equivalent deterministic model of the probabilistic quadratic programming
problem (2.28)–(2.30) can be stated as

min : z =
n∑

j=1

ĉjxj +
1
2

n∑

i=1

n∑

j=1

q̂ijxixj (2.39)
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subject to

n∑

j=1

âijxj ≤ si

[ln(1 − αi)]
1/pi

, i = 1, 2, . . . , m,

xj ≥ 0, j = 1, 2, . . . , n.

(2.40)

3. Numerical Example

Let us consider the following probabilistic fuzzy quadratic programming problem:

min : z = 2̃6x1 + 3̃5x2 +
1
2

[
8̃x2

1 − 6̃x1x2 + 8̃x2
2

]
(3.1)

subject to

Pr
(
1̃3x1 + 2̃5x2 ≤ b1

)
≥ 0.95,

Pr
(
1̃7x1 + 2̃3x2 ≤ b1

)
≥ 0.85,

1̃3x1 + 1̃5x2 ≥ 2̃5,

x1, x2 ≥ 0,

(3.2)

where α1 = 0.05 and α1 = 0.15 are specified probability levels. The fuzzy coefficients
2̃6 = (24, 26, 27), 3̃5 = (32, 35, 37), and 8̃ = (5, 8, 10), 6̃ = (4, 6, 7), 8̃ = (6, 8, 11) are defined by
triangular fuzzy numbers. But the fuzzy coefficients 1̃3 = (10, 12, 14, 17), 2̃5 = (22, 24, 25, 27),
1̃7 = (14, 16, 18, 22), 2̃3 = (21, 23, 24, 26), 1̃3 = (10, 12, 15, 17), 1̃5 = (12, 14, 16, 20), and 2̃5 =
(23, 25, 26, 28) are defined by trapezoidal fuzzy numbers. The right-hand side parameters b1
and b2 follow the Weibull distribution with known parameters. The parameters are given as

p1 =
1
2
, p2 =

1
4
, q1 = 0.12, q2 = 0.03. (3.3)

The crisp values of the above triangular and trapezoidal fuzzy numbers are calculated by
using (2.14) and (2.24). That is, 2̂6 = (24 + 26 + 27)/3 = 25.67, 3̂5 = (32 + 35 + 37)/3 = 34.67,
8̂ = (5+8+10)/3 = 7.67, 6̂ = (4+6+7)/3 = 5.67, 8̂ = (6+8+11)/3 = 8.33, 1̂3 = (1/3)[(10+12+
14+17)+(10 × 12−14 × 17)/(14+17−10−12)] = 13.36, 2̂5 = (1/3)[(22+24+25+27)+(22 ×
24−25 × 27)/(25+27−22−24)] = 24.5, 1̂7 = (1/3)[(14+16+18+22)+(14 × 16−18 × 22)/(18+
22− 14− 16)] = 17.6, 2̂3 = (1/3)[(21+ 23+ 24+ 26) + (21 × 23− 24 × 26)/(44+ 26− 21− 23)] =
23.5, 1̂3 = (1/3)[(10 + 12 + 15 + 17) + (10 × 12 − 15 × 17)/(15 + 17 − 10 − 12)] = 13.5,
1̂5 = (1/3)[(12 + 14 + 17 + 20) + (12 × 14 − 16 × 20)/(16 + 20 − 14 − 12)] = 15.6, 2̂5 =
(1/3)[(23 + 25 + 26 + 28) + (23 × 25 − 26 × 28)/(26 + 28 − 23 − 25)] = 25.5.

Now, using the parameter values of the random variables, crisp values of the triangu-
lar and trapezoidal fuzzy numbers, and the deterministic constraint (2.38), we formulate an
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equivalent deterministic crisp model of the given probabilistic fuzzy quadratic programming
model problem:

min : z = 25.67x1 + 34.67x2 +
1
2

[
8.33x2

1 − 5.67x1x2 + 7.67x2
2

]
(3.4)

subject to

13.36x1 + 24.5x2 ≤ 45.610034,

17.6x1 + 23.5x2 ≤ 42.979943,

13.5x1 + 15.6x2 ≥ 25.5,

x1, x2 ≥ 0.

(3.5)

The above deterministic crisp quadratic programming problem is solved using LINGO 11.0
[15] software. The optimal solution is obtained as x1 = 0.9623144, x2 = 0.9394838, and z =
62.91564.

4. Conclusions

Quadratic programming is one of the important techniques for improving the efficiency and
increasing the productivity of business companies and public organizations. It is also applied
to some of the managerial decision making problems such as demand-supply response
and enterprise selection. In this paper, a single-objective probabilistic fuzzy quadratic
programming problem is presented where both fuzziness and randomness are involved
within the quadratic programming framework. The present work can be extended in the
multiobjective framework considering the parameters as different random variables and
other fuzzy numbers depending on the problems.
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