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We introduce the notion of relaxed (ρ-θ)-η-invariant pseudomonotone mappings, which is
weaker than invariant pseudomonotone maps. Using the KKM technique, we establish the
existence of solutions for variational-like inequality problems with relaxed (ρ-θ)-η-invariant
pseudomonotone mappings in reflexive Banach spaces. We also introduce the concept of (ρ-
θ)-pseudomonotonicity for bifunctions, and we consider some examples to show that (ρ-θ)-
pseudomonotonicity generalizes bothmonotonicity and strong pseudomonotonicity. The existence
of solution for equilibrium problem with (ρ-θ)-pseudomonotone mappings in reflexive Banach
spaces are demonstrated by using the KKM technique.

1. Introduction

Let K be a nonempty subset of a real reflexive Banach space X, and let X∗ be the dual space
of X. Consider the operator T : K → X∗ and the bifunction η : K × K → X. Then the
variational-like inequality problem (in short, VLIP) is to find x ∈ K, such that

〈
Tx, η

(
y, x

)〉 ≥ 0, ∀y ∈ K, (1.1)

where 〈·, ·〉 denote the pairing between X and X∗.
If we take η(x, y) = x − y, then (1.1) becomes to find x ∈ K, such that

〈
Tx, y − x

)〉 ≥ 0, ∀y ∈ K, (1.2)
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which is classical variational inequality problems (VIPs). These problems have been studied
in both finite and infinite dimensional spaces by many authors [1–3]. VIP has numerous
applications in optimization, nonlinear analysis, and engineering sciences.

In the study of VLIP and VIP, monotonicity is the most common assumption for the
operator T . Recently many authors established the existence of solutions for (VIP) and
VLIP under generalized monotonicity assumptions, such as quasimonotonicity, relaxedmon-
otonicity, densely pseudomonotonicity, relaxed η-α-monotonicity, and relaxed η-α-pseu-
domonotonicity (see [1, 3–6] and the references therein). In 2008 [7], Behera et al. defined
various concepts of generalized (ρ-θ)-η-invariant monotonicities which are proper gen-
eralization of generalized invariant monotonicity introduced by Yang et al. [8]. Chen [9]
defined semimonotonicity and studied semimonotone scalar variational inequalities prob-
lems in Banach spaces. Fang and Huang [3] obtained the existence of solution for VLIP using
relaxed η-α-monotone mappings in the reflexive Banach spaces. In [1], Bai et al. extended
the results of [3] with relaxed η-α-pseudomonotone mappings and provided the existence
of solution of the variational-like inequalities problems in reflexive Banach spaces. Bai et
al. [10] studied variational inequalities problems with the setting of densely relaxed μ-
pseudomonotone operators and relaxed μ-quasimonotone operators, respectively.

Inspired and motivated by [1, 3, 10], we introduce the concept of relaxed (ρ-θ)-
η-invariant pseudomonotone mappings. Using the KKM technique, we establish the exis-
tence of solutions for Variational-like inequality problems with relaxed (ρ-θ)-η-invariant
pseudomonotone mappings. We also introduce the notion of (ρ-θ)-pseudomonotonicity for
bifunctions, and study some examples to show that (ρ-θ)-pseudomonotonicity is prop-
er generalization of monotonicity and the strong pseudomonotonicity. The existence of
solutions of equilibrium problem with (ρ-θ)-pseudomonotone mappings in reflexive Banach
spaces are demonstrated, by using the KKM technique.

2. Preliminaries

Let X be a real reflexive Banach space andK be a nonempty subset of X, and X∗ be the space
of all continuous linear functionals onX. Consider the functions T : K → X∗, η : K×K → X
and θ : K ×K → R and ρ ∈ R.

Definition 2.1. The operator T : K → X∗ is said to be relaxed (ρ-θ)-η-invariant pseudomon-
otone mapping with respect to η and θ, if for any pair of distinct points x, y ∈ K, one has

〈
Tx, η

(
y, x

)〉 ≥ 0 =⇒ 〈
Ty, η

(
x, y

)〉
+ ρ

∣∣θ
(
x, y

)∣∣2 ≤ 0. (2.1)

Remark 2.2. (i) If we take ρ = 0 then from (2.1) it follows that 〈Tx, η(y, x)〉 ≥ 0 ⇒
〈Ty, η(x, y)〉 ≤ 0, for all x, y ∈ K, here T is said to be invariant pseudomonotone, see [8].

(ii) If we take ρ = 0, and η(x, y) = x − y, then (2.1) reduces to 〈Tx, y − x〉 ≥ 0 ⇒
〈Ty, x − y〉 ≤ 0, for all x, y ∈ K, and T is said to be pseudomonotone map.

(iii) If θ(x, y) = ‖x − y‖, η(x, y) = x − y, ρ < 0, that is, let ρ = −μ2 (where μ ∈ R).
Then (2.1) follows that 〈Tx, y − x)〉 ≥ 0 ⇒ 〈Ty, y − x〉 ≥ −μ2‖x − y‖2, and T is called relaxed
μ-pseudomonotone mapping [10].

It is obvious that every invariant pseudomonotone mapping is relaxed (ρ-θ)-η-
invariant pseudomonotone. However, the converse is not true in general, which is illustrated
by the following counterexample.
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Example 2.3. Let K = [0, π/2] and T : [0, π/2] → R be defined by

Tx = sinx − 1. (2.2)

Let the functions η and θ be defined by

η
(
x, y

)
= cosx − cosy,

θ
(
y, x

)
=

⎧
⎨

⎩

√
cosx − cosy, x ≤ y;

1, y < x.

(2.3)

Now, 〈Tx, η(y, x)〉 = (sinx − 1)(cosy − cosx) ≥ 0, when x ≤ y or x = π/2.
Take ρ = −3, then

〈
Ty, η

(
x, y

)〉 − 3
∣∣θ
(
y, x

)∣∣2 =
(
siny − 1

)(
cosx − cosy

) − 3
(
cosx − cosy

)
, x ≤ y

=
(
cosx − cosy

)(
siny − 4

)

≤ 0.

(2.4)

Therefore T is relaxed (ρ-θ)-η-invariant pseudomonotone mapping with respect to η and θ.
But T is not invariant pseudomonotone mapping with respect to the same η. In fact, if we
take x = π/2 and y = 0. Therefore we have

〈
Tx, η

(
y, x

)〉
= 0. (2.5)

However,

〈
Ty, η

(
x, y

)〉
= (−1)

(
cos

π

2
− cos 0

)
= 1 > 0. (2.6)

Definition 2.4. The operator T : K → X∗ is said to be relaxed (ρ-θ)-η-invariant
quasimonotone mapping with respect to η and θ, if for any pair of distinct points x, y ∈ K,
one has

〈
Tx, η

(
y, x

)〉
> 0 =⇒ 〈

Ty, η
(
x, y

)〉
+ ρ

∣∣θ
(
x, y

)∣∣2 ≤ 0. (2.7)

Next, we will show that relaxed (ρ-θ)-η-invariant quasimonotonicity and relaxed (ρ-
θ)-η-invariant pseudomonotonicity coincide under some conditions. For this we need the
following η-hemicontinuity definition.
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Definition 2.5 (see [3]). Let T : K → X∗ and η : K×K → X. T is said to be η-hemicontinuous
if for any fixed x, y ∈ K, themapping f : [0, 1] → R defined by f(t) = 〈T(x+t(y−x)), η(y, x)〉
is continuous at 0+.

Lemma 2.6. Let T be an η-hemicontinuous and relaxed (ρ-θ)-η-invariant quasimonotone on K.
Assume that the mapping x → 〈Ty, η(x, y)〉 is concave and θ : K ×K → R is hemicontinuous in
the second argument. Then for every x, y ∈ K with 〈Ty, η(x, y)〉 ≥ 0 one has either 〈Tx, η(y, x)〉 +
ρ|θ(y, x)|2 ≤ 0 or 〈Ty, η(z, y)〉 ≤ 0, for all z ∈ K.

Proof. Suppose there exists some z ∈ K such that 〈Ty, η(z, y)〉 > 0. Then we have to prove
that 〈Tx, η(y, x)〉 + ρ|θ(x, y)|2 ≤ 0.

Let xt = tz + (1 − t)x, 0 < t ≤ 1. Then

〈
Ty, η

(
xt, y

)〉 ≥ t
〈
Ty, η

(
z, y

)〉
+ (1 − t)

〈
Ty, η

(
x, y

)〉

> 0.
(2.8)

Since T is relaxed (ρ-θ)-η-invariant quasimonotone on K, we have

〈
Txt, η

(
y, xt

)〉
+ ρ

∣∣θ
(
y, xt

)∣∣2 ≤ 0. (2.9)

Since T is η-hemicontinuous and θ is hemicontinuous in the first variable and letting t → 0,
we have

〈
Tx, η

(
y, x

)〉
+ ρ

∣∣θ
(
y, x

)∣∣2 ≤ 0. (2.10)

Denote K⊥ = {z ∈ K∗ : 〈z, η(x, y)〉 = 0, for all x, y ∈ K}, and

T(K) = {Tx : x ∈ K} (2.11)

Definition 2.7. A point x0 ∈ K is said to be a η-positive point of T : K → X∗ onK if for all x ∈
K, either Tx ∈ K⊥ or there exists y ∈ K such that 〈Tx, η(y, x0)〉 > 0.

Let KT denotes the set of all η-positive points of T on K. Now we give a
characterization of relaxed (ρ-θ)-η-invariant pseudomonotone.

Lemma 2.8. Let T be η-hemicontinuous and relaxed (ρ-θ)-η-invariant quasimonotone on K with
T(K) ∩K⊥ = φ. Assume that the mapping x → 〈Ty, η(x, y)〉 is concave and θ is hemicontinuous.
Then T is relaxed (ρ-θ)-η-invariant pseudomonotone on KT .

Proof. Let x, y ∈ KT with 〈Tx, η(y, x)〉 ≥ 0. Therefore by the previous Lemma, we have either

〈
Ty, η

(
x, y

)〉
+ ρ

∣∣θ
(
x, y

)∣∣2 ≤ 0 or
〈
Tx, η

(
z, y

)〉 ≤ 0, ∀ z ∈ K. (2.12)
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Now we will show that the second inequality in (2.12) is impossible. In fact, since x ∈ KT

and Tx /∈ K⊥, there exists z ∈ K such that 〈Tx, η(z, x)〉 > 0, which shows that the second
inequality in (2.12) is impossible. Therefore,

〈
Ty, η

(
x, y

)〉
+ ρ

∣
∣θ
(
x, y

)∣∣2 ≤ 0, (2.13)

hence T is relaxed (ρ-θ)-η-invariant pseudomonotone on KT .

Remark 2.9. Lemmas 2.6 and 2.8 generalize Bai et al. [10] results [Lemma 2.1 and
Proposition 2.1] from the case of relaxed μ-quasimonotone operators to relaxed (ρ-θ)-η-
invariant quasimonotone operators.

Definition 2.10. Let f : K → 2X be a set-valued mapping. Then f is said to be KKM mapping
if for any {y1, y2, . . . , yn} of K one has co{y1, y2, . . . , yn} ⊂ ⋃n

i=1 f(yi), where co{y1, y2, . . . , yn}
denotes the convex hull of y1, y2, . . . , yn.

Lemma 2.11 (see [11]). Let M be a nonempty subset of a Hausdorff topological vector space X and
let f : M → 2X be a KKM mapping. If f(y) is closed in X for all y ∈ M and compact for some
y ∈ M, then

⋂
y∈M f(y)/=φ.

Theorem 2.12 (see [12]). Bounded, closed, convex subset of a reflexive Banach space is weakly
compact.

3. VLIP with Relaxed (ρ-θ)-η-Invariant Pseudomonotonicity

In this section, we establish the existence of the solution for VLIP, using relaxed (ρ-θ)-η-
invariant pseudomonotone mappings in reflexive Banach spaces.

Theorem 3.1. T : K → X∗ is η-hemicontinuous and relaxed (ρ-θ)-η-invariant pseudomonotone
mapping. Let the following hold:

(i) η(x, y) + η(y, x) = 0, and θ(x, y) + θ(y, x) = 0, for all x, y ∈ K;

(ii) θ(x, y) is convex in second argument and concave in first argument;

(iii) for a fixed z, y ∈ K, the mapping x → 〈Tz, η(x, y)〉 is convex.

Then the following problems (a) and (b) are equivalent:

(a) find x ∈ K, 〈Tx, η(y, x)〉 ≥ 0, for all y ∈ K;

(b) find x ∈ K, 〈Ty, η(x, y)〉 + ρ|θ(x, y)|2 ≤ 0, for all y ∈ K.

Proof. Assume that x is a solution of (a). Therefore, (b) follows from the definition of relaxed
(ρ-θ)-η-invariant pseudomonotonicity of T .

Conversely, suppose that there exists an x ∈ K satisfying (b), that is,

〈
Ty, η

(
x, y

)〉
+ ρ

∣∣θ
(
x, y

)∣∣2 ≤ 0, ∀y ∈ K. (3.1)

Choose any point y ∈ K and consider xt = ty + (1 − t)x, t ∈ (0, 1], then xt ∈ K.
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Case I. When ρ = 0.
Therefore from (3.1)we have

〈
Txt, η(x, xt)

〉 ≤ 0,
〈
Txt,−η(xt, x)

〉 ≤ 0,
〈
Txt, η(xt, x)

〉 ≥ 0.

(3.2)

Now,

〈
Txt, η(xt, x)

〉 ≤ t
〈
Txt, η

(
y, x

)〉
+ (1 − t)

〈
Txt, η(x, x)

〉
= t

〈
Txt, η

(
y, x

)〉
. (3.3)

From (3.2) and (3.3) we have

〈
Txt, η

(
y, x

)〉 ≥ 0. (3.4)

Since T is η-hemicontinuous in the first argument and taking t → 0 we get

〈
Tx, η

(
y, x

)〉 ≥ 0, ∀ y ∈ K. (3.5)

Case II. When ρ < 0, let ρ = −k2.
From (3.1) we have

〈
Txt, η(x, xt)

〉 ≤ k2|θ(x, xt)|2,

=⇒ 〈
Txt, η(xt, x)

〉 ≥ −k2|θ(x, xt)|2.
(3.6)

From (ii), (iii), (3.3), and (3.6)we get,

t
〈
Txt, η

(
y, x

)〉 ≥ −k2t2
∣∣θ
(
x, y

)∣∣2 which implies
〈
Txt, η

(
y, x

)〉 ≥ −k2t
∣∣θ
(
x, y

)∣∣2. (3.7)

Since T is η-hemicontinuous and taking t → 0 we have

〈
Tx, η

(
y, x

)〉 ≥ 0, ∀y ∈ K. (3.8)

Case III. When ρ > 0, let ρ = k2.
From (3.1) we have

〈
Txt, η(x, xt)

〉 ≤ −k2|θ(x, xt)|2

⇒ 〈
Txt, η(xt, x)

〉 ≥ k2|θ(x, xt)|2.
(3.9)
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From (i), (ii), (iii),(3.3), and (3.9) we get,

〈
Txt, η

(
y, x

)〉 ≥ k2 t
∣
∣θ
(
y, x

)∣∣2. (3.10)

Since T is η-hemicontinuous and taking t → 0 we have

〈Tx, η(y, x)〉 ≥ 0, ∀y ∈ K. (3.11)

Theorem 3.2. LetK be a nonempty bounded closed convex subset of a real reflexive Banach space X.
T : K → X∗ is η-hemicontinuous and relaxed (ρ-θ)-η-invariant pseudomonotone mapping. Let the
following hold:

(i) η(x, y) + η(y, x) = 0, and θ(x, y) + θ(y, x) = 0, for all x, y ∈ K;

(ii) θ(x, y) is convex in second argument and concave in first argument, and lower
semicontinuous in the first argument;

(iii) for a fixed z, y ∈ K, the mapping x → 〈Tz, η(x, y)〉 is convex and lower semicontinuous.

Then the problem (1.1) has a solution.

Proof. Consider the set valued mappings F : K → 2X and G : K → 2X such that

F
(
y
)
=
{
x ∈ K :

〈
Tx, η

(
y, x

)〉 ≥ 0
}
, ∀y ∈ K,

G
(
y
)
=
{
x ∈ K :

〈
Ty, η

(
x, y

)〉
+ ρ

∣∣θ
(
x, y

)∣∣2 ≤ 0
}
, ∀y ∈ K.

(3.12)

It is easy to see that x ∈ K solves the VLIP if and only if x ∈ ⋂
y∈K F(y). Thus it suffices to

prove
⋂

y∈K F(y)/=φ. To prove this, first we will show that F is a KKMmapping.
If possible let F not be a KKM mapping. Then there exists {x1, x2, . . . , xm} ⊂ K

such that co{x1, x2, . . . , xm}/⊆
⋃m

i=1 F(xi), that means there exists a x0 ∈ co{x1, x2, . . . , xm},
x0 =

∑m
i=1tixi where ti ≥ 0, i = 1, 2, . . . , m,

∑m
i=1ti = 1, but x0 /∈ ⋃m

i=1 F(xi).
Hence, 〈Tx0, η(xi, x0)〉 < 0; for i = 1, 2, . . . , m.
From (i) and (iii) it follows that

0 =
〈
Tx0, η(x0, x0)

〉 ≤
m∑

i=1

ti
〈
Tx0, η(xi, x0)

〉
< 0, (3.13)

which is a contradiction. Hence F is a KKMmapping.
From the relaxed (ρ-θ)-η-invariant pseudomonotonicity of T it follows that F(y) ⊂

G(y), for all y ∈ K. Therefore G is also a KKMmapping.
Since K is closed bounded and convex, it is weakly compact. From the assumptions,

we know that G(y) is weakly closed for all y ∈ K. In fact, because x → 〈Tz, η(x, y)〉 and x →
ρ|θ(x, y)|2 are lower semicontinuous. Therefore, G(y) is weakly compact in K, for each y ∈
K. Therefore from Lemma 2.11 and Theorem 3.1 it follows that

⋂
y∈K F(y) =

⋂
y∈K G(y)/=φ.So

there exists x ∈ K such that 〈Tx, η(y, x)〉 ≥ 0, for all y ∈ K, that is, (1.1) has a solution.
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Theorem 3.3. Let K be a nonempty unbounded closed convex subset of a real reflexive Banach space
X. T : K → X∗ is η-hemicontinuous and relaxed (ρ-θ)-η-invariant pseudomonotone mapping. Let
the following hold:

(i) η(x, y) + η(y, x) = 0, and θ(x, y) + θ(y, x) = 0, for all x, y ∈ K;

(ii) θ(x, y) is convex in second argument and concave in first argument, and lower
semicontinuous in the first argument;

(iii) for a fixed z, y ∈ K, the mapping x → 〈Tz, η(x, y)〉 is convex and lower semicontinuous;

(iv) T is weakly η-coercive, that is, there exits x0 ∈ K such that 〈Tx, η(x, x0)〉 > 0, whenever
‖x‖ → ∞ and x ∈ K.

Then (1.1) is solvable.

Proof. For r > 0, assume Kr = {y ∈ K : ‖y‖ ≤ r}.
Consider the problem: find xr ∈ K ∩Kr such that

〈
Txr, η

(
y, xr

)〉 ≥ 0, ∀y ∈ K ∩Kr. (3.14)

By Theorem 3.2 we know that problem (3.14) has at least one solution xr ∈ K ∩Kr .
Choose ‖x0‖ < r with x0 as in condition (iv). Then x0 ∈ K ∩Kr and

〈
Txr, η(x0, xr)

〉 ≥ 0. (3.15)

From (i) we get,

〈
Txr, η(x0, xr)

〉
= −〈Txr, η(xr, x0)

〉
. (3.16)

If ‖xr‖ = r for all r, we may choose r large enough so that by the assumption (iv) and (3.16)
imply that 〈Txr, η(x0, xr)〉 < 0, which contradicts (3.15).

Therefore there exists r such that ‖xr‖ < r. For any y ∈ K, we can choose 0 < t < 1
small enough such that xr + t(y − xr) ∈ K ∩Kr .

From (3.14) it follows that

0 ≤ 〈
Txr, η

(
xr + t

(
y − xr

)
, xr

)〉

≤ t
〈
Txr, η

(
y, xr

)〉
+ (1 − t)〈Txr, η(xr, xr)〉

= t
〈
Txr, η

(
y, xr

)〉
.

(3.17)

Hence 〈Txr, η(y, xr)〉 ≥ 0, for all y ∈ K.

4. Equilibrium Problem with (ρ-θ)-Pseudomonotone Mappings

Let K be a nonempty subset of a real reflexive Banach space X, and consider the bifunction
f : K ×K → R. Then the equilibrium problem (in short, EP) is to find x ∈ K, such that

f
(
x, y

) ≥ 0, ∀y ∈ K. (4.1)
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Equilibrium problem was first introduced and studied by Blum and Oettli [2] in 1994. EP has
many applications in nonlinear analysis, optimization, and game theory. The EP contains
many problems as particular cases for examples, mathematical programming problems,
complementary problems, Nash equilibrium problems in noncooperative games, variational
inequality problems, fixed point problems, and minimax inequality problems.

Next we describe a number of particular cases of EP to explain our interest in EP, which
have been discussed in [2].

(i) Optimization problem: let φ : K → R, and consider minimization problem

(M) find x ∈ K such that φ(x) ≤ φ(y), for all y ∈ K.
If we set f(x, y) = φ(y)−φ(x), for all x, y ∈ K. Then problems EP and (M) are
equivalent.

(ii) Variational inequality problem: if we define f(x, y) = 〈Tx, y−x〉where T : K → X∗

is a given mapping, where X∗ denotes the space of all continuous linear maps on
X. Then EP collapses into the classical VIP which states the following,

(VIP) find x ∈ X such that x ∈ K, with 〈Tx, y − x〉 ≥ 0, for all y ∈ K.

(iii) Fixed point problem: let X be a Hilbert space, and K is a nonempty closed convex
subset of X. Let T : K → K be a given mapping. Then the fixed point problem is to

(FPP) find x ∈ K such that x = Tx.
Set f(x, y) = 〈x − Tx, y − x〉. Then x solves EP if and only if x is a solution of
FPP.

The purpose of this section is to establish the existence of solution for equilibrium
problems with (ρ-θ)-pseudomonotone mappings in the reflexive Banach spaces. We first
introduce the notion of (ρ-θ)-monotone mappings and (ρ-θ)-pseudomonotone mappings.
We also provide some examples to justify that (ρ-θ)-monotone mapping generalizes weakly
monotonemaps, and (ρ-θ)-pseudomonotonemapping generalizes pseudomonotone, weakly
pseudomonotone maps.

Let K be a nonempty subset of a real reflexive Banach space X. Consider the function
f : K ×K → R and θ : K ×K → R and ρ ∈ R.

Definition 4.1. The function f : K × K → R is said to be (ρ-θ)-monotone with respect to
θ : K ×K → R if, for all x, y ∈ K, one has

f
(
x, y

)
+ f

(
y, x

) ≤ ρ
∣∣θ
(
x, y

)∣∣2. (4.2)

When

(i) ρ > 0 and θ(x, y) = ‖x − y‖, f is weakly monotone;

(ii) ρ = 0, f is monotone;

(iii) ρ < 0 and θ(x, y) = ‖x − y‖, f is strongly monotone.

We now give an example to show that (ρ-θ) monotonicity is a generalization of both
monotonicity and weakly monotonicity.
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Example 4.2. Let K = [1, 10]. Let the functions f and θ be defined by

f
(
x, y

)
= x2 + y2 + 1, θ

(
x, y

)
=
√
2
(
x2 + y2

)
+ 4. (4.3)

Then

f
(
x, y

)
+ f

(
y, x

)
= 2

(
x2 + y2 + 1

)

≤ ρ
(
2x2 + 2y2 + 4

)
, for any ρ ≥ 1.

(4.4)

Therefore f is (ρ-θ)-monotone with respect to θ.
There exists no constant ρ > 0 such that f(x, y) + f(y, x) ≤ ρ‖x − y‖2, for all x, y ∈ K.

As if we assume x and y to be such that their difference is very small, then right-hand side of
the inequality tends to zero and left-hand side is always greater than 2. Hence f(x, y) is not
weakly monotone. Again since f is positive valued, f is not monotone.

Definition 4.3. The function f : K ×K → R is said to be (ρ-θ)-pseudomonotone with respect
to θ if for any pair of distinct points x, y ∈ K, one has

f
(
x, y

) ≥ 0 implies f
(
y, x

) ≤ ρ
∣∣θ
(
x, y

)∣∣2 . (4.5)

Every (ρ-θ)-monotone mapping is a (ρ-θ)-pseudomonotone with respect to the same
ρ and θ. However, the converse is not true in general, which follows from the following
counterexample.

Example 4.4. Let the functions f : (0, π/2)×(0, π/2) → R and θ : (0, π/2) ×(0, π/2) → R

be defined by

f
(
x, y

)
=
(
cosy + 6

)2 − cos2x, θ
(
x, y

)
=
√
50 + cosx − cosy, respectively. (4.6)

Take ρ = 1. We have to show

f
(
x, y

) ≥ 0 implies f
(
y, x

) ≤ ρ
∣∣θ
(
x, y

)∣∣2.

f
(
x, y

)
=
(
cosy + 6

)2 − cos2x ≥ 0, ∀x, y ∈
(
0,

π

2

)
.

(4.7)

Now,

f
(
y, x

) − ρ
∣∣θ
(
x, y

)∣∣2 = (cosx + 6)2 − cos2y − (
50 + cosx − cosy

)

= (cosx + 6)2 + cosy −
(
50 + cos2y + cosx

)

≤ 0.

(4.8)
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Hence f is (ρ-θ)-pseudomonotone mapping with respect to θ. But f is not (ρ-θ)-monotone
mapping with respect to the same θ. In fact,

f
(
x, y

)
+ f

(
y, x

)
=
(
cosy + 6

)2 + (cosx + 6)2 −
(
cos2x + cos2y

)

�
∣
∣θ
(
x, y

)∣∣2 =
(
50 + cosx − cosy

)
.

(4.9)

Note that in the above example, f is neither a monotone nor pseudomonotone
mapping.

Definition 4.5. The function f : K × K → R is said to be (ρ- θ)-quasimonotone with respect
to θ if for any pair of distinct points x, y ∈ K, one has

f
(
x, y

)
> 0 implies f

(
y, x

) ≤ ρ
∣
∣θ
(
x, y

)∣∣2. (4.10)

Next, we will show that (ρ-θ)-quasimonotonicity and (ρ-θ)-pseudomonotonicity are
equivalent under certain conditions.

Lemma 4.6. Let f be hemicontinuous and (ρ-θ)-quasimonotone on K. Assume that f is concave in
the second argument and θ is hemicontinuous in the second argument. Then for every x, y ∈ K with
f(y, x) ≥ 0 one has either f(x, y) ≤ ρ|θ(y, x)|2 or f(y, z) ≤ 0, for all z ∈ K.

Proof. Suppose there exists some z ∈ K such that f(y, z) > 0. Then we have to prove that
f(x, y) ≤ ρ|θ(x, y)|2.

Let xt = tz + (1 − t)x, 0 < t ≤ 1. Then

f
(
y, xt

) ≥ tf
(
y, z

)
+ (1 − t)f

(
y, x

)

> 0.
(4.11)

Since T is relaxed (ρ-θ)-quasimonotone on K, it implies that

f
(
xt, y

) ≤ ρ
∣∣θ
(
y, xt

)∣∣2. (4.12)

Now letting t → 0, we have

f
(
x, y

) ≤ ρ
∣∣θ
(
y, x

)∣∣2. (4.13)

This completes the proof.

Theorem 4.7. Let K be a nonempty convex subset of a real reflexive Banach space X. Suppose f :
K ×K → R is (ρ-θ)-pseudomonotone with respect to θ and is hemicontinuous in the first argument
with the following conditions:

(i) f(x, x) = 0, for all x ∈ K;

(ii) for fixed z ∈ K, the mapping x → f(z, x) is convex;
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(iii) θ(x, y) + θ(y, x) = 0, for all x, y ∈ K;

(iv) θ is convex in first argument and concave in the second argument.

Then x ∈ K is a solution of (4.1) if and only if

f
(
y, x

) ≤ ρ
∣
∣θ
(
x, y

)∣∣2, ∀y ∈ K. (4.14)

Proof. Assume that x is a solution of (4.1) that is, f(x, y) ≥ 0, for all y ∈ K. Therefore from
the definition of (ρ-θ) pseudomonotonicity of T it follows that

f
(
y, x

) ≤ ρ
∣∣θ
(
x, y

)∣∣2, ∀y ∈ K. (4.15)

Conversely, suppose ∃x ∈ K satisfying (4.14), that is,

f
(
y, x

) ≤ ρ
∣∣θ
(
x, y

)∣∣2, ∀y ∈ K. (4.16)

Choose any point y ∈ K and consider xt = ty + (1 − t)x, t ∈ (0, 1], then xt ∈ K.

Case I. When ρ = 0.
Therefore from (4.16) we have

f(xt, x) ≤ 0, ∀y ∈ K. (4.17)

Now conditions (i) and (ii) imply that,

0 = f(xt, xt) ≤ tf
(
xt, y

)
+ (1 − t)f(xt, x)

=⇒ t
[
f(xt, x) − f

(
xt, y

)] ≤ f(xt, x).
(4.18)

From (4.17) and (4.18) we have

f(xt, x) − f
(
xt, y

) ≤ 0, ∀y ∈ K. (4.19)

Since f is hemicontinuous in the first argument and taking t → 0, it implies that

f
(
x, y

) ≥ 0, ∀y ∈ K. (4.20)

Hence x is a solution of (4.1).

Case II. When ρ < 0, let ρ = −k2.
From (4.16)we have

f(xt, x) ≤ −k2|θ(x, xt)|2. (4.21)
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Now using (4.18), (4.21), and (iv) it follows that

f(xt, x) − f
(
xt, y

) ≤ −k2t
∣
∣θ
(
x, y

)∣∣2. (4.22)

Since f is hemicontinuous in the first argument and letting t → 0, we get

f
(
x, y

) ≥ 0, ∀y ∈ K. (4.23)

Case III. When ρ > 0, let ρ = k2.
From (4.16), (4.18), and (iv) we have

f(xt, x) ≤ k2|θ(x, xt)|2,

⇒ f(xt, x) − f
(
xt, y

) ≤ k2t
∣∣θ
(
y, x

)∣∣2.
(4.24)

Since f is hemicontinuous in the first argument and taking t → 0, we get

f
(
x, y

) ≥ 0, ∀y ∈ K. (4.25)

Theorem 4.8. Let K be a nonempty bounded convex subset of a real reflexive Banach space X.
Suppose f : K × K → R is (ρ-θ)-pseudomonotone with respect to θ and is hemicontinuous in
the first argument with the following conditions:

(i) f(x, x) = 0, for all x ∈ K;

(ii) for fixed z ∈ K, the mapping x → f(z, x) is convex and lower semicontinuous;

(iii) θ(x, y) + θ(y, x) = 0, for all x, y ∈ K;

(iv) θ is convex in first argument and concave in the second argument, and lower semicon-
tinuous in the first argument.

Then the problem (4.1) has a solution.

Proof. Consider the two set valued mappings F : K → 2X and G : K → 2X such that

F
(
y
)

=
{
x ∈ K : f

(
x, y

) ≥ 0
}
, ∀y ∈ K,

G
(
y
)
=
{
x ∈ K : f

(
y, x

) ≤ ρ
∣∣θ
(
x, y

)∣∣2
}
, ∀y ∈ K.

(4.26)

It is easy to see that x ∈ K solves the equilibrium problem (4.1) if and only if
x ∈ ⋂

y∈K F(y). First to show that F is a KKM mapping. If possible let F not be a KKM
mapping. Then there exists {x1, x2, . . . , xm} ⊂ K such that co{x1, x2, . . . , xm}/⊆

⋃m
i=1 F(xi), that

means there exists a x0 ∈ co{x1, x2, . . . , xm}, x0 =
∑m

i=1tixi where ti ≥ 0, i = 1, 2, . . . , m,∑m
i=1ti = 1, but x0 /∈ ⋃m

i=1 F(xi). Hence, f(x0, xi) < 0; for i = 1, 2, . . . , m.
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From (i) and (ii) it follows that

0 = f(x0, x0) ≤
m∑

i=1

tif(x0, xi) < 0, (4.27)

which is a contradiction. Hence F is a KKMmapping.
From the (ρ-θ)-pseudomonotonicity of f it follows that F(y) ⊂ G(y), for all y ∈ K.

Therefore G is also a KKMmapping.
Since K is closed bounded and convex, it is weakly compact. From the assumptions,

we know that G(y) is weakly closed for all y ∈ K. In fact, because x → f(z, x)
and x → ρ|(θ(x, z)|2 are lower semicontinuous. Therefore, G(y) is weakly compact in
K, for each y ∈ K

Therefore from Lemma 2.11 and Theorem 4.7 it follows that
⋂

y∈K F(y) =⋂
y∈K G(y)/=φ.

So there exists x ∈ K such that f(x, y) ≥ 0, for all y ∈ K, that is, (4.1) has a solution.

Theorem 4.9. Let K be a nonempty unbounded closed convex subset of a real reflexive Banach space
X. Suppose f : K ×K → R is (ρ-θ)-pseudomonotone with respect to θ and is hemicontinuous in the
first argument and satisfy the following assumptions:

(i) f(x, x) = 0, for all x ∈ K;

(ii) for fixed z ∈ K, the mapping x → f(z, x) is convex and lower semicontinuous;

(iii) θ(x, y) + θ(y, x) = 0, for all x, y ∈ K;

(iv) θ is convex in first argument and concave in the second argument, and lower
semicontinuous in the first argument.

(v) f is weakly coercive, that is, there exists x0 ∈ K such that

f(x, x0) < 0, whenever ‖x‖ → +∞, an x ∈ K. (4.28)

Then (4.1) has a solution.

Proof. For r > 0, assume Kr = {y ∈ K : ‖y‖ ≤ r}.
Consider the problem: find xr ∈ K ∩Kr such that

f
(
xr, y

) ≥ 0, ∀y ∈ K ∩Kr. (4.29)

By Theorem 4.8 we know that the problem (4.29) has at least one solution xr ∈ K ∩Kr .
Choose ‖x0‖ < r with x0 as in condition (v). Then x0 ∈ K ∩Kr and

f(xr, x0) ≥ 0. (4.30)

If ‖xr‖ = r for all r, we may choose r large enough so that by the assumption (v) imply that
f(xr, x0) < 0, which contradicts (4.30).
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Therefore there exists r such that ‖xr‖ < r. For any y ∈ K, we can choose 0 < t < 1
small enough such that xr + t(y − xr) ∈ K ∩Kr .

From (4.29) it follows that

0 ≤ f
(
xr, xr + t

(
y − xr

))

≤ tf
(
xr, y

)
+ (1 − t)f(xr, xr)

= tf
(
xr, y

)
.

(4.31)

Hence f(xr, y) ≥ 0, for all y ∈ K.

5. Conclusions

The present work has been aimed to theoretically study the existence of solutions for
variational-like inequality problems under a new concept relaxed (ρ-θ)-η-invariant pseu-
domonotone maps in reflexive Banach spaces. We have also obtained existence of solu-
tions of equilibrium problems with (ρ-θ)-pseudomonotone mappings. More research and
development activities is therefore needed on generalized monotonicity to demonstrate the
equilibrium problem and variational inequality problem.
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