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We mainly study the Cmax problem of scheduling n groups of jobs on n special-purpose processors
and m general-purpose processors at different speeds provided that the setup time of each job
is less than α times of its processing time. We first propose an improved LS algorithm. Then, by
applying this new algorithm, we obtain two bounds for the ratio of the approximate solution TLS

to the optimal solution T ∗ under two different conditions.

1. Introduction

It is a well-studied problem to minimize the makespan in scheduling n jobs {J1, J2, . . . , Jn}
on m identical machines {1, 2, . . . , m}, where processing job Jj immediately after Ji needs a
setup timew(i, j). As it is NP-hard (cf. [1]), quite a few authors have made their efforts to its
approximate and heuristic algorithms, as well as the corresponding worst-case analysis.

In 1969, Graham [2] showed in his fundamental paper that the bound of this
scheduling problem is 2 − 1/m as w(i, j) = 0 under the LS (List Scheduling) algorithm
and the tight bound is 4/3 − 1/3m under the LPT (Longest Processing Time) algorithm.
In 1993, Ovacik and Uzsoy [3] proved that the bound is 4 − 2/m as w(i, j) ≤ tj , where
tj is the processing time of the job Jj , under the LS algorithm. In 2003, Imreh [4] studied
the online and offline problems on two groups of identical processors at different speeds,
presented the LG (Load Greedy) algorithm, and showed that the bound about minimizing
the makespan is 2 + (m − 1)/k and the bound about minimizing the sum of finish time is
2 + (m − 2)/k, wherem and k are the numbers of two groups of identical processors. Gairing
et al. [5] proposed a simple combinatorial algorithm for the problem of scheduling n jobs on
m processors at different speeds to minimize a cost stream and showed that it is effective and
of low complexity.
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Besides the above well-studied scheduling problem, one may face the problem of
scheduling multiple groups of jobs on multiple processors in real production systems,
such as, the problem of processing different types of yarns on spinning machines in
spinning mills. Recently, the problem of scheduling multiple groups of jobs on multiple
processors at same or different speeds were studied provided that each job has no setup
time. In 2006, Ding [6] studied the problem of scheduling n groups of jobs on one
special-purpose processor and n general-purpose processors at same speeds under an
improved LPT algorithm. In 2008, Ding [7] investigated the problem of scheduling n
groups of jobs on n special-purpose processors and m general-purpose processors at same
speeds under an improved LPT algorithm. In 2009, Ding [8] presented an improved LS
algorithm for the Qm+2/rj/Cmax scheduling problem on m general-purpose processors and
two special-purpose processors. In 2010, Ding [9] studied a heuristic algorithm of the
Q//Cmax problem on multitasks with uniform processors. In the same year, Ding and
Zhao [10] discussed an improved LS algorithm for the problem of scheduling multiple
groups of jobs on multiple processors at the same speed provided each job has a setup
time.

Recently, Ding and Zhao [11] investigated an improved LS algorithm for the problem
of scheduling multiple jobs on multiple uniform processors at different speeds provided
that each job has a setup time. However, if each job has a setup time, then the problem of
scheduling multiple groups of jobs on multiple processors at different speeds has not been
studied yet. Note that the LPT algorithm and the improved LPT algorithm are not effective
ways to deal with such a problem if each job has a setup time. Meanwhile, the classical LS
algorithm is only useful to solve the problem of scheduling one group of jobs on multiple
processors at same or different speeds. Therefore, our purpose of this study is to propose
an improved LS algorithm based on the classical LS algorithm and the fact that the optimal
solution T ∗ is bigger than the average finish time of all processors, see the inequality (3.6)
below, and to use this new algorithm to analyze this problem of scheduling multiple groups
of jobs on multiple processors at different speeds provided that each job has a setup time.

The remainder of the paper is organized as follows. In Section 2, we proposed an
improved LS algorithm for this scheduling problem. In Section 3, we obtain two bounds for
the ratio of the approximate solution TLS to the optimal solution T ∗ under the improved LS
algorithm.

Notation 1. As above and henceforth, we let Li (i = 1, . . . , n) denote the ith group of jobs,
and let Mi (i = 1, . . . , n) and Mn+j (j = 1, . . . , m) denote the set of jobs on the ith special-
purpose processor and the set of jobs on the jth general-purpose processor, respectively. Let
nr (r = 1, . . . , n) denote the number of jobs in the rth group. We then use J(r, i) (r = 1, . . . , n;
i = 1, . . . , nr) to denote the ith job of the rth group and use t(r, i) (r = 1, · · · , n; i = 1, . . . , nr)
to denote the processing time of J(r, i). Let Pr (r = 1, . . . , n) denote the set of the processing
time t(r, i) (r = 1, . . . , nr). Moreover, we denote by si (i = 1, . . . , n) the speed of the special-
purpose processor i and by sn+j (j = 1, . . . , m) the speed of the general-purpose processor
n + j, respectively.

Note that the speeds of general-purpose processors are less than those of special-
purpose processors in real production systems. For simplicity, we take sn+j = 1 (1 ≤ j ≤ m)
and assume si ≥ 1 (i = 1, . . . , n). If the job J(h, j) (h = 1, . . . , n; j = 1, . . . , nh) is processed after
the job J(l, i) (l = 1, . . . , n; i = 1, . . . , nl), then we use w(l, i;h, j) to denote the setup time the
processor needs.
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If the job J(r, i) is assigned to the processor k (k = 1, 2, . . . , n + m), then we write
J(r, i) ∈ Mk. Let MLk(k = 1, 2, . . . , n + m) stand for the set of jobs being processed to the
processor k and let

MTk :=
∑

J(h,j)∈Mk

(
w
(∗, ∗;h, j) + t

(
h, j

)

sk

)
, k = 1, 2, . . . , n +m. (1.1)

Then, we use MTk(k = 1, 2, . . . , n + m) to denote the actual finish time of the processor k.
Next, we write TLS = max1≤k≤n+m{MTk} as the actual latest finish time of n + m processors
under the improved LS algorithm and T ∗ as the actual latest finish time of n +m processors
under the optimal algorithm, respectively. We finally denote TLS by the approximate solution
under the improved LS algorithm, TLS/T ∗ by the bound of a scheduling problem under the
improved LS algorithm.

2. An Improved LS Algorithm

In the section, wewill propose an improved LS algorithm for the problem of schedulingmulti
groups of jobs on multi processors at different speeds provided that each job has a setup time.

The algorithm is defined by the fact that whenever a processor becomes idle for
assignment, the first job unexecuted is taken from the list and assigned to this processor.
If there are no less than one processor being idle, then the algorithm chooses the processor
with the smallest index. If the processor is a special-purpose processor for some group, then
the first job unexecuted in this group is assigned to the processor. If the processor is a general-
purpose processor, then the job with the smallest second index is assigned to the processor.
If there are several groups of jobs with the same second index, then the job with the smallest
first index is assigned. In addition, there is an arbitrary order for any job in any group at the
beginning of being processed.

The steps of the improved LS algorithm are the following.

Step 1 (Initialization). Set Q1 = {1, 2, . . . , n}, Q2 = {n + 1, n + 2, . . . , n + m}, ir = 1, MLr = ∅,
MTr = 0, r ∈ Q1.

Step 2 (Choose the first idle processor). If for some r ∈ Q1, ir > nr , then set Q1 = Q1 − {r}
(i.e., all jobs in the group Lr have been assigned). If Q1 = ∅, then go to Step 5 (i.e., all jobs in
all groups have been assigned). Set p = min{k′ | MTk′ = mink∈Q1

⋃
Q2MTk}, (i.e., seek the first

idle processor).

Step 3 (Choose the job). If p ≤ n, then set r = p, q = ip, ip = ip + 1 (i.e., the special-purpose
processor is the first idle processor, then the first job waiting for assignment in the pth group
is assigned). If p > n (i.e., the general-purpose processor is the first idle processor), then set
h = min{r ′ | ir ′ = minr∈Q1 ir } (i.e., the job with the smallest second index in nonempty groups
is assigned), r = h, q = ih, ih = ih + 1.

Step 4. Update the assignment and the latest finish time of the processor p. SetMLp = MLp +
{J(r, q)} and MTp = MTp +w(∗, ∗; r, q) + (t(r, q)/sp). Then go to Step 2.
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Step 5. Output the assignment MLk, k = 1, 2, . . . , n + m, for every processor and the latest
finish time

TLS = max
1≤k≤n+m

{MTk}. (2.1)

3. Analysis of the Improved LS Algorithm

In the section, we obtain two bounds for the ratio of the approximate solution TLS to the
optimal solution T ∗ under two different conditions.

Theorem 3.1. Consider the problem of scheduling n groups of jobs {L1, L2, . . . , Ln} on {1, 2, . . . , n}
special-purpose processors and {n+1, n+2, . . . , n+m} general-purpose processors at different speeds
provided each job has a setup time. Assume that w(l, i;h, j) ≤ αt(h, j) for all l, h, i, j. If the optimal
solution T ∗ is bigger than the processing time t(r, j) of the latest finish job J(r, j), then the bound of
this scheduling problem under the improved LS algorithm is

TLS

T ∗ ≤ (n +m − 1)(α + (1/sk)) + (α + 2)
∑n

i=1 si
n +m

(3.1)

for any α ≥ 0, where sk is the speed of the latest finish processor.

Proof. Based on the improved LS algorithm, we may assume that some processor k (1 ≤ k ≤
n +m) is the latest finish processor and the latest finish job is J(r, j) (1 ≤ r ≤ n, 1 ≤ j ≤ nr).
Then on the processor k, we have

TLS = MTk. (3.2)

On other processors, we have

MTi ≥ MTk −
(
w
(∗, ∗; r, j) + t

(
r, j

)

sk

)
, i = 1, 2, . . . , n +m, i /= k. (3.3)

By the assumption w(∗, ∗; r, j) ≤ αt(r, j), T ∗ ≥ t(r, j), (3.2) and (3.3), we get

MTi ≥ TLS −
(
w
(∗, ∗; r, j) + t

(
r, j

)

sk

)

≥ TLS −
(
α +

1
sk

)
t
(
r, j

)

≥ TLS −
(
α +

1
sk

)
T ∗, i = 1, 2, . . . , n +m, i /= k.

(3.4)
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Thus

n+m∑

i=1

MTi = MTk +
n+m∑

i=1
i /= k

MTi

≥ (m + n)TLS − (m + n − 1)
(
α +

1
sk

)
T ∗.

(3.5)

On the other hand, since T ∗ is the optimal solution, it follows that

T ∗ ≥
∑n

l=1
∑nl

i=1 t(l, i)∑n+m
i=1 si

. (3.6)

In view of the assumption and (3.6), we deduce

n+m∑

i=1

MTi =
n+m∑

i=1

∑

{t(h,p)}∈MLi

(
w
(∗, ∗;h, p) + t

(
h, p

)

si

)

≤
n+m∑

i=1

∑

{t(h,p)}∈MLi

(
α +

1
si

)
t
(
h, p

)

≤ (α + 2)
n+m∑

i=1

∑

{t(h,p)}∈MLi

t
(
h, p

)

≤ (α + 2)
n∑

h=1

nh∑

p=1

t
(
h, p

)

≤ (α + 2)T ∗
n+m∑

i=1

si.

(3.7)

Using (3.5) and (3.7), we have

(α + 2)T ∗
n+m∑

i=1

si ≥
n+m∑

i=1

MTi ≥ (m + n)TLS − (m + n − 1)
(
α +

1
sk

)
T ∗. (3.8)

This yields

(
(m + n − 1)

(
α +

1
sk

)
+ (α + 2)

n+m∑

i=1

si

)
T ∗ ≥ (m + n)TLS. (3.9)

Therefore

TLS

T ∗ ≤ (n +m − 1)(α + (1/sk)) + (α + 2)
∑n

i=1 si
n +m

. (3.10)

This completes the proof of the theorem.
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Table 1: The processing time of jobs.

P1 t(1, 1) = 9 t(1, 2) = 6 t(1, 3) = 3 t(1, 4) = 3 t(1, 5) = 3 t(1, 6) = 3 t(1, 7) = 1 t(1, 8) = 1 t(1, 9) = 8
P2 t(2, 1) = 6 t(2, 2) = 4 t(2, 3) = 2 t(2, 4) = 2 t(2, 5) = 2 t(2, 6) = 2
P3 t(3, 1) = 3 t(3, 2) = 2 t(3, 3) = 1 t(3, 4) = 1 t(3, 5) = 1 t(3, 6) = 1

Table 2: The setup time of jobs.

w(0, 0; 1, 1) = 9 w(0, 0; 2, 1) = 6 w(0, 0; 3, 1) = 3
w(1, 1; 1, 3) = 3 w(2, 1; 2, 3) = 2 w(3, 1; 3, 2) = 2
w(1, 3; 1, 4) = 3 w(2, 3; 2, 4) = 2 w(3, 2; 3, 3) = 1
w(1, 4; 1, 5) = 3 w(2, 4; 2, 5) = 2 w(3, 3; 3, 6) = 1
w(1, 5; 1, 6) = 3 w(2, 5; 2, 6) = 2 w(2, 2; 3, 3) = 1
w(1, 6; 1, 9) = 8 w(0, 0; 2, 2) = 4 w(3, 3; 3, 5) = 1
w(0, 0; 1, 2) = 6 w(1, 2; 1, 7) = 1 w(3, 5; 1, 8) = 1

w(∗,∗;∗,∗) = 0 for other jobs.

Example 3.2. Consider the following scheduling problem. Assume that there are three groups
of jobs and each group separately owns two special-purpose processors and jointly owns
three general-purpose processors. Assume further that α = 1, s1 = 3, s2 = 2, s3 = 1, s4 =
1, s5 = 1, (see Tables 1 and 2).

The schedule for this example under the improved LS algorithm is found in Table 3.
The schedule for this example under the optimal algorithm is arranged as follows.

found in Table 4.
In this example, we have n = 3, m = 2, α = 1 and sk = 3. Thus, we get

TLS = min
{
92
3
, 18, 18, 20, 20

}
=

92
3
, T ∗ = 8,

TLS

T ∗ =
23
6

≤ (3 + 2 − 1)(1 + 1/3) + (1 + 2)(3 + 2 + 1)
3 + 2

=
14
3
,

(3.11)

which is consistent with the conclusion of Theorem 3.1.
If we do not know whether or not T ∗ is bigger than the processing time t(r, j) of the

latest finish job J(r, j), then we have the following result.

Theorem 3.3. Consider the scheduling problem in Theorem 3.1. Assume that w(l, i;h, j) ≤ αt(h, j)
for all l, h, i, j. Then the bound of this scheduling problem under the improved LS algorithm is

TLS

T ∗ ≤ (n +m − 1)(αsk + 1) + (α + 2)
∑n

i=1 si
n +m

(3.12)

for any α ≥ 0, where sk is the speed of the latest finish processor.
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Table 3: The improved LS schedule.

Processors Processing times of jobs MTi

Processor 1 (s1 = 3) t(1, 1) = 9 t(1, 4) = 3 t(1, 6) = 3 t(1, 9) = 8 92/3
Processor 2 (s2 = 2) t(2, 1) = 6 t(2, 3) = 2 t(2, 4) = 2 t(2, 6) = 2 18
Processor 3 (s3 = 1) t(3, 1) = 3 t(3, 2) = 2 t(3, 3) = 1 t(3, 4) = 1 t(3, 5) = 1 t(3, 6) = 1 18
Processor 4 (s4 = 1) t(1, 2) = 6 t(1, 5) = 3 t(1, 7) = 1 20
Processor 5 (s5 = 1) t(2, 2) = 4 t(1, 3) = 3 t(2, 5) = 2 t(1, 8) = 1 20

Table 4: The optimal schedule.

Processors Processing times of jobs MTi

Processor 1 (s1 = 3) t(1, 5) = 3 t(1, 4) = 3 t(1, 3) = 3 t(1, 2) = 6 t(1, 1) = 9 8
Processor 2 (s2 = 2) t(2, 5) = 2 t(2, 4) = 2 t(2, 3) = 2 t(2, 2) = 4 t(2, 1) = 6 8
Processor 3 (s3 = 1) t(3, 5) = 1 t(3, 4) = 1 t(3, 3) = 1 t(3, 2) = 2 t(3, 1) = 3 8
Processor 4 (s4 = 1) t(1, 6) = 3 t(1, 7) = 1 t(1, 8) = 1 t(2, 6) = 2 t(3, 6) = 1 8
Processor 5 (s5 = 1) t(1, 9) = 8 8

Proof. Based on the improved LS algorithm, we may assume that some processor k (1 ≤ k ≤
n +m) is the latest finish processor and the latest finish job is J(r, j) (1 ≤ r ≤ n, 1 ≤ j ≤ nr).
Then on the processor k, we have

TLS = MTk. (3.13)

On other processors, we have

MTi ≥ MTk −
(
w
(∗, ∗; r, j) + t

(
r, j

)

sk

)
, i = 1, 2, . . . , n +m, i /= k. (3.14)

By the assumption w(∗, ∗; r, j) ≤ αt(r, j), T ∗ ≥ t(r, j)/sk, (3.13) and (3.14), we get

MTi ≥ TLS −
(
w
(∗, ∗; r, j) + t

(
r, j

)

sk

)

≥ TLS −
(
α +

1
sk

)
t
(
r, j

)

≥ TLS − (αsk + 1)T ∗, i = 1, 2, . . . , n +m, i /= k.

(3.15)

Thus

n+m∑

i=1

MTi = MTk +
n+m∑

i=1
i /= k

MTi

≥ (m + n)TLS − (m + n − 1)(αsk + 1)T ∗.

(3.16)
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On the other hand, since T ∗ is the optimal solution, it follows that

T ∗ ≥
∑n

l=1
∑nl

i=1 t(l, i)∑n+m
i=1 si

. (3.17)

In view of the assumption and (3.17), we deduce

n+m∑

i=1

MTi =
n+m∑

i=1

∑

{t(h,p)}∈MLi

(
w
(∗, ∗;h, p) + t

(
h, p

)

si

)

≤
n+m∑

i=1

∑

{t(h,p)}∈MLi

(
α +

1
si

)
t
(
h, p

)

≤ (α + 2)
n+m∑

i=1

∑

{t(h,p)}∈MLi

t
(
h, p

)

≤ (α + 2)
n∑

h=1

nh∑

p=1

t
(
h, p

)

≤ (α + 2)T ∗
n+m∑

i=1

si.

(3.18)

Using (3.16) and (3.18), we have

(α + 2)T ∗
n+m∑

i=1

si ≥
n+m∑

i=1

MTi ≥ (m + n)TLS − (m + n − 1)(αsk + 1)T ∗. (3.19)

This yields

(
(m + n − 1)(αsk + 1) + (α + 2)

n+m∑

i=1

si

)
T ∗ ≥ (m + n)TLS. (3.20)

Therefore

TLS

T ∗ ≤ (n +m − 1)(αsk + 1) + (α + 2)
∑n

i=1 si
n +m

. (3.21)

This completes the proof of the theorem.
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