
Hindawi Publishing Corporation
Advances in Operations Research
Volume 2012, Article ID 768929, 16 pages
doi:10.1155/2012/768929

Research Article
Optimal Policies for a Finite-Horizon Production
Inventory Model

Lakdere Benkherouf and Dalal Boushehri

Department of Statistics and Operations Research, College of Science, Kuwait University,
P.O. Box 5969, Safat 13060, Kuwait

Correspondence should be addressed to Lakdere Benkherouf, lakdereb@yahoo.com

Received 26 October 2011; Revised 29 February 2012; Accepted 17 March 2012

Academic Editor: Imed Kacem

Copyright q 2012 L. Benkherouf and D. Boushehri. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the problem of finding the optimal production schedule for an
inventory model with time-varying demand and deteriorating items over a finite planning
horizon. This problem is formulated as a mixed-integer nonlinear program with one integer
variable. The optimal schedule is shown to exist uniquely under some technical conditions. It
is also shown that the objective function of the nonlinear obtained from fixing the integrality
constraint is convex as a function of the integer variable. This in turn leads to a simple procedure
for finding the optimal production plan.

1. Introduction

This paper is concerned with the optimality of a production schedule for a single-item
inventory model with deteriorating items and for a finite planning horizon. The motivation
for considering inventory models with time-varying demand and deteriorating items is well
documented in the literature. Readers may consult Teng et al. [1], Goyal and Giri [2], and
Sana et al. [3] and the references therein.

Earlier models on finding optimal replenishment schedule for a finite planning
horizon may be categorized as economic lot size (ELS) models dealing with replenishment
only. The model treated in this paper is an extension of the economic production lot size
(EPLS) to finite horizon models and time-varying demand. The model is close in spirit to
that of [1]. However, in [1], the possibility that products may experience deterioration while
in stock was not considered. Deterioration was considered in [3] with the possibility of
shortages. Nevertheless, their proposed (EPLS) schedule is not optimal.

Recently, Benkherouf and Gilding [4] suggested a general procedure for finding the
optimal inventory policy for finite horizon models. The procedure is based on earlier work
by Donaldson [5], Henery [6], and Benkherouf and Mahmoud [7]. This procedure was
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motivated by applications to (ELS) models. Nevertheless, it turned out that the applicability
of the procedure goes beyond its original scope. The procedure has already been successful
in finding the optimal inventory policy for an integrated single-vendor single buyer with
time-varying demand rate: see Benkherouf and Omar [8]. The current paper presents another
extension of the procedure to (EPLS) models. In our treatment, we have opted for a route
of simplicity. In that, we selected a model with no shortages and where costs are fixed
throughout the planning horizon. Various extensions of the model are discussed in Section 5.

The details of the model of the paper along with the statement of the problem to
be discussed are presented in the next section. Section 3 contains some preliminaries on
the procedure of Benkherouf and Gilding [4]. The main results are contained in Section 4.
Section 5 is concerned with some general remarks and conclusion.

2. Mathematical Model

The model treated in this paper is based on the following assumptions:

(1) the planning horizon is finite;

(2) a single item is considered;

(3) products are assumed to experience deterioration while in stock;

(4) shortages are not permitted;

(5) initial inventory at the beginning of planning horizon is zero, also the inventory
depletes to zero at the end of the planning horizon;

(6) the demand function is strictly positive;

We will initially look at a single period i (production cycle), say, starting at time ti−1
and ending at time ti, i = 1, 2, . . . . Some of the notations used in the model are as follows:

H: the total planning horizon,

p: the constant production rate,

D(t): the demand rate at time t, 0 < D(t) < p,

α: constant deteriorating rate of inventory items with α > 0,

t
p

i : the time at which the inventory level reaches it is maximum in the ith production
cycle,

K: set up cost for the inventory model,

c1: the cost of one unit of the item with c1 > 0,

ch: carrying cost per inventory unit held in the model per unit time,

TC: total system cost during H.

Figure 1 shows the changes of the level of stock for a typical production period.
Let I(t) be the level of stock at time t. The change in period i, the level of inventory,

may be described by the following differential equation i, i = 1, 2, . . .,

I ′(t) = p −D(t) − αI(t), ti−1 ≤ t < t
p

i , I(t) ↓ 0 as t ↓ ti−1. (2.1)
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Figure 1: The changes of inventory levels of various components of the model for a typical production
batch.

The solution to (2.1) is given by

I(t) = e−αt
∫ t

ti−1
eαu

{
p −D(u)

}
du, ti−1 ≤ t < t

p

i , (2.2)

I ′(t) = −D(t) − αI(t), t
p

i ≤ t < ti, I(t) ↑ 0 as t ↑ ti. (2.3)

The solution to (2.3) is given by

I(t) = e−αt
∫ ti

t

eαuD(u)du, t
p

i ≤ t < ti. (2.4)

The total costs, (excluding the setup cost) for period i, which consist of holding cost and
deterioration cost are given by

ch

∫ t
p

i

ti−1
e−αt

[∫ t

ti−1
eαu

{
p −D(u)

}
du

]
dt

+ ch

∫ ti

t
p

i

e−αt
{∫ ti

t

eαuD(u)du

}
dt,

+ c1

{∫ t
p

i

ti−1
pdu −

∫ ti

ti−1
D(u)du

}
.

(2.5)
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We will call models with this cost OHD models. It is possible to consider instead of (2.5) the
form

ch

∫ t
p

i

ti−1
e−αt

[∫ t

ti−1
eαu

{
p −D(u)

}
du

]
dt

+ ch

∫ ti

t
p

i

e−αt
{∫ ti

t

eαuD(u)du

}
dt + c1

∫ t
p

i

ti−1
pdu,

(2.6)

which considers only holding and purchasing costs, where the expression c1
∫ tpi
ti−1 pdu

represents the purchasing cost. We call this OHP models.
Note that since the function I is continuous at tpi , we have

e−αt
p

i

∫ t
p

i

ti−1
eαu

{
p −D(u)

}
du = e−αt

p

i

∫ ti

t
p

i

eαuD(u)du, (2.7)

or

∫ t
p

i

ti−1
eαu

{
p −D(u)

}
du =

∫ ti

t
p

i

eαuD(u)du, (2.8)

then

p

∫ t
p

i

ti−1
eαudu =

∫ ti

ti−1
eαuD(u)du, (2.9)

or

p

α

(
eαt

p

i − eαti−1
)
=

p

α
eαti−1

{
eα(t

p

i −ti−1) − 1
}
=
∫ ti

ti−1
eαuD(u)du, (2.10)

eα(t
p

i −ti−1) − 1 =
α

p
e−αti−1

∫ ti

ti−1
eαuD(u)du. (2.11)

Therefore,

t
p

i − ti−1 =
1
α
log

{
1 +

α

p
e−αti−1

∫ ti

ti−1
eαuD(u)du

}
. (2.12)
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Lemma 2.1. The expression of the cost in (2.5) is equal to

(ch + αc1)

[
p

α2
log

{
1 +

α

p
e−αti−1

∫ ti

ti−1
eαuD(u)du

}
− 1
α

∫ ti

ti−1
D(u)du

]
.

(2.13)

Proof. Applying integration by parts, we get that (2.5) reduces to

ch
α

∫ t
p

i

ti−1

{
1 − eα(u−t

p

i )
}{

p −D(u)
}
du

+
ch
α

∫ ti

t
p

i

{
eα(u−t

p

i ) − 1
}
D(u)du

+ c1

∫ t
p

i

ti−1
pdu − c1

∫ ti

ti−1
D(u)du,

(2.14)

or

ch
α

{
p

∫ t
p

i

ti−1
du −

∫ t
p

i

ti−1
D(u)du − p

∫ t
p

i

ti−1
eα(u−t

p

i )du +
∫ t

p

i

ti−1
eα(u−t

p

i )D(u)du

}

+
ch
α

{∫ ti

t
p

i

eα(u−t
p

i )D(u)du −
∫ ti

t
p

i

D(u)du

}

+ c1

∫ t
p

i

ti−1
pdu − c1

∫ ti

ti−1
D(u)du,

(2.15)

= p
(ch
α

+ c1
)(

t
p

i − ti−1
)
− ch

α
e−αt

p

i

∫ t
p

i

ti−1
eαu

{
p −D(u)

}
du

+
ch
α
e−αt

p

i

∫ ti

t
p

i

eαuD(u)du − ch
α

∫ ti

ti−1
D(u)du − c1

∫ ti

ti−1
D(u)du.

(2.16)

This is equal, using (2.7), to

p
(ch
α

+ c1
)(

t
p

i − ti−1
)
−
(ch
α

+ c1
)∫ ti

ti−1
D(u)du. (2.17)

Now, the lemma follows from (2.12) and (2.17).

Note that Lemma 2.1 reduced the dependence of the inventory cost in period i from
three variables to two variables. This reduction can be significant for an n-period model. Let

R
(
x, y

)
:= (ch + αc1)

[
p

α2
log

{
1 +

α

p
e−αx

∫y

x

eαtD(t)dt
}
− 1
α

∫y

x

D(t)dt
]
. (2.18)
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Remark 2.2. Let α → 0, in (2.18), and recall that log(1 + x)may be expanded as

x − 1
2
x2 +

1
3
x3 − 1

4
x4 +

1
5
x5 +O

(
x6
)
, (2.19)

to get that as α → 0, R(x, y) is equivalent to

(ch + αc1)

[∫y

x

{
eα(t−x) − 1

α

}
D(t)dt − 1

2p

{∫y

x

eα(t−x)D(t)dt
}2

]
, (2.20)

which leads to the expression

ch

[∫y

x

(t − x)D(t)dt − 1
2p

{∫y

x

D(t)dt
}2

]
. (2.21)

This expression may be found in Hill [9], Omar and Smith [10], and Rau and Ouyang [11].
However, their interest in finding the optimal inventory policy for their model centered
around treating special cases for demand rate functions or devising heuristics.

The total inventory costs where n ordered are made may be written as follows:

TC(t1, . . . , tn) = nK +
n∑
i=1

R(ti−1, ti), (2.22)

which is given by (2.18).
The objective now is to find n and t1, . . . , tn which minimizes TC subject to t0 = 0 < t1 <

· · · < t n = H. The problem becomes a mixed integer programming problem. The approach
that we will use to solve it is based on a procedure developed by Benkherouf and Gilding [4].
The next section contains the ingredients of the approach.

3. Technical Preliminaries

This section contains a summary of the work of [4] needed to tackle the problem of this paper.
Proofs of the results are omitted. Interested readers may consult [4].

Consider the problem

P : TC(t1, . . . , tn;n) = nK +
n∑
i=1

Ri(ti−1, ti), (3.1)

subject to

0 = t0 < t1 < · · · < tn = H. (3.2)

It was shown in [4] that, under some technical conditions, the optimization problem (P) has
a unique optimal solution which can be found from solving a system of nonlinear equations
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derived from the first-order optimality condition. To be precise, let t0 = 0 and tn = H and
ignore the rest of the constraints (3.2).

Write

Sn :=
n∑
i=1

Ri(ti−1, ti). (3.3)

Assuming thatR′
is are twice differentiable, then, for fixed n, the optimal solution in (P) subject

to (3.2) reduces to minimizing Sn.
Use the notation ∇ for the gradient, then setting ∇TC(t1, . . . , tn;n) = 0 gives

(∇TC)i = (∂Ri)y(ti−1, ti) + (∂Ri+1)x(ti, ti+1) = 0, i = 1, . . . , n − 1. (3.4)

Two sets of hypotheses were put forward in [4].

Hypothesis 1. The functions Ri satisfy, for i = 1, . . . , n and y > x,

(1) Ri(x, y) > 0,

(2) Ri(x, x) = 0,

(3) (∂Ri)x(x, y) < 0 < (∂Ri)y(x, y),

(4) (∂x∂yR)i(x, y) < 0.

Hypothesis 2. Define

Lxz = ∂2xz + ∂x∂yz + f(x)∂xz,

Lyz = ∂2yz + ∂x∂yz + f
(
y
)
∂yz,

(3.5)

then there is a continuous function f such that LxRi ≥ 0, LyRi ≥ 0 for all i = 1, . . . , n, and
(∂Ri)y + (∂Ri+1)x = 0 on the boundary of the feasible set.

The next theorem shows that under assumptions in Hypotheses 1 and 2, the function
Sn has a unique minimum.

Theorem 3.1. The system (3.4) has a unique solution subject to (3.2). Furthermore, this solution is
the solution of (3.1) subject to (3.2). Recall that a function Sn is convex in n if

Sn+2 − Sn+1 ≥ Sn+1 − Sn. (3.6)

This is equivalent to

1
2
(Sn + Sn+2) ≥ Sn+1. (3.7)

Theorem 3.2. If sn denotes the minimum objective value of (3.1) subject to (3.2) and Ri(x, y) =
R(x, y), then sn is convex in n.
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Based on the convexity property of sn, the optimal number of cycles n∗ is given by

n∗ = min{n ≥ 1 : sn+1 − sn > 0}. (3.8)

Now to solve (3.4) at i = n − 1,

∂Rn−1y(tn−2, tn−1) + (∂Rn)x(tn−1,H) = 0. (3.9)

Assume that tn−1 is known, according to [4], tn−2 can be found uniquely as a function
of tn−1. Repeating this process for i = n − 2, down to i = 1, tn−3,. . .,tn are a function of tn−1.
So, the search for the optimal solution of (3.5) can be conducted using a univariate search
method.

4. Optimal Production Plan

This section is concerned with the optimal inventory policy for the production inventory
model. The model has been introduced in Section 2. This section will investigate the extent to
which the function R given by (2.18) satisfies Hypotheses 1 and 2,

R
(
x, y

)
= (ch + αc1)

[
p

α2
log

{
1 +

α

p

∫y

x

eα(t−x)D(t)dt
}
− 1
α

∫y

x

D(t)dt
]
.

(4.1)

Without loss of generality, we will set ch + αc1 to 1. As this will have no effect on the
solution of the optimization problemwhereK needs to be replaced byK/(ch+αc1), therefore,
we set

R
(
x, y

)
=

p

α2
log

{
1 +

α

p

∫y

x

eα(t−x)D(t)dt
}
− 1
α

∫y

x

D(t)dt. (4.2)

Write

G
(
x, y

)
=

α

p

∫y

x

eα(t−x)D(t)dt. (4.3)
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Direct computations then lead to

∂xR =
p

α2

∂xG

1 +G
+
1
α
D(x),

∂yR =
p

α2

∂yG

1 +G
− 1
α
D
(
y
)
,

∂x∂yR =
p

α2

∂x∂yG(1 +G) − (∂xG)
(
∂yG

)
(1 +G)2

,

∂2xR =
p

α2

∂2xG(1 +G) − (∂xG)2

(1 +G)2
+
1
α
D′(x),

∂2yR =
p

α2

∂2yG(1 +G) − (∂xG)2

(1 +G)2
− 1
α
D′(y),

∂xG = −α
{
G +

D(x)
p

}
,

∂yG =
α

p
eα(y−x)D

(
y
)
,

∂x∂yG = −α∂yG,

∂2xG = −α
{
−αG − α

D(x)
p

+
D′(x)
p

}
,

∂2yG = α∂yG +
α

p
eα(y−x)D′(y).

(4.4)

The following result indicates that R obtained in (4.2) satisfies Hypothesis 1.

Lemma 4.1. The function R satisfies Hypothesis 1.

Proof. It is clear that for any x ∈ [0,H],

R(x, x) = 0. (4.5)

Now, direct computations show that

∂xR
(
x, y

)
=

G
(
x, y

)
α
{
1 +G

(
x, y

)}{−p +D(x)
}
. (4.6)

But p > D(x), therefore ∂xR(x, y) < 0 since G(x, y) > 0 for y > x. Also, it can be shown that

∂yR
(
x, y

)
=

D
(
y
)

α

{
eα(y−x)

1 +G
(
x, y

) − 1

}
. (4.7)

We claim that ∂yR(x, y) > 0. Indeed, the claim is equivalent to

Fx

(
y
)
= 1 +G

(
x, y

) − eα(y−x) < 0 for y > x. (4.8)
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The function Fx(y) is decreasing since

F ′
x

(
y
)
= −αeα(y−x)

{
1 − D

(
y
)

p

}
, (4.9)

with Fx(x) = 0. Hence, the claim is true. To complete the proof, we need to examine the sign
of ∂x∂yR. Again, some algebra leads to

∂x∂yR
(
x, y

)
= −α∂yG

(
x, y

){
1 − D

(
y
)

p

}
. (4.10)

But ∂yG(x, y) > 0, and p > D(x). Therefore, ∂x∂yR(x, y) < 0, for y > x, and the proof is
complete.

Before we proceed further, we set

Zx(u) =
D′(u)

D(u){1 + 2G(x, u)} , with 0 ≤ x ≤ u ≤ H. (4.11)

We assume the following.

(A1) The function Zx is nonincreasing.

Note that as α → 0, G(x, u) → 0, and consequently Zx(u) reduces to D′(u)/D(u). In
other words, assumption (A1) implies thatD is logconcave. This property of the demand rate
function may be found in [4, 6], when considering models with infinite production rates. As
a matter of fact, this property of D can also be obtained if we let p → ∞.

Example 4.2. Let D(u) = αeβu, where α > 0 and is known and β > 0 and is known, then Zx(u)
is nonincreasing.

Note that Zx is nonincreasing which is equivalent to 1/Zx non-decreasing. We have

gx(u) :=
1

Zx(u)
=

D(u){1 + 2G(x, u)}
D′(u)

=
1
β
{1 + 2G(x, u)}, (4.12)

with g ′
x(u) = (2/β)∂yG(x, y) > 0, which implies the result.

Example 4.3. LetD(u) = a+bu, where b > 0, then it is an easy exercise to check that assumption
(A1) is satisfied.

Lemma 4.4. If Zx satisfies (A1) for all 0 ≤ x ≤ H, then LxR ≥ 0, where Lx is defined in (3.5).
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Proof. Tedious but direct algebra using the definition of LxR leads to

LxR =

{
1 − (

D(x)/p
)}

{
1 +G

(
x, y

)}2
{
α

∫y

x

eα(t−x)D(t)dt +D(x) − eα(y−x)D
(
y
)}

+
1
α

D′(x)G
(
x, y

)
1 +G

(
x, y

) − p

α

G
(
x, y

)
1 +G

(
x, y

)
{
1 − D(x)

p

}
f(x).

(4.13)

LxR ≥ 0 is equivalent to

{
1 − (

D(x)/p
)}

{
1 +G

(
x, y

)}
{
α

∫y

x

eα(t−x)D(t)dt +D(x) − eα(y−x)D
(
y
)}

+
1
α
D′(x)G

(
x, y

) − p

α
G
(
x, y

){
1 − D(x)

p

}
f(x) ≥ 0.

(4.14)

Let

f(x) = −D
′(x)

D′(x)
+

D′(x)
p
{
1 − (

D(x)/p
)} . (4.15)

It can be shown that (4.14) is true if

α

p

eα(y−x)D
(
y
) −D(x) − α

∫y
x eα(t−x)D(t)dt

G
(
x, y

){
1 +G

(
x, y

)} ≤ D′(x)
D(x)

. (4.16)

Define, for u ≥ x.

Fx(u) = eα(u−x)D(u) − α

∫u

x

eα(t−x)D(t)dt,

Hx(u) =
α

p

∫u

x

eα(t−x)D(t)dt
{
1 +

α

p

∫u

x

eα(t−x)D(t)dt
}
.

(4.17)

The left hand side of (4.16)may be written as

α

p

Fx

(
y
) − Fx(x)

Hx

(
y
) −Hx(x)

. (4.18)

This is equal by extended-mean value theorem to (α/p)((F ′
x(ξ))/(H

′
x(ξ))) for some x < ξ ≤ y.

However,

F ′
x(u) = αeα(u−x)D′(u),

H ′
x(u) = ∂yG(x, u){1 + 2G(x, u)}. (4.19)
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Therefore,

α

p

F ′
x(ξ)

H ′
x(ξ)

=
D′(ξ)

D(ξ){1 + 2G(x, ξ)} ≤ D′(x)
D(x){1 + 2G(x, x)} =

D′(x)
D(x)

. (4.20)

The last inequality follows from assumption (A1). This completes the proof.

Now, set for 0 ≤ u ≤ y ≤ H,

Vy(u) = −αeα(y−u){eα(y−u)D(
y
) −D(u) − α

∫y
u eα(t−u)D(t)dt

}
,

(4.21)

Wy(u) = −{1 +G
(
u, y

)}{
eα(y−u) − 1 −G

(
u, y

)}
. (4.22)

The next assumption is needed for LyR ≥ 0 of Hypothesis 2 to hold.

(A2) V ′
y/W

′
y is non-decreasing.

Assumption (A2) is technical and is needed to complete the result of the paper.
This assumption may seem complicated but, it is not difficult to check it numerically using
MATLAB or Mathematica,say, once the demand rate function is known. Moreover, it can be
shown that as α → 0, (A2) reduces to the condition that the function

F =
D′(u)

1 − (
D(u)/p

) (4.23)

is non-decreasing. This property is satisfied by linear and exponential demand rate functions.
In fact, assumption (A1) is also, in this case, satisfied when D is linear or exponential.

Lemma 4.5. If assumption (A2) is satisfied, then LyR ≥ 0.

Proof. Recall that

LyR = ∂2yR + ∂x∂yR + f
(
y
)
∂yR. (4.24)

Direct and tedious computation leads to

LyR
(
x, y

)
=

1
α

∂yG
(
x, y

)
{
1 +G

(
x, y

)}2
×
[
α

∫y

x

eα(t−x)D(t)dt −
{
eα(y−x)D

(
y
) −D(x)

}]

− 1
α
D′(y) + 1

α

eα(y−x)D′(y){
1 +G

(
x, y

)}

+
1
α
f
(
y
)
D
(
y
){ eα(y−x)

1 +G
(
x, y

) − 1

}
.

(4.25)
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Recall the definition of the function f in (4.15). Then LyR ≥ 0 is equivalent to

∂yG
(
x, y

)
1 +G

(
x, y

)
{
eα(y−x)D

(
y
) −D(x) − α

∫y

x

eα(t−x)D(t)dt
}

≤ D′(y)D(
y
)

p
{
1 − (

D
(
y
)
/p

)}{eα(y−x) − 1 −G
(
x, y

)}
,

(4.26)

or, by (∂yG) and (4.8), we get that the requirement LyR ≥ 0 leads to

α
eα(y−x)

{
eα(y−x)D

(
y
) −D(x) − α

∫y
x eα(t−x)D(t)dt

}
{
1 +G

(
x, y

)}{
eα(y−x) − 1 −G

(
x, y

)} ≤ D′(y){
1 − (

D
(
y
)
/p

)} . (4.27)

The left hand side of (4.27) is equal to (Vy(y) − Vy(x))/(Wy(y) −Wy(x)), where Vy and Wy

are given by (4.21), and (4.22) respectively.
Computations show that

V ′
y(u) = 2α2eα(y−u)

{
eα(y−u)D

(
y
) −D(u) − α

∫y

u

eα(t−u)D(t)dt
}

+ αeα(y−u)D′(y),
W ′

y(u) = −∂xG
(
u, y

){
eα(y−u) − 1 −G

(
u, y

)}

− {
1 +G

(
u, y

)}{−αeα(y−u) − ∂xG
(
u, y

)}
.

(4.28)

Now, the extended-mean value theorem gives that

Vy

(
y
) − Vy(x)

Wy

(
y
) −Wy(x)

=
V ′
y(ξ)

W ′
y(ξ)

, for some x < ξ < y. (4.29)

But assumption (A2) implies that (V ′
y(ξ)/W

′
y(ξ)) ≤ (V ′

y(y)/W
′
y(y)), where the right hand

side of the above inequality is equal to

αD′(y)
−{−α + α

(
D
(
y
)
/p

)} =
D′(y){

1 − α
(
D
(
y
)
/p

)} . (4.30)

This is the right hand side of (4.27). Hence, LyR ≥ 0.

As a consequence of Lemmas 4.4 and 4.5 and Theorem 3.1, we have the following
result.

Theorem 4.6. Under the requirements that assumptions (A1) and (A2) hold the function Sn =∑N
i=1 R(ti−1, ti), with t0 = 0 < t1 < · · · < tn, has a unique minimum, this minimum can be found

using the iterative procedure mentioned in [4].

Let sn be the minimal value of Sn, then the next theorem follows from Theorem 3.2.
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Theorem 4.7. The function sn is convex in n.

As a consequence of Theorem 4.7, the search for the optimal inventory policy can be
conducted in two grids: the integer grid and R

n
+. That is, for fixed integer n, the corresponding

optimal times are found from the solution of the system of nonlinear equations (3.4) with
corresponding objective value sn. Then, the optimal value of n can be obtained using the
following corollary.

Corollary 4.8. The optimal number of production period n∗ is such that

(1) if K > s1 − s2, then n∗ = 1,

(2) if there exists an N ≥ 2 such that sN−1 − sN > K > sN − sN+1, then n∗ = N,

(3) if there exists an N ≥ 1 such that K = sN − sN+1, then n∗ = N and n∗ = N + 1.

5. Conclusion

This paper was concerned with finding the economic-production-lot-size policy for an
inventory model with deteriorating items. An optimal inventory policy was proposed for a
class of cost functions named OHDmodels. The proposed optimality approach was based on
an earlier work in [4]. The extension to OHD models should not pose any difficulty. Indeed,
note that by comparing (2.5) and (2.6), the OHP and OHD models differ in the expression

−c1
∫ ti

ti−1
D(u)du. (5.1)

Now, consider the optimization problem (2.22) with R given by (2.6). It is clear that
adding −c1

∫H
0 D(u)du = −c1

∑n
i=1

∫ ti
ti−1

D(u)duwill have no effect on the optimization problem.
Consequently, the results obtained for the OHP model apply to the OHD model.

Before we close, we revisit paper [1] and note that the model in [1] allows for the
purchasing cost to vary with time, and therefore with fixed unit cost and no deterioration,
the model in [1] is a special case of the model of the present paper. The reduction (2.18) in the
present paper allows a direct approach as though the problem on hand is an unconstrained
optimization problem. The approach adopted in [1] is the standard approach for constrained
nonlinear programming problem. The key result in [1] is Theorem 1 (Page 993) which
adapted to the model of this paper with θ = 0 requires that ch(1 − (D(t)/p)) > 0 to hold.
This is satisfied since D(t) < p. Theorem 1 in [1] states, with no conditions imposed on D,
that for fixed n the optimal inventory policy is uniquely determined as a solution of the
first order condition of the optimization problem on hand. A result similar to Theorem 3.2
related to convexity of the corresponding objective value with respect to n is also presented.
The following counterexample shows that Theorem 1 in [1] cannot be entirely correct in
its present form. Indeed, for simplicity let n = 2, then the problem treated in [1] reduces
(equivalently) to minimizing (2.22)with R given by (2.21). The objective function in this case
is a function of a single variable. Take D(t) = 2 sin(10t) + 2 cos(10t) + 4, ch = 1, and H � 4.27,
and ignore the setup cost. Figure 2 shows the plot of the objective function. It is clear that
multiple critical points can be observed as well as multiple optima. The remark on [1] also
applies to part of Balkhi [12].
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Figure 2: Behaviour of the objective function when D(t) = 2 sin(10t) + 2 cos(10t) + 4.

It is worth noting that the keys to success in applying the approach in [4] are the
separability of the cost functions between periods and Hypotheses 1 and 2. With this in mind,
we believe that the approach of this paper to models with shortages and possibly with costs
that are a function of time are possible. The technical requirement needed to generalize the
results will be slightly more involved but essentially similar.
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