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We study the existence and the algorithmic aspect of a System of Generalized Mixed Equilibrium
Problems involving variational-like inequalities (SGMEPs) in the setting of Banach spaces. The
approach adopted is based on the auxiliary principle technique and arguments from generalized
convexity. A new existence theorem for the auxiliary problem is established; this leads us
to generate an algorithm which converges strongly to a solution of (SGMEP) under weaker
assumptions. When the study is reduced to the setting of reflexive Banach spaces, then it can be
more relaxed by dropping the coercivity condition. The results obtained in this paper are new and
improve some recent studies in this field.

1. Introduction and the Problem Statement

Let K be a nonempty closed convex subset of a Banach space X, and let F : K × K → R

be a real-valued bifunction. By equilibrium problem, in short (EP), we mean the following
problem:

(EP) Find u ∈ K such that F(u, v) ≥ 0 ∀v ∈ K. (1.1)

Equilibrium problems are suitable and common format for investigation of various applied
problems arising in economics, mathematical physics, transportation, communication
systems, engineering, and other fields. Moreover, equilibrium problems are closely related
with other general problems in nonlinear analysis, such as fixed points, game theory,
variational inequality, and optimization problems, see [1–4]. Various kinds of iterative
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algorithms to solve equilibrium problems and variational inequalities have been developed
by many authors. There exists a vast literature on the approximation solvability of
equilibrium problems and nonlinear variational inequalities using projection type methods,
proximal-type methods, or resolvent operator type methods, see [5–11]. We observe that
the projection method and its variant forms cannot be applied for constructing iterative
algorithms of mixed variational-like inequalities or mixed equilibrium problems involving
variational-like inequalities. This fact motivated many authors to develop the auxiliary
principle technique to study the existence and algorithm of solutions for variational-like
inequalities and its extensions to mixed equilibrium problems, see [12–15]. Kazmi and Khan
[16] studied a system of generalized variational-like inequality problems in Hilbert spaces
by using the auxiliary principle technique. Recently, Ding and Wang [17] and Ding [18]
introduced new iterative algorithms for solving some class of system of generalized mixed
variational-like inequalities and system ofmixed equilibrium problems involving variational-
like inequalities.

In this paper, we study the existence and the algorithmic aspect of a System of
Generalized Mixed Equilibrium Problems involving variational-like inequalities (SGMEPs)
in the setting of Banach spaces. A new existence theorem for the auxiliary problem is
established, this leads us to generate an algorithm which converges strongly to a solution
of (SGMEP) under weaker assumptions. When the study is reduced to the setting of reflexive
Banach spaces, then it can be more relaxed by dropping the coercivity condition. The results
obtained in this paper are new and improve some recent studies in this field.

Throughout this paper, let I = {1, 2} be an index set. For each i ∈ I, let Xi be a Banach
space, X∗

i its dual, 〈·, ·〉i is the duality pairing between X∗
i and Xi, ‖ · ‖i denotes the norm in Xi

and X∗
i , and let Ki be a nonempty closed convex subset of Xi. We will denote by CB(X∗

i ) the
family of all nonempty closed and bounded subsets of X∗

i .
For each i ∈ I, let Ri : K1 ⇒ CB(X∗

1) and Ai : K2 ⇒ CB(X∗
2) be multivalued mappings,

Ni : X∗
1 ×X∗

2 → X∗
i and ηi : Xi ×Xi → Xi be single-valued mappings, Fi, ψi : Ki ×Ki → R be

two real-valued functions, and letwi ∈ X∗
i . We consider the following System of Generalized

Mixed Equilibrium Problem involving variational-like inequalities (SGMEP).
Find (x1, x2) ∈ K1 ×K2, (u1, v1) ∈ R1(x1) ×A1(x2), and (u2, v2) ∈ R2(x1) ×A2(x2) such

that

F1
(
x1, y1

)
+
〈
N1(u1, v1) −w1, η1

(
y1, x1

)〉
1 + ψ1

(
x1, y1

) − ψ1(x1, x1) ≥ 0 ∀y1 ∈ K1;

F2
(
x2, y2

)
+
〈
N2(u2, v2) −w2, η2

(
y2, x2

)〉
2 + ψ2

(
x2, y2

) − ψ2(x2, x2) ≥ 0 ∀y2 ∈ K2.
(1.2)

1.1. Some Special Cases

(1) If for each i ∈ I, Xi = X∗
i = Hi is a Hilbert space, Ki = Hi, Fi ≡ 0, wi = 0 and for

each (x, y) ∈ H1 ×H2, Ri(x) = x and Ai(y) = y, then problem (1.2) reduces to the
problem of finding (x1, x2) ∈ H1 ×H2 such that

〈
N1(x1, x2), η1

(
y1, x1

)〉
1 + ψ1

(
x1, y1

) − ψ1(x1, x1) ≥ 0 ∀y1 ∈ H1;
〈
N2(x1, x2), η2

(
y2, x2

)〉
2 + ψ2

(
x2, y2

) − ψ2(x2, x2) ≥ 0 ∀y2 ∈ H2.
(1.3)

Problem (1.3) has been introduced and studied by Kazmi and Khan in [16].
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(2) If for each i ∈ I, Xi is a reflexive Banach space, Ki = Xi and Fi ≡ 0, then problem
(1.2) reduces to the problem of finding (x1, x2) ∈ X1 ×X2, (u1, v1) ∈ R1(x1)×A1(x2)
and (u2, v2) ∈ R2(x1) ×A2(x2) such that

〈
N1(u1, v1) −w1, η1

(
y1, x1

)〉
1 + ψ1

(
x1, y1

) − ψ1(x1, x1) ≥ 0 ∀y1 ∈ X1;
〈
N2(u2, v2) −w2, η2

(
y2, x2

)〉
2 + ψ2

(
x2, y2

) − ψ2(x2, x2) ≥ 0 ∀y2 ∈ X2.
(1.4)

Problem (1.4) has been considered recently by Ding and Wang in [17].

(3) In finite dimensional spaces a particular problem of (1.2) has been considered
by Mordukhovich et al. in [19] for finding a common solution of a variational
inequality problem and an equilibrium problem by an approach based on an hybrid
proximal point algorithm.

The organization of the paper is as follows. In Section 2, we give some definitions and
preliminary results that we will need in the sequel. We introduce in Section 3 an auxiliary
principle, for the problem studied and we show that under some suitable conditions this
problem has a unique solution. Further, by using the auxiliary principle we consider an
algorithm to approach the solution of the main problem studied in this paper and discuss
its convergence. Finally, we end the paper by some commentaries on the approach used and
we give some comparisons with some known results in this direction.

2. Preliminaries

In this section, we present some basic concepts, properties, and notations that we will
consider in the development of our work. Let X be a real Banach space with norm ‖ · ‖, X∗ its
dual space, and 〈·, ·〉 denote the duality pairing between X∗ and X, and let K be a nonempty
closed convex subset of X. For a finite subset A of K, we denote by co(A) the convex hull of
A. Let CB(X∗) be the family of all nonempty closed and bounded subsets ofX∗, and letH(·, ·)
be the Hausdorff metric on CB(X∗) defined for all A,D ∈ CB(X∗) by

H(A,D) = max

{

sup
a∈A

d(a,D), sup
b∈D

d(b,A)

}

, (2.1)

where d(a,D) = infd∈D‖a − d‖.

Definition 2.1. A mapping T : X → X∗ is said to be

(i) monotone if and only if 〈T(x) − T(y), x − y〉 ≥ 0 for all x, y ∈ X;

(ii) α-strongly monotone with α > 0 if and only if

〈
T(x) − T(y), x − y〉 ≥ α∥∥x − y∥∥2 ∀x, y ∈ X; (2.2)

(iii) L-Lipschitz continuous if there exists L > 0 such that

∥∥T(x) − T(y)∥∥ ≤ L∥∥x − y∥∥ ∀x, y ∈ X. (2.3)
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Definition 2.2. Let T : X → X∗ be a bounded linear operator. T is said to be δ-strongly positive
if there exists δ > 0 such that

〈T(x), x〉 ≥ δ‖x‖2, ∀x ∈ X. (2.4)

Remark 2.3. One can easily see that if a bounded linear operator T : X → X∗ is δ-strongly
positive, then it is δ-strongly monotone and ‖T‖-Lipschitz continuous, where ‖T‖ is the
operator norm of T .

Definition 2.4. Let X1 and X2 be two Banach spaces with respective norm ‖ · ‖1 and ‖ · ‖2. A
mapping A1 : X1 ×X2 → X1 is said to be (β1, ξ2)-Lipschitz continuous if there exist constants
β1, ξ2 > 0 such that

∥
∥A1
(
x1, y1

) −A1
(
x2, y2

)∥∥
1 ≤ β1‖x1 − x2‖1 + ξ2

∥
∥y1 − y2

∥
∥
2 ∀(x1, y1

)
,
(
x2, y2

) ∈ X1 ×X2.
(2.5)

Definition 2.5. A mapping η : X ×X → X is said to be

(i) affine in the second argument if

η
(
y, tx + (1 − t)z) = tη(y, x) + (1 − t)η(y, z), ∀t ∈ [0, 1], ∀x, y, z ∈ K; (2.6)

(ii) τ-Lipschitz continuous if there exists a constant τ > 0 such that

∥∥η
(
x, y
)∥∥ ≤ τ∥∥x − y∥∥, ∀x, y ∈ X. (2.7)

Definition 2.6. A real-valued function ψ : K ×K → R is said to be skew-symmetric if for all
x, y ∈ K,

ψ(x, x) − ψ(x, y) − ψ(y, x) + ψ(y, y) ≥ 0. (2.8)

The skew-symmetric functions have certain properties, see [20], which can be
regarded as analogs of the conditions governing the gradientmonotonicity and nonnegativity
of the second derivative of convex functions.

Definition 2.7. Let F : K ×K → R be a real-valued bifunction. Then,

(i) F is said to be monotone if

F
(
x, y
)
+ F
(
y, x
) ≤ 0, ∀x, y ∈ K; (2.9)

(ii) F is said to be α-strongly monotone if there exists α > 0 such that

F
(
x, y
)
+ F
(
y, x
) ≤ −α∥∥x − y∥∥2, ∀x, y ∈ K; (2.10)
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(iii) F is said to be upper-hemicontinuous if, for all x, y, z ∈ K, the mapping g : [0, 1] →
R defined by g(t) = F(tz + (1 − t)x, y) is upper-semicontinuous.

Remark 2.8. Clearly, strong monotonicity of F implies monotonicity of F.
Now, let SF denote the solution set of the equilibrium problem (EP) associated to a

bifunction F, that is, SF = {x ∈ K : F(x, y) ≥ 0 ∀y ∈ K}. In many situations, we usually
need some more information on the structure of the solution set SF when it is nonempty. As a
preliminary result that we will need in the sequel, the following Lemma gives some sufficient
conditions which insure that SF is convex and closed.

Lemma 2.9. Let X be a Banach space, and let K be a closed convex subset of X. Let F : K ×K → R

be a real-valued bifunction such that F(x, x) ≥ 0 for all x ∈ K. Assume that

(i) F is monotone and upper-hemicontinuous;

(ii) for each x ∈ K fixed, the function y �→ F(x, y) is convex and lower semicontinuous. Then,
the solution set SF is convex and closed whenever it is nonempty.

Proof. Assume that SF /= ∅. Let u, v ∈ SF and for λ ∈]0, 1[ set xλ = λu + (1 − λ)v ∈ K. Let us
show that xλ ∈ SF . Since u, v ∈ SF , it follows

F
(
u, y
) ≥ 0, F

(
v, y
) ≥ 0 ∀y ∈ K. (2.11)

From the monotonicity of F, one deduces

F
(
y, u
) ≤ 0, F

(
y, v
) ≤ 0 ∀y ∈ K. (2.12)

Therefore, from the convexity of F with respect to its second argument, it follows

F
(
y, xλ

) ≤ 0, ∀y ∈ K. (2.13)

Now for t ∈]0, 1[ and y ∈ K, set xt = ty + (1 − t)xλ ∈ K. Since F is an equilibrium bifunction
and F is convex with respect to its second argument, it follows that

0 ≤ F(xt, xt) ≤ tF
(
xt, y

)
+ (1 − t)F(xt, xλ). (2.14)

Taking account of relation (2.13) with y = xt, it follows that tF(xt, y) ≥ 0 for all y ∈ K, and
therefore since t > 0

F
(
xt, y

) ≥ 0, ∀y ∈ K. (2.15)

Since F is upper-hemicontinuous, it follows that

F
(
xλ, y

) ≥ lim sup
t→ 0

F
(
xt, y

) ≥ 0. (2.16)

Therefore, xλ ∈ SF , and hence SF is convex.
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Now, let us show that SF is closed. To this aim, let {xn} ⊂ SF such that xn → x. Let us
show that x ∈ SF . One has F(xn, y) ≥ 0 for all y ∈ K, since F is monotone, it follows that

F
(
y, xn

) ≤ 0, ∀y ∈ K. (2.17)

From the lower semicontinuity of F with respect to the second argument, it follows that

F
(
y, x
) ≤ lim inf

n→+∞
F
(
y, xn

) ≤ 0. (2.18)

By a similar argument as above, one can easily show that F(x, y) ≥ 0 for all y ∈ K. Therefore,
x ∈ SF , which completes the proof.

In the sequel, we will need the following result that we present in a more general
setting and for which we refer to [21].

Lemma 2.10. Let X be a Hausdorff topological vector space and K a closed convex subset of X.
Consider two real bifunctions Φ,Ψ : K ×K → R such that

(i) for each x, y ∈ K, if Ψ(x, y) ≤ 0 then Φ(x, y) ≤ 0;

(ii) for each fixed x ∈ K, the function y ∈ K �→ Φ(x, y) is lower semicontinuous on every
compact subset of K;

(iii) for each finite subset A of K, one has

sup
y∈co(A)

min
x∈A

Ψ
(
x, y
) ≤ 0; (2.19)

(iv) coercivity: there exists a nonempty compact convex subset C of X such that either (a) or (b)
in the following holds

(a) for all y ∈ K \ C, there exists x ∈ C such that Φ(x, y) > 0;
(b) there exists x0 ∈ C such that ∀y ∈ K \ C Ψ(x0, y) > 0.

Then, there exists y ∈ C such that Φ(x, y) ≤ 0 for all x ∈ K. Furthermore, the set of solution is
compact.

Remark 2.11. (1) Condition (iii) in Lemma 2.10 is much more related to convexity
assumptions of the bifunction Ψ, see Proposition 2.12 in the following.

(2) If K is compact, then condition (iv) in Lemma 2.10 can be dropped.
The following proposition gives some sufficient conditions which insure condition (iii)

in Lemma 2.10.

Proposition 2.12. Suppose that

(i) Ψ(x, x) ≤ 0 for each x ∈ K;

(ii) for each y ∈ K fixed, the set {x ∈ K : Ψ(x, y) > 0} is convex.
Then, condition (iii) of Lemma 2.10 is staisfied.
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Proof. Suppose by contradiction that condition (iii) of Lemma 2.10 is not satisfied. Then, there
exist x1, . . . , xn ∈ K and λ1, . . . , λn ≥ 0, with

∑n
i=1 λi = 1, such that Ψ(xi,

∑n
j=1 λjxj) > 0.

Therefore, by setting y =
∑n

j=1 λjxj , it follows from (ii) that Ψ(y, y) > 0, which
contradicts assumption (i).

As a consequence of Lemma 2.10, we obtain the following result on existence of
mixed equilibrium problem that we will need in the sequel. We will include its proof for
completeness.

Lemma 2.13. Let X be a Banach space and K a closed convex subset of X. Let f, g : K ×K → R be
two real bifunctions such that

(i) f(x, x) ≥ 0 for all x ∈ K; f is monotone and upper-hemicontinuous; for each x ∈ K fixed,
the function y �→ f(x, y) is convex and lower semicontinuous;

(ii) g(x, x) ≥ 0 for all x ∈ K; for each y ∈ K fixed, the function x �→ g(x, y) is upper-
semicontinuous; for each x ∈ K fixed, the function y �→ g(x, y) is convex and lower
semicontinuous;

(iii) coercivity: there exists a nonempty compact convex subset C ofX and y0 ∈ C∩K such that

f
(
x, y0

)
+ g
(
x, y0

)
< 0 for each x ∈ K \ C. (2.20)

Then, there exists x ∈ C ∩K such that

f
(
x, y
)
+ g
(
x, y
) ≥ 0 ∀y ∈ K. (2.21)

Furthermore, the solution set Sf,g of the mixed equilibrium problem (2.21) is compact and convex.

Proof. The proof is a direct consequence of Lemma 2.10 by setting

Φ
(
x, y
)
= f
(
x, y
) − g(y, x), Ψ

(
x, y
)
= −g(y, x) − f(y, x). (2.22)

Remark 2.14. (1) Lemma 2.13 is in fact a slight extension of Theorem 1 in [2] and Theorem 4.5
in [21] where the equilibrium condition f(x, x) = g(x, x) = 0 has been relaxed by assuming
f(x, x) ≥ 0 and g(x, x) ≥ 0 for all x ∈ K.

(2) IfX is a reflexive Banach space endowed with its weak topology σ(X,X∗), then the
coercivity condition (iii) in Lemma 2.13 can be replaced by the following condition:

(iii)′ there exists y0 ∈ K such that lim‖x−y0‖→+∞g(x, y0)/‖x − y0‖ = −∞.

Ended, let r1 > 0, and set B(y0, r1) = {x ∈ X : ‖x − y0‖ ≤ r1}. One has B(y0, r1)
a convex and σ(X,X∗)-compact subset of X. Since X is a reflexive Banach space, f(y0, ·) is
lower semicontinuous and B(y0, r) is weakly compact, it follows that there exists α0 ∈ R such
that f(y0, y) > α0 for all y ∈ B(y0, r1). Let x ∈ K \ B(y0, r1), and set

y =
r1∥∥x − y0
∥∥x +

(

1 − r1∥∥x − y0
∥∥

)

y0. (2.23)
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Since f(y0, ·) is convex, y ∈ B(y0, r1) and f(y0, y0) ≥ 0, one deduces

α0 ≤ r1∥
∥x − y0

∥
∥f
(
y0, x

)
+

(

1 − r1∥
∥x − y0

∥
∥

)

f
(
y0, y0

) ∀x ∈ K \ B(y0, r1
)
. (2.24)

It follows that

f
(
y0, x

) ≥
∥
∥x − y0

∥
∥

r1

(
α0 − f

(
y0, y0

))
+ f
(
y0, y0

)
. (2.25)

Thus,

f
(
y0, x

) ≥
∥
∥x − y0

∥
∥

r1

(
α0 − f

(
y0, y0

))
, ∀x ∈ K \ B(y0, r1

)
. (2.26)

Since f is monotone, it follows from relation (2.26) that for all

f
(
x, y0

)
+ g
(
x, y0

) ≤ g(x, y0
) − α0 − f

(
y0, y0

)

r1

∥∥x − y0
∥∥. (2.27)

Since g(x, y0)/‖x−y0‖ → −∞when ‖x−y0‖ → +∞, then there exists r2 > 0 such that
for x ∈ K with ‖x − y0‖ > r2 one has

g
(
x, y0

) − α0 − f
(
y0, y0

)

r1

∥∥x − y0
∥∥ < 0. (2.28)

Take r = max{r1, r2} and set C = {x ∈ X : ‖x − y0‖ ≤ r}, then from relations (2.27) and
(2.28), one deduces that for each x ∈ K \ C one has

f(x, y0) + g(x, y0) < 0. (2.29)

Hence, condition (iii) in Lemma 2.13 is satisfied.
We end this section by the following result related to the Hausdorffmetric that we will

need in the sequel and for which we refer to [22].

Lemma 2.15. Let E be a complete metric space and R : E ⇒ CB(E) a set-valued mapping. Then, for
any given ε > 0 and any given x, y ∈ E and u ∈ R(x), there exists v ∈ R(y) such that

d(u, v) ≤ (1 + ε)H(R(x), R(y)). (2.30)

3. Approximation by an Auxiliary Principle

In order to get approximate solutions for the system (1.2) of generalized mixed equilibrium
problem involving generalized mixed variational-like inequality problems (SGMEP), we
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consider the following auxiliary problem: for i ∈ I = {1, 2} and for given mappings Ti : Xi →
X∗
i , ρi > 0, (x1, x2) ∈ K1 ×K2, (u1, v1) ∈ R1(x1) ×A1(x2), and (u2, v2) ∈ R2(x1) ×A2(x2),

(AP)

⎧
⎪⎪⎨

⎪⎪⎩

find (z1, z2) ∈ K1 ×K2 such that for all yi ∈ Ki

ρi
[
Fi
(
zi, yi

)
+
〈
Ni(ui, vi) −wi, ηi

(
yi, zi

)〉
i + ψi

(
zi, yi

) − ψi(zi, zi)
]

+
〈
Ti
(
yi − zi

)
, zi − xi

〉
i ≥ 0.

(3.1)

In this section, we give some existence results of solutions for the auxiliary problem
(AP). The results obtained will be needed in the sequel to generate a unified algorithm to
approach solutions of the system (1.2) under some weaker assumptions in comparison with
some known results in literature.

Theorem 3.1. For each i ∈ I = {1, 2}, let Xi be a Banach space and Ki a nonempty closed convex
subset of Xi, Fi, ψi : Ki × Ki → R two real-valued bifunctions, Ti : Xi → X∗

i a bounded linear
operator, ρi > 0 and ηi : Xi ×Xi → Xi single-valued mappings such that

(i) Fi(x, x) ≥ 0 for all x ∈ Ki; Fi is monotone and upper-hemicontinuous; for each x ∈ Ki

fixed, the function y �→ Fi(x, y) is convex and lower semicontinuous;

(ii) ηi is affine in the first argument and continuous in the second argument such that

ηi
(
x, y
)
+ ηi
(
y, x
)
= 0, ∀x, y ∈ Ki; (3.2)

(iii) ψi is skew symmetric and continuous; for each y ∈ Ki fixed, the function x �→ ψi(x, y) is
convex;

(iv) Ti is δi-strongly positive;

(v) coercivity: for each xi ∈ Ki, ui ∈ X∗
1 and vi ∈ X∗

2 , there exists a nonempty compact convex
subset Ci

xi,ui,vi of Xi and y0
i ∈ Ci

xi,ui,vi ∩Ki such that ∀zi ∈ Ki \ Ci
xi,ui,vi

ρi
[
Fi
(
zi, y

0
i

)
+
〈
Ni(ui, vi)−wi, ηi

(
y0
i , zi
)〉

i
+ψi
(
zi, y

0
i

)
−ψ(zi, zi)

]
+
〈
Ti
(
y0
i −zi

)
, zi−xi

〉
< 0.

(3.3)

Then, the auxiliary problem (AP) has a unique solution.

Proof. The proof of this lemma is a direct application of Lemma 2.13 by considering, for each
i ∈ I = {1, 2}, the bifunctions fi, gi : Ki ×Ki → R defined by

fi
(
zi, yi

)
= ρi
[
Fi
(
zi, yi

)
+
〈
Ni(ui, vi) −wi, ηi

(
yi, zi

)〉
i + ψi

(
zi, yi

) − ψi(zi, zi)
]

gi
(
zi, yi

)
=
〈
Ti
(
yi
) − Ti(zi), zi − xi

〉
i,

(3.4)
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where (x1, x2) ∈ K1 ×K2, (u1, v1) ∈ R1(x1) ×A1(x2), and (u2, v2) ∈ R2(x1) ×A2(x2) are given.
We need only to show that the solution is unique. To this aim, suppose that problem (AP) has
two solutions z1i and z

2
i , then for i ∈ I and for all z ∈ Ki, we have

ρi
[
Fi
(
z1i , z

)
+
〈
Ni(ui, vi)−wi, ηi

(
z, z1i

)〉

i
+ψi
(
z1i , z

)
−ψi
(
z1i , z

1
i

)]
+
〈
Ti(z)−Ti

(
z1i

)
, z1i −xi

〉

i
≥0,

(3.5)

ρi
[
Fi
(
z2i , z

)
+
〈
Ni(ui, vi)−wi, ηi

(
z, z2i

)〉

i
+ψi
(
z2i , z

)
−ψi
(
z2i , z

2
i

)]
+
〈
Ti(z)−Ti

(
z2i

)
, z2i −xi

〉

i
≥0.

(3.6)

Take z = z2i in relation (3.5) and z = z1i in relation (3.6) and adding the two inequalities, one
obtain

ρi
[
Fi
(
z1i

)
+ Fi
(
z2i , z

1
i

)
+
〈
Ni(ui, vi) −wi, ηi

(
z1i , z

2
i

)
+ ηi
(
z2i , z

1
i

)〉

i
ψi
(
z1i , z

2
i

)

+ψi
(
z2i , z

1
i

)
− ψi
(
z1i , z

1
i

)
− ψi
(
z2i , z

2
i

)]
≥
〈
Ti
(
z2i − z1i

)
, z2i − z1i

〉

i
.

(3.7)

Since for each i ∈ I, Fi is monotone, ψi is skew symmetric, and Ti is δi-strongly positive, it
follows that

0 ≥
〈
Ti
(
z2i − z1i

)
, z2i − z1i

〉

i
≥ δi
∥∥∥z1i − z2i

∥∥∥
2

i
. (3.8)

Therefore, z1i = z
2
i for i ∈ I = {1, 2}, which completes the proof.

Theorem 3.2. For each i ∈ I = {1, 2}, let Xi be a reflexive Banach space and Ki a nonempty closed
convex subset of Xi, Fi, ψi : Ki × Ki → R two real-valued bifunctions, Ti : Xi → X∗

i a bounded
linear operator, ρi > 0 and ηi : Xi ×Xi → Xi single-valued mappings such that

(i) Fi(x, x) ≥ 0 for all x ∈ Ki; Fi is monotone and upper-hemicontinuous; for each x ∈ Ki

fixed, the function y �→ Fi(x, y) is convex and lower semicontinuous;

(ii) ηi is affine in the first argument and continuous in the second argument such that

ηi
(
x, y
)
+ ηi
(
y, x
)
= 0, ∀x, y ∈ Ki; (3.9)

(iii) ψi is skew symmetric and continuous; for each y ∈ Ki fixed, the function x �→ ψi(x, y) is
convex;

(iv) Ti is δi-strongly positive linear operator.

Then, the auxiliary problem (AP) has a unique solution.

Proof. For each i ∈ I and given (x1, x2) ∈ K1 × K2, (u1, v1) ∈ R1(x1) × A1(x2), and (u2, v2) ∈
R2(x1) ×A2(x2), define the following bifunctions fi, gi : Ki ×Ki → R by

fi
(
zi, yi

)
= ρi
[
Fi
(
zi, yi

)
+
〈
Ni(ui, vi) −wi, ηi

(
yi, zi

)〉
i + ψi

(
yi, zi

) − ψi(zi, zi)
]
,

gi
(
zi, yi

)
=
〈
Ti
(
yi
) − Ti(zi), zi − xi

〉
i.

(3.10)
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One can easily see that conditions (i)–(iii) above imply conditions (i) and (ii) of Lemma 2.13.
In order to get the conclusion, we need only to show that the coercivity condition (iii) of
Lemma 2.13 is satisfied. To this aim, taking into account Remark 2.14 (2), we need only to
show that for some v0

i ∈ Ki one has gi(ui, v0
i )/‖v0

i − ui‖i → −∞ when ‖v0
i − ui‖i → +∞. Let

v0
i ∈ Ki. Then,

gi
(
ui, v

0
i

)
=
〈
Ti
(
v0
i

)
− Ti(ui), ui − xi

〉

i

=
〈
Ti
(
v0
i − ui

)
, ui − v0

i

〉

i
+
〈
Ti
(
v0
i − ui

)
, v0

i − xi
〉

i

= −
〈
Ti
(
v0
i − ui

)
, v0

i − ui
〉

i
+
〈
Ti
(
v0
i − ui

)
, v0

i − xi
〉

i

≤ −δ
∥
∥
∥v0

i − ui
∥
∥
∥
2

i
+ ‖Ti‖

∥
∥
∥v0

i − ui
∥
∥
∥
i

∥
∥
∥v0

i − xi
∥
∥
∥
i
.

(3.11)

Therefore,

gi
(
ui, v

0
i

)

∥∥v0
i − ui

∥∥
i

≤ −δ
∥∥∥v0

i − ui
∥∥∥
i
+ ‖Ti‖

∥∥∥v0
i − xi

∥∥∥
i
. (3.12)

It follows that gi(ui, v0
i )/‖v0

i − ui‖i → −∞ when ‖v0
i − ui‖i → +∞ which completes the

proof.

Remark 3.3. Theorem 3.2 improves recent results given by Ding [18, Theorem 3.1] since the
bifunction Fi is not needed to be δi-Lipschitz continuous and weakly upper semicontinuous
with respect to the first argument. We mention also that all the results obtained in [18]
are under the assumption int{yi ∈ Ki, ψi(yi, yi) < ∞} = intKi /= ∅; in our approach, this
assumption is not needed.

Theorem 3.2 shows that the auxiliary problem (AP) has a unique solution; we can
define the following general iterative method to approach the solution of system (1.2) of
generalized mixed equilibrium problem involving variational-like inequalities (SGMEP).

Algorithm 3.4. For a given (x0
1, x

0
2) ∈ K1×K2, (u01, v

0
1) ∈ R1(x0

1)×A1(x0
2), and (u02, v

0
2) ∈ R2(x0

1)×
A2(x0

2). By Theorem 3.1, the auxiliary problem (AP) has a unique solution (x1
1, x

1
2) ∈ K1 ×K2,

that is, for each i ∈ I, we have

ρ1i

[
Fi
(
x1
i , yi
)
+
〈
Ni

(
u0i , v

0
i

)
−wi, ηi

(
yi, x

1
i

)〉

i
+ ψi
(
x1
i , yi
)
− ψi
(
x1
i , x

1
i

)]

+ 〈Ti
(
yi
) − Ti

(
x1
i

)
, x1

i − x0
i 〉i ≥ 0 ∀yi ∈ Ki.

(3.13)

Since for each i ∈ I, u0i ∈ Ri(x0
i ) ∈ CB(X∗

1), and v
0
i ∈ Ai(x0

2) ∈ CB(X∗
2), by Lemma 2.15, there

exist u1i ∈ Ri(x1
1) and v

1
i ∈ Ai(x1

2) such that
∥∥∥u1i − u0i

∥∥∥
1
≤ (1 + 1)H1

(
Ri

(
x1
1

)
, Ri

(
x0
1

))

∥∥∥v1
i − v0

i

∥∥∥
2
≤ (1 + 1)H2

(
Ai

(
x1
2

)
, Ai

(
x0
2

))
,

(3.14)

where H1 and H2 are the Hausdorff metrics on CB(X∗
1) and CB(X∗

2), respectively.
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By using Theorem 3.1 again, the auxiliary problem (AP) has a unique solution
(x2

1, x
2
2) ∈ K1 ×K2 such that

ρ2i

[
Fi
(
x2
i , yi
)
+
〈
Ni

(
u1i , v

1
i

)
−wi, ηi

(
yi, x

2
i

)〉

i
+ ψi
(
x2
i , yi
)
− ψi
(
x2
i , x

2
i

)]

+
〈
Ti
(
yi
) − Ti

(
x2
i

)
, x2

i − x1
i

〉

i
≥ 0, ∀yi ∈ Ki.

(3.15)

By induction, we can construct an iterative algorithm to compute the approximate solution
for the system (1.2) as follows: for given (x0

1, x
0
2) ∈ K1 × K2, (u01, v

0
1) ∈ R1(x0

1) × A1(x0
2), and

(u02, v
0
2) ∈ R2(x0

1)×A2(x0
2), there exist sequences {xn1}, {xn2}, {un1}, {un2}, {vn1}, and {vn2} such

that for each i ∈ I
∥
∥
∥un+1i − uni

∥
∥
∥
1
≤
(
1 +

1
n + 1

)
H1

(
Ri

(
xn+11

)
, Ri

(
xn1
))
, uni ∈ Ri

(
xn1
)
,

∥∥∥vn+1i − vni
∥∥∥
2
≤
(
1 +

1
n + 1

)
H2

(
Ai

(
xn+12

)
, Ai

(
xn2
))
, vni ∈ Ai

(
xn2
)
,

ρn+1i

[
Fi
(
xn+1i , yi

)
+
〈
Ni

(
uni , v

n
i

) −wi, ηi
(
yi, x

n+1
i

)〉

i
+ ψi
(
xn+1i , yi

)
− ψi
(
xn+1i , xn+1i

)]

+
〈
Ti
(
yi
) − Ti

(
xn+1i

)
, xn+1i − xni

〉

i
≥ 0 ∀yi ∈ Ki, n = 0, 1, 2, . . . .

(3.16)

The following convergence analysis is presented for the algorithm above.

Theorem 3.5. Under the hypotheses of Theorem 3.2, further assume that for each i ∈ I,

(i) Fi is σi-strongly monotone and upper-hemicontinuous; Ni is (βi, ξi)-mixed Lipschitz
continuity; Ri is ki-H1-Lipschitz continuous, and Ai is μi-H2-Lipschitz continuous;

(ii) ηi is τi-Lipschitz continuous;

(iii) the sequence {ρn}n∈N
of positive real numbers is increasing and limn→+∞ρn = +∞.

Furthermore, assume that the following condition holds:

(C1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ = max{θ1 + θ2, ϑ1 + ϑ2} < 1, where

θ1 =
τ1β1k1
σ1

, θ2 =
τ2β2k2
σ2

,

ϑ1 =
τ1ξ1μ1

σ1
, ϑ2 =

τ2ξ2μ2

σ2
.

(3.17)

Then, the sequences {xn1}, {xn2}, {un1}, {un2}, {vn1}, and {vn2} generated by Algorithm 3.4 converge
strongly to x1, x2, u1, v1, u2, and v2, respectively, where (u1, v1) ∈ T1(x1) × A1(x2),(u2, v2) ∈
T2(x1) × A2(x2), and (x1, x2, u1, v1, u2, v2) is a solution of the System of Generalized Mixed
Equilibrium Problem involving variational-like in equalities (1.2).
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Proof. By the definition of Algorithm 3.4, we have for i ∈ I,

ρni

[
Fi
(
xni , yi

)
+
〈
Ni

(
un−1i , vn−1i

)
−wi, ηi

(
yi, x

n
i

)〉

i
+ ψi
(
xni , yi

) − ψi
(
xni , x

n
i

)]

+
〈
Ti
(
yi
) − Ti

(
xni
)
, xni − xn−1i

〉

i
≥ 0 ∀yi ∈ Ki,

(3.18)

ρn+1i

[
Fi
(
xn+1i , yi

)
+
〈
Ni

(
uni , v

n
i

) −wi, ηi
(
yi, x

n+1
i

)〉

i
+ ψi
(
xn+1i , yi

)
− ψi
(
xn+1i , xn+1i

)]

+
〈
Ti
(
yi
) − Ti

(
xn+1i

)
, xn+1i − xni

〉

i
≥ 0 ∀yi ∈ Ki.

(3.19)

By considering yi = xn+1i in relation (3.18) and yi = xni in relation (3.19), and taking into
account ηi(xn+1i , xni ) = −ηi(xni , xn+1i ), one obtains by adding the two inequalities

Fi
(
xn+1i , xni

)
+ Fi
(
xni , x

n+1
i

)
+
〈
Ni

(
un−1i , vn−1i

)
−Ni

(
uni , v

n
i

)
, ηi
(
xn+1i , xni

)〉

i

+ ψi
(
xni , x

n+1
i

)
+ ψi
(
xn+1i , xni

)
− ψi
(
xni , x

n
i

) − ψi
(
xn+1i , xn+1i

)

+
1
ρni

〈
Ti
(
xn+1i − xni

)
, xni − xn−1i

〉

i

− 1
ρn+1i

〈
Ti(xni − xn+1i ), xni − xn+1i

〉

i
≥ 0.

(3.20)

Since Fi is σi-monotone, ψi is skew-symmetric, and Ti is δi-strongly positive and ‖Ti‖-
Lispchitz continuous, it follows from relation (3.20) that

∥∥∥Ni

(
un−1i , vn−1i

)
−Ni

(
uni , v

n
i

)∥∥∥
i

∥∥∥ηi
(
xn+1i , xni

)∥∥∥ +
‖Ti‖
ρni

∥∥∥xn+1i − xni
∥∥∥
i

∥∥∥xni − xn−1i

∥∥∥
i

≥
[

σi +
δi

ρn+1i

]∥∥∥xni − xn+1i

∥∥∥
2

i
.

(3.21)

Note that N1 is (β1, ξ1)-mixed Lipschitz continuous, R1 is k1-H1-Lipschitz continuous, and
A1 is μ1-H2-Lipschitz continuous, it follows by Algorithm 3.4

∥∥∥Ni

(
un−1i , vn−1i

)
−Ni

(
uni , v

n
i

)∥∥∥
i
≤ β1

∥∥∥un−1i − uni
∥∥∥
1
+ ξ1
∥∥∥vn−1i − vni

∥∥∥
2

≤ β1

(
1 +

1
n

)
H1

(
R1

(
xn−11

)
, R1
(
xn1
))

+ ξ1
(
1 +

1
n

)
H2

(
R1

(
xn−12

)
, R1
(
xn2
))

≤ β1k1

(
1 +

1
n

)∥∥∥xn−11 − xn1
∥∥∥
1
+ ξ1μ1

(
1 +

1
n

)∥∥∥xn−12 − xn2
∥∥∥
2
.

(3.22)
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Since η1 is τ1-Lipschitz continuous, it follows from relation (3.21) considered for i = 1 that

[

σ1 +
δ1

ρn+11

]∥
∥
∥xn1 − xn+11

∥
∥
∥
1
≤
[

τ1β1k1

(
1 +

1
n

)
+
‖T1‖
ρn1

]∥
∥
∥xn−11 − xn1

∥
∥
∥
1

+ τ1ξ1μ1

(
1 +

1
n

)∥
∥
∥xn−12 − xn2

∥
∥
∥
2
.

(3.23)

Hence,

∥
∥xn1 − xn+11

∥
∥
1 ≤ θ1n

∥
∥xn−11 − xn1

∥
∥
1 + ϑ1n

∥
∥xn−12 − xn2

∥
∥
2, (3.24)

with

θ1n =

[
ρn+11 τ1β1k1(1 + 1/n) + ρn+11 ‖T1‖/ρn1

]

[
ρn+11 σ1 + δ1

] , ϑ1n =
ρn+11 τ1ξ1μ1(1 + 1/n)
[
ρn+11 σ1 + δ1

] . (3.25)

Similarly, by the assumptions on F2, N2, η2, R2, A2, and T2, it follows from relation (3.21)
considered for i = 2 that

∥∥∥xn2 − xn+12

∥∥∥
2
≤ θ2n

∥∥∥xn−11 − xn1
∥∥∥
1
+ ϑ2n

∥∥∥xn−12 − xn2
∥∥∥
2
, (3.26)

with

θ2n =

[
ρn+12 τ2β2k2(1 + 1/n)

]

[
ρn+12 σ2 + δ2

] , ϑ2n =
ρn+12 τ2ξ2μ2(1 + 1/n) + ρn+12 ‖T2‖/ρn2[

ρn+12 σ2 + δ2
] . (3.27)

Adding the inequalities (3.24) and (3.26), we obtain

∥∥∥xn1 − xn+11

∥∥∥
1
+
∥∥∥xn2 − xn+12

∥∥∥
2
≤ (θ1n + θ2n)

∥∥∥xn−11 − xn1
∥∥∥
1
+ (ϑ1n + ϑ2n)

∥∥∥xn−12 − xn2
∥∥∥
2

≤ Λn

(∥∥∥xn−11 − xn1
∥
∥∥
1
+
∥
∥∥xn−12 − xn2

∥
∥∥
2

)
,

(3.28)

where Λn = max{θ1n + θ2n, ϑ1n + ϑ2n}.
On X1 × X2, let us consider the norm ‖ · ‖∗ defined by ‖(x, y)‖∗ = ‖x‖1 + ‖y‖2 for all

(x, y) ∈ X1 ×X2, that is, (X1 ×X2, ‖ · ‖∗) is a Banach space. It follows from relation (3.28) that

∥∥∥
(
xn1 , x

n
2

) −
(
xn+11 , xn+12

)∥∥∥
∗
≤ Λn

∥∥∥
(
xn−11 , xn−12

)
− (xn1 , xn2

)∥∥∥
∗
. (3.29)

Taking account of the assumptions, it is easy to see that Λn → Λ as n → ∞. From condition
(C1) (relation (3.17)), we know that 0 < Λ < 1. Hence, there exist Λ0 ∈ (0, 1) and n0 > 0 such
that Λn ≤ Λ0 < 1 for all n ≥ n0. Therefore, it follows from (3.29) that

∥∥∥
(
xn1 , x

n
2

) −
(
xn+11 , xn+12

)∥∥∥
∗
≤ Λ0

∥∥∥
(
xn−11 , xn−12

)
− (xn1 , xn2

)∥∥∥
∗
. (3.30)
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This implies that {(xn1 , xn2 )} is a Cauchy sequence inX1×X2. Thus, (xn1 , x
n
2 ) converges strongly

to some (x1, x2) ∈ K1 ×K2.
By Algorithm 3.4 and the Lipschitz continuity assumption on R1,R2, A1, and A2, we

have

∥
∥
∥un+1i − uni

∥
∥
∥
1
≤
(
1 +

1
n + 1

)
H1

(
Ri

(
xn+11

)
, Ri

(
xn1
)) ≤ ki

(
1 +

1
n + 1

)∥
∥
∥xn+11 − xn1

∥
∥
∥
1
,

∥
∥
∥vn+1i − vni

∥
∥
∥
2
≤
(
1 +

1
n + 1

)
H2

(
Ai

(
xn+12

)
, Ai

(
xn2
)) ≤ μi

(
1 +

1
n + 1

)∥
∥
∥xn+12 − xn2

∥
∥
∥
2
.

(3.31)

It follows, for each i ∈ I, that {uni } is a Cauchy sequence in X∗
1 and {vni } is a Cauchy sequence

in X∗
2. Thus, there exists (ui, vi) ∈ X∗

1 ×X∗
2 such that (uni , x

n
i ) converges strongly to (ui, vi).

Noting that un1 ∈ R1(xn1 ), it follows that

d
(
u1, R1

(
xn1
)) ≤ ∥∥u1 − un1

∥∥
1 + d

(
un1 , R1

(
xn1
))

+H1
(
R1
(
xn1
)
, R1(x1)

)

≤ ∥∥u1 − un1
∥∥
1 + k1

∥∥x1 − xn1
∥∥
1 −→ 0 as n −→ ∞.

(3.32)

Hence, we must have u1 ∈ R1(x1). Similarly, one can show that u2 ∈ R2(x1), v1 ∈ A1(x2), and
v2 ∈ A2(x2). By Algorithm 3.4, we have that, for all i ∈ I,

ρn+1i

[
Fi
(
xn+1i , yi

)
+
〈
Ni

(
uni , v

n
i

) −wi, ηi
(
yi, x

n+1
i

)〉

i
+ ψ
(
xn+1i , yi

)
− ψ
(
xn+1i , xn+1i

)]

+
〈
Ti
(
yi
) − Ti

(
xn+1i

)
, xn+1i − xni

〉
≥ 0 ∀yi ∈ Ki, n = 0, 1, 2, . . .

(3.33)

Since Ni is (βi, ξi)-mixed Lipschitz continuous and ηi is continuous in the second argument,
one has, for each yi ∈ Ki,

∣∣∣
〈
Ni

(
uni , v

n
i

) −wi, ηi
(
yi, x

n+1
i

)〉

i
− 〈Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i

∣∣∣

≤
∣∣∣
〈
Ni

(
uni , v

n
i

) −Ni(ui, vi), ηi
(
yi, x

n+1
i

)〉

i

∣∣∣ +
∣∣∣
〈
Ni(ui, vi) −wi, ηi

(
yi, x

n+1
i

)
− ηi
(
yi, xi

)〉

i

∣∣∣

≤ ∥∥Ni

(
uni , v

n
i

) −Ni(ui, vi)
∥∥
∥∥∥ηi
(
yi, x

n+1
i

)∥∥∥ +
∣∣∣
〈
Ni(ui, vi) −wi, ηi

(
yi, x

n+1
i

)
− ηi
(
yi, xi

)〉

i

∣∣∣.

(3.34)

Hence,

∣∣∣
〈
Ni

(
uni , v

n
i

) −wi, ηi
(
yi, x

n+1
i

)〉

i
− 〈Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i

∣∣∣ −→ 0 as n −→ ∞. (3.35)
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From the monotonicity of Fi and the linearity of Ti, one has

〈
Ni

(
uni , v

n
i

) −wi, ηi
(
yi, x

n+1
i

)〉

i
− 〈Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i

+ ψi
(
xn+1i , yi

)
− ψi
(
xn+1i , xn+1i

)
+
‖Ti‖
ρn+1i

∥
∥
∥yi − xn+1i

∥
∥
∥
∥
∥
∥xn+1i − xni

∥
∥
∥

≥ Fi
(
yi, x

n+1
i

)
− 〈Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i ∀yi ∈ Ki, ∀n = 0, 1, 2, . . .

(3.36)

Taking into account result (3.35) and since, for each i ∈ I, Fi(y, ·) is a lower semicontinuous
function, ψi is continuous, and the sequence {xni } converges strongly to xi, it follows from
relation (3.36) by passing to the limit when n goes to infinity that

ψi
(
yi, xi

) − ψi(xi, xi) ≥ Fi
(
yi, xi

) − 〈Ni(ui, vi) −wi, ηi
(
yi, xi

)〉
i. (3.37)

Now, for each i ∈ I and for t ∈ (0, 1] and yi ∈ Ki, set yi(t) = tyi + (1 − t)xi. Since Ki is convex,
then yi(t) ∈ Ki for t ∈ (0, 1]; it follows that

〈
Ni(ui, vi) −wi, ηi

(
yi(t), xi

)〉
i + ψi

(
yi(t), xi

) − ψi(xi, xi) ≥ Fi
(
yi(t), xi

)
. (3.38)

Taking into account the convexity of ψi(·, xi), the fact thatNi is affine with respect to the first
argument and ηi(xi, xi) = 0, one has

Fi
(
yi(t), xi

) ≤ t(ψi
(
yi, xi

) − ψi(xi, xi)
)
+ t
〈
Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i. (3.39)

On the other hand, since Fi(xi, xi) = 0 for each xi ∈ Ki and Fi(yi, ·) is convex, it follows that

0 ≤ Fi
(
yi(t), yi(t)

) ≤ tFi
(
yi(t), yi

)
+ (1 − t)F(yi(t), xi

)
. (3.40)

Hence, from relation (3.39), one has

0 ≤ t[Fi
(
yi(t), yi

)
+ (1 − t)(ψi

(
yi, xi

) − ψi(xi, xi) +
〈
Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i

)]
. (3.41)

Therefore, for all t ∈]0, 1], one has

0 ≤ Fi
(
yi(t), yi

)
+ (1 − t)(ψi

(
yi, xi

) − ψi(xi, xi) +
〈
Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i

)
. (3.42)

Since for each yi ∈ Ki, x �→ Fi(x, y) is upper hemicontinuous, it follows by passing to limit
when t → 0 in the previous inequality that

Fi
(
xi, yi

)
+
〈
Ni(ui, vi) −wi, ηi

(
yi, xi

)〉
i + ψi

(
xi, yi

) − ψi(xi, xi) ≥ 0 ∀yi ∈ Ki, (3.43)

which completes the proof.
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4. Commentaries

In conclusion, the approach used in this paper lets us improve and extend some new results
in literature related to the problem studied. To be more precise,

(1) Theorems 3.2 and 3.5 improve recent results given by Ding [18, Theorem 3.1,
Theorem 4.1], since the bifunction Fi is not needed to be δi-Lipschitz continuous
nor weakly upper semicontinuous with respect to the first argument in all steps of
the procedure, firstly when dealing with the existence of solutions for the auxiliary
problem and secondly when studying the convergence of the algorithm;

(2) we mention also that all the results obtained in [18] are under the assumption
int{yi ∈ Ki, ψi(yi, yi) < ∞} = intKi /= ∅; in our approach, this assumption is not
needed;

(3) in the special case where Fi ≡ 0, the results obtained improve those obtained by
Ding andWang [17], since the assumptions on the bifunctions ψi have been relaxed.
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