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This present study proposes an optimal control problem, with the final goal of implementing an optimal treatment protocol
which could maximize the survival time of patients and minimize the cost of drug utilizing a system of ordinary differential
equations which describes the interaction of the immune system with the human immunodeficiency virus (HIV). Optimal control
problem transfers into a modified problem in measure space using an embedding method in which the existence of optimal
solution is guaranteed by compactness of the space. Then the metamorphosed problem is approximated by a linear programming
(LP) problem, and by solving this LP problem a suboptimal piecewise constant control function, which is more practical from
the clinical viewpoint, is achieved. The comparison between the immune system dynamics in treated and untreated patients is
introduced. Finally, the relationships between the healthy cells and virus are shown.

1. Introduction

Human immunodeficiency virus infects CD4+ T-cells, which
are an important part of the human immune system, and
other target cells. The infected cells produce a large number
of viruses. Medical treatments for HIV have greatly improved
during the last two decades. Highly active antiretroviral
therapy (HAART) allows for the effective suppression of
HIV-infected individuals and prolongs the time before the
onset of acquired immune deficiency syndrome (AIDS) for
years or even decades and increases life expectancy and
quality to the patient. But antiretroviral therapy cannot
eradicate HIV from infected patients because of the long-
lived infected cells and sites within the body where drugs may
not achieve effective levels [1–3]. HAART contains two major
types of anti-HIV drugs: reverse transcriptase inhibitors
(RTI), and protease inhibitors (PI). Reverse transcriptase
inhibitors prevent HIV from infecting cells by blocking
the integration of the HIV viral code into the host cell
genome while protease inhibitors prevent infected cells from
replication of infectious virus particles, and can reduce and
maintain viral load below the limit of detection in many
patients. Moreover, treatment with either type of drugs can
also increase the CD4+ T-cell counts that are target cells for
HIV.

Many of the host-pathogen interaction mechanisms
during HIV infection and progression to AIDS are still
unknown. Mathematical modeling of HIV infection is of
interest to the medical community as no adequate animal
models exist to test the efficacy of drug regimes. These
models can test different assumptions and provide new
insights into questions that are difficult to answer by clinical
or experimental studies. A number of mathematical models
have been formulated to describe various aspects of the
interaction of HIV with healthy cells. Some of these models
are addressed in [4]. The basic model of HIV infection
is presented by Wodarz and Nowak [5], which contains
three state variables: healthy CD4+ T-cells, infected CD4+
T-cells, and concentration of free virus. Their model has
been modified to offer important theoretical insights into
immune control of the virus, based on treatment strategies,
while maintaining a simple structure [6]. Furthermore, this
modified model has been developed to guess the natural
evolution of HIV infection, as qualitatively described in
several clinical studies [7].

Some authors have used mathematical models for HIV
infection in conjunction with control theory to achieve
appropriate goals. For example, these goals may include max-
imizing the level of healthy CD4+ T-cells and minimizing
the cost of treatment [8–11], maximizing the level of healthy
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CD4+ T-cells while minimizing both the cost of treatment
and viral load [12], minimizing both the HIV population and
systemic costs to body while maximizing immune response
[13, 14], and maximizing both the healthy CD4+ T-cell
counts and immune response while minimizing the cost of
treatment [15], maximizing the healthy CD4+ T-cell counts
and minimizing both the side effects and drug resistance
[16].

The papers [17–21] consider only RTI medication while
the papers [22, 23] consider only PIs. In [24–27], all effects of
a HAART medication are combined to one control variable
in the model. In [28–32], dynamical multidrug therapies
based on RTIs and PIs are designed.

In this paper, a mathematical model of HIV dynamic is
considered that includes the effect of antiretroviral therapy,
and an analysis of optimal control is performed regarding
appropriate goals.

The paper is organized as follows: in Section 2, the
underlying HIV mathematical model is described. Our
formulation of the control problem, which attempts to
prolong the survival time of patient as long as possible, is
described in Section 3. Approximating the obtained optimal
control problem by an LP problem is the subject of Section 4.
Numerical results obtained from solving the LP problem
are presented in Section 5. Finally, Section 6 is assigned to
concluding remarks.

2. Presentation of a Working Model

In this paper, the pathological behavior of HIV is considered
which is modeled with the simplified version of a system of
ordinary differential equations (ODEs) as described in [17].
This model, which is consistent with clinical data, is given as
follows:

dP(t)
dt

= IP + β(P0 − P(t))− τpP(t)− cPa(t)C(t)P(t),

(1)

dP(t)
dt

= τPP(t)− τPP(t)− cPa(t)C(t)P(t), (2)

da(t)
dt

= a(t)
(
κθ − γC(t)

)
, (3)

dC(t)
dt

= a(t)(εIC + αC(t))
(
P(t)
P0

)υ
− τCC(t). (4)

Most of the terms in this model have straightforward inter-
pretations. P(·) and P(·) denote the amounts of immature
CD4+ T-cells and mature ones, respectively. The term a(·)
indicates HIV particles, and C(·) designates cytotoxic T-cells
specific for HIV (CTLs) as a function of time. Here, IP is
the constant rate that P cells are produced, τ p is the rate
of maturation of P cells into P cells, and τp is the rate of
natural death of P cells. Furthermore, β is the amplifying
coefficient of the linear feedback effect of P cells decrease
on the influx of P cells at time t. Free virus particles a(t)
eliminate P(·) cells at a rate proportional to cPa(t)C(t)P(t)
at time t. Similarly, cPa(t)C(t)P(t) is the rate of elimination

of P cells. The term θ characterizes the growth rate of HIV
particles, and γ is the rate of inactivation of HIV products
mediated by cytotoxic C cells. IC is the influx of C cell
precursors, ε is their maturation rate, α is the proliferation
rate of C cells under the antigenic stimulation by HIV
products, and τC is their natural death rate. Helper T-cells
effect on maturation and proliferation of C cells is expressed
by the ratio P(t)/P0, and ν is introduced to characterize
the intensity of this helper effect. Chemotherapeutic agent
was simulated by decreasing the value κ, that is, the HIV
proliferation rate. Lower value for κ corresponds to higher
RTI-drug doses.

3. Optimal Control Formulation

In this section, we formulate an optimal control problem that
identifies the inhibition parameter κ in (3), with a function
of the control variable. In particular, we will replace the
parameter κ with the function 1 − u(t). This choice then
identifies the control variable u(t) with the rate of inhibition
of virus reproduction, which is modeled as a simple function
of drug dosage.

In clinical practice, the following guidelines are used
typically.

(i) Antiretroviral therapy is initiated at t0, the time at
which the CD4+ T-cell count falls below 350 cells/μL.

(ii) The transition from HIV to AIDS is marked by a
CD4+ T-cell count below 200 cells/μL.

(iii) A person is said to have full-blown AIDS when
his/her CD4+ T-cell count falls below CD4+

crit, typi-
cally around of 50 cells/μL.

This paper aims to propose a drug regimen that delays
the onset of full-blown AIDS and prolongs survival as much
as possible, while one is going to minimize the drug costs.
This can be modeled as follows.

Assume that the onset of full-blown AIDS occurs after
time t f . Hence, we should have

P(t) ≥ CD4+
crit, t ∈

[
t0, t f

]
, P

(
t f
)
= CD4+

crit. (5)

A problem arising from the use of most chemotherapies is
the multiple and sometimes harmful side effects, as well as
the ineffectiveness of treatment after a certain time due to
the capability of the virus to mutate and become resistant
to the treatment. Global effects of these phenomena can be
considered by imposing limited treatment interval [22], that
is, treatment lasting for a given period from time t0 to t0 + η.
Therefore, the support of the control function u(·) must be
in the treatment interval

suppu ⊆ [t0, t0 + η
]
. (6)

Here, we follow [8, 22] in assuming that the costs of the
treatment is proportional to u2(t) at time t. Therefore, the

overall cost of the treatment is
∫ t f
t0 u

2(t)dt. So, the following
functional should be maximized:

σ
(
t f ,u

)
= t f − λ

∫ t f

t0
u2(t)dt. (7)
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Parameter λ is used to set the relative importance between
maximizing the survival time t f and minimizing the systemic
cost to the body. Setting P = x1, P = x2, a = x3, and
C = x4, the system of differential equations (1)–(4) can be
represented in a generalized form as

ẋ(t) = g(t, x(t),u(t))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

IP + β
(
x0

2 − x2

)
− τPx1 − cPx3x4x1

τPx1 − τPx2 − cPx3x4x2

x3
(
(1− u)θ − γx4

)

(εIC + αx4)x3

(
x2

x0
2

)υ

− τCx4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, x(0) = x0.

(8)

Assume that K denotes the set of all measurable control
functions u(·) ∈ [0, 1], where u(·) satisfies (6), and the
corresponding solution of (8) at final time t f satisfies (5).
Therefore, we are seeking for u∗(·) ∈ K such that

σ
(
t f ,u

)
≤ σ

(
t∗f ,u∗

)
, ∀u ∈ K. (9)

Setting f0(t, x(t),u(t)) = 1 − λu2(t), then the optimal drug
regimen problem, while ignoring t0, can be represented as:

max
t f ,u ∈ K

∫ t f

t0
f0(t, x(t),u(t))dt (10)

subject to

ẋ = g(t, x(t),u(t)), (11)

x(t0) = xt0 , x2

(
t f
)
= CD4+

crit, (12)

x2(t) ≥ CD4+
crit, t ∈

[
t0, t f

]
. (13)

This optimal control problem is referred to as OCP. Some
problems may arise in the quest of solving OCP. The set K
may be empty. If K is not empty, the functional measuring
the performance of the system may not achieve its maximum
in the set K . In order to overcome these difficulties, in the
next section we transfer the OCP into a modified problem in
measure space.

4. Approximation of OCP by Linear
Programming Problem

Using measure theory for solving optimal control problems
based on the idea of Young [33], which was applied for the
first time by Wilson and Rubio [34], has been theoretically
established by Rubio in [35]. Then, the method has been
extended for approximating the time optimal problems by
an LP model [36]. Here, this approach is used.

4.1. Functional Space. We assume that the state variables x(·)
and the control input u(·), respectively, get their values in the
compact sets A = A1 × A2 × A3 × A4 ⊂ �4 and U ⊂ �. Set
J = [t0, t f ]. Here, we are going to derive weak forms for (11)–
(13).

Definition 1. A triple p = [t f , x,u] is said to be admissible if
the following conditions hold.

(i) The vector function x(·) is absolutely continuous and
belongs to A for all t ∈ J .

(ii) The function u(·) takes its values in the set U and is
Lebesgue measurable on J .

(iii) p satisfies in (11)–(13), on J0, that is, the interior set
of J .

It is assumed that the set of all admissible triples is nonempty
and denotes it by W . Let p be an admissible triple, B be an
open ball in�5 containing J×A, and letC′(B) be the space of
all real-valued continuous differentiable functions on it. Let
ϕ ∈ C′(B), and define ϕg as follows:

ϕg(t, x(t),u(t)) = ϕx(t, x(t)) · g(t, x(t),u(t)) + ϕt(t, x(t))

(14)

for each [t, x(t),u(t)] ∈ Ω, where Ω = J × A × U . The
function ϕg is in the space C(Ω), the set of all continuous
functions on the compact set Ω. Since p = [t f , x,u] is an
admissible triple, we have

∫ t f

t0
ϕg(t, ξ(t),u(t))dt =

∫ t f

t0
ϕx(t, x(t)) · ẋ(t) + ϕt(t, x(t))dt

= ϕ
(
t f , x

(
t f
))
− ϕ(t0, x(t0)) = Δϕ,

(15)

for all ϕ ∈ C′(B). Let D(J0) be the space of all infinitely
differentiable real-valued functions with compact support in
J0. Define

ψ n(t, x(t),u(t)) = xn(t)ψ′(t) + gn(t, x(t),u(t))ψ(t),

n = 1, 2, 3, 4, ∀ψ ∈ D
(
J0).

(16)

Assume p = [t f , x,u] be an admissible triple. Since the
function ψ(·) has compact support in J0, ψ(t0) = ψ(t f ) = 0.
Thus, for n = 1, 2, 3, 4, and for all ψ ∈ D(J0), from (16) and
using integration by parts, we have

∫ t f

t0
ψn(t, x(t),u(t))dt =

∫ t f

t0
xn(t)ψ′(t)dt

+
∫ t f

t0
gn(t, x(t),u(t))ψ(t)dt

= 0.

(17)

Also, by choosing the functions which are dependent only on
time, we have

∫ t f

t0
ϑ(t, x(t),u(t))dt = aϑ, ∀ϑ ∈ C1(Ω), (18)

where C1(Ω) is the space of all functions in C(Ω) that depend
only on time and aϑ is the integral of ϑ(·) on J .

Equations (15), (17), and (18) are the weak forms of
(11)–(13). Note that the constraints (12) are considered on
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the right-hand side of (15) by choosing suitable functions
ϕ ∈ C′(B) which are monomials of x2. Furthermore, the
constraint (13) is considered, by choosing an appropriate set
A. Now, we consider the following positive linear functional
on C(Ω):

Γp : F −→
∫

J
F(t, x(t),u(t))dt, ∀F ∈ C(Ω). (19)

Proposition 1. Transformation p → Γp of admissible triples
inW into the linear mappings Γp defined in (19) is an injection.

Proof. We must show that if p1 /= p2, then Γp1 /= Γp2 . Let
pj = [t f j , xj ,uj], j = 1, 2 be different admissible triples.
If t f1 = t f2 , then there is a subinterval of [t0, t f1 ], say J1,
where x1(t) /=x2(t) for each t ∈ J1. A continuous function
F can be constructed on Ω so that the right-hand sides of
(19) corresponding to p1 and p1 are not equal. For instance,
one can make F independent of u, equal zero for all t outside
J1, and such that it is positive on the appropriate portion of
x1(·), and zero on the x2(·), then the linear functionals are
not equal. In other words, if t f1 /= t f2 , then Γp1 and Γp2 have
different domains and are not equal.

Thus, from (15), (17), and (18), one can conclude that
maximizing the functional (10) over admissible space W ,
changes to the following optimization problem in functional
space:

max
p∈W

Γp
(
f0
)

(20)

subject to

Γp
(
ϕg
) = Δϕ, ϕ ∈ C′(B), (21)

Γp
(
ψn
) = 0, n = 1, 2, 3, 4, ψ ∈ D

(
J0), (22)

Γp(ϑ) = aϑ, ϑ ∈ C1(Ω). (23)

4.2. Measure Space. Let M+(Ω) denote the space of all
positive Radon measures on Ω. By the Riesz representation
theorem [35], there exists a unique positive Radon measure
μ on Ω such that

Γp(F) =
∫

J
F(t, x(t),u(t))dt

=
∫

Ω
F(t, x,u)dμ ≡ μ(F), F ∈ C(Ω).

(24)

So, we may change the functional space of the optimization
problem to measure space. In other words, the optimization
problem (20)–(23) can be converted to the following opti-
mization problem in measure space:

Maximize
μ∈M+(Ω)

μ
(
f0
)

(25)

subject to

μ
(
ϕg
) = Δϕ, ϕ ∈ C′(B), (26)

μ
(
ψn
) = 0, n = 1, 2, 3, 4, ψ ∈ D

(
J0), (27)

μ(ϑ) = aϑ, ϑ ∈ C1(Ω). (28)

We will consider maximization of (25) over the set
Q of all positive Radon measures on Ω, satisfying (26)–
(28). The main advantages of considering this measure
theoretic form of the problem is the existence of optimal
measure in the set Q where this point can be studied
in a straightforward manner without having to impose
conditions such as convexity which may be artificial.

Define function I : Q → R as I(μ) = μ( f0). The following
theorem guarantees the existence of an optimal solution.

Theorem 1. The measure theoretical problem of maximizing
(25) with constraints (26)–(28) has an optimal solution, say
μ∗, where μ∗ ∈ Q.

Proof. The so-called constraints (27) and (28) are special
cases of (26) [35]. So, the set Q can be written as

Q =
⋂

ϕ∈C′(B)

{
μ ∈M+(Ω) : μ

(
ϕg
) = Δϕ

}
. (29)

Assume that p = [t f , x,u] is an admissible triple. It is well
known that the set {μ ∈M+(Ω) : μ(1) = t f − t0} is compact
in the weak∗ topology. Furthermore, the setQ as intersection
of inverse image of closed singleton sets {Δϕ} under the
continuous functions μ → μ(ϕg) is also closed. Thus, Q is a
closed subset of a compact set. This proves the compactness
of the set Q. Since the functional I , mapping the compact set
Q on the real line, is continuous and thus takes its maximum
on the compact set Q.

Next, based on analysis in [35], the problem (25)–(28)
is approximated by an LP problem, and a triple p∗ which
approximates the action of μ∗ ∈ Q is achieved.

4.3. Approximation. The problem (25)–(28) is an infinite-
dimensional linear programming problem, and we are
mainly interested in approximating it. First, the maximiza-
tion of I is considered not over the set Q, but over a subset
of it denoted by requiring that only a finite number of con-
straints (26)–(28) be satisfied. Let {ϕi : i = 1, 2, . . .}, {ψj : j =
1, 2, . . .}, and {ϑs : s = 1, 2, . . .} be the sets of total functions,
respectively, in C′(B), D(J0), and C1(Ω). The first approxi-
mation is completed by choosing finite number of functions
ϕis, ψjs, and ϑss. Now we have the following propositions.

Proposition 2. Consider the linear program problem consist-
ing of maximizing the function I over the set QM of measures
in M+(Ω) satisfying:

μ
(
ϕ
g
i

)
= Δϕi, i = 1, . . . ,M. (30)

Then, JM ≡ maxQM I tends to J = maxQ I as M → ∞.

Proof. We have Q1 ⊇ Q2 ⊇ · · · ⊇ QM ⊇ ·· · ⊇ Q and hence,
J1 ≥ J2 ≥ · · · ≥ JM ≥ · · · ≥ J . The sequence {J j}∞j=1 is

nonincreasing and bounded, so, it converges to a number ζ
such that ζ ≥ J . We show that ζ = J . Set R ≡ ⋂∞M=1 QM . Then,
R ⊇ Q and ζ ≡ maxRI . It is sufficient to show R ⊆ Q. Assume
μ ∈ R and ϕ ∈ C′(B). Since the linear combinations of
the functions {ϕj , j = 1, 2, . . .} are uniformly dense in
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C′(B), there is a sequence {ϕ̃k} ∈ span{ϕj , j = 1, 2, . . .},
such that ϕ̃k tends to ϕ uniformly as k → ∞. Hence, S1, S2,
and S3 tend to zero as k → ∞ where S1 = sup |ϕx − ϕ̃kx |,
S2 = sup |ϕt − ϕ̃kt |, and S3 = sup |ϕ − ϕ̃k|. Since μ ∈ R and
the functional f → μ( f ) is linear, μ(ϕ̃

g
k) = Δϕ̃k and

∣
∣μ
(
ϕg
)− Δϕ

∣
∣

=
∣
∣
∣μ
(
ϕg
)− Δϕ− μ

(
ϕ̃
g
k

)
+ Δϕ̃k

∣
∣
∣

=
∣
∣
∣
∣

∫

Ω

{[
ϕx(t, x)− ϕ̃kx (t, x)

]
g(t, x,u)

+
[
ϕt(t, x)− ϕ̃kt (t, x)

]}
dμ− (Δϕ− Δϕ̃k

)
∣
∣
∣
∣

≤ S1

∫

Ω

∣
∣g(t, x,u)

∣
∣dμ + S2

∫

Ω
dμ + 2S3.

(31)

The right-hand side of the above inequality tends to zero as
k → ∞, and the left-hand side is independent of k; therefore
μ(ϕg) = Δϕ. Thus, R ⊆ Q and ζ ≤ J , which implies ζ =
J .

Proposition 3. The measure μ∗ in the set QM at which the
functional I attains its maximum has the form

μ∗ =
M∑

j=1

α∗ jδ
(
z∗j
)

, (32)

where α∗j ≥ 0, z∗j ∈ Ω, and δ(z) is unitary atomic measure
with the support being the singleton set {z∗j }, characterized by
δ(z)(F) = F(z), z ∈ Ω.

Proof . See [35].

Therefore, our attention is restricted to finding a measure
in the form of (32), which maximizes the functional I and
satisfies in M number of the constraints (26)–(28). Thus,
by choosing the functions ϕi, i = 1, 2, . . . ,M1, ψk, k =
1, . . . , M2, and ϑs, s = 1, . . . , S, the infinite dimensional
problem (25)–(28) is approximated by the following finite
dimensional nonlinear programming (NLP) problem:

Maximize
αj≥0, zj∈Ω

M∑

j=1

αj f0
(
zj
)

(33)

subject to

M∑

j=1

αjϕ
g
i

(
zj
)
= Δϕi, i = 1, . . . ,M1, (34)

M∑

j=1

αjψ
n
k

(
zj
)
= 0, k = 1, . . . ,M2, n = 1, 2, 3, 4, (35)

M∑

j=1

αjϑs
(
zj
)
= aϑs , s = 1, . . . , S, (36)

where M = M1 + 4M2 + S. Clearly, (33)–(36) is an NLP
problem with 2 M unknowns: αj and zj , j = 1, . . . ,M. One is
interested in LP problem. The following proposition enables
us to approximate the NLP problem (33)–(36) by a finite
dimensional LP problem.

Proposition 4. Let ΩN = {y1, y2, . . . , yN} be a countable
dense subset of Ω. Given ε > 0, a measure v ∈ M+(Ω) can
be found such that:

∣
∣v
(
f0
)− μ∗( f0

)∣∣ ≤ ε,
∣
∣
∣v
(
ϕ
g
i

)
− μ∗

(
ϕ
g
i

)∣∣
∣ ≤ ε, i = 1, . . . ,M1,

∣
∣
∣v
(
ψnk
)
− μ∗

(
ψnk
)∣∣
∣ ≤ ε, k = 1, . . . ,M2, n = 1, 2, 3, 4,

∣
∣v(ϑs)− μ∗(ϑs)

∣
∣ ≤ ε, s = 1, . . . , S,

(37)

where the measure v has the form

v =
M∑

j=1

α∗j δ
(
yj
)

, (38)

and the coefficients α∗j , j = 1, . . . ,M, are the same as optimal
measure (32), and yj ∈ Ω N , j = 1, . . . ,M.

Proof. We rename the functions f0, ϕ
g
i ’s, ψnk ’s, and ϑs’s

sequentially as hj , j = 1, 2, . . . ,M + 1. Then, for j = 1, . . . ,
M + 1,

∣
∣
∣
(
μ∗ − v )hj

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

M∑

i=1

α∗i
[
hj
(
z∗i
)− hj

(
yi
)]
∣
∣
∣
∣
∣
∣

≤
⎛

⎝
M∑

i=1

α∗i

⎞

⎠max
i, j

∣
∣
∣hj

(
z∗i
)− hj

(
yi
)∣∣
∣.

(39)

hjs are continuous. Therefore, maxi, j can be made less than

ε/
∑M

j=1 α
∗
j by choosing yi, i = 1, 2, . . . ,M, sufficiently near

z∗i .

For constructing a suitable set ΩN , which preserves the
relation (6), J is divided to S subintervals as follows:

Js =
[
t0 +

(s− 1)ΔT
S− 1

, t0 +
sΔT

S− 1

)
,

s = 1, 2, . . . , S− 1, JS =
[
tl , t f

)
,

(40)

where tl is a lower bound for optimal time t f , which can
be obtained by using a search algorithm based on golden
section [36] or Fibonnaci search method [37]. Let S be the

largest number such that JS ⊆ [t0, t0 + η]. Set J1 = ⋃S
s=1 Js,

J2 = ⋃S
s=S+1 Js, Ω

1 = J1 × A × U , and Ω2 = J2 × A ×
{0}. Moreover, the intervals Ai (i = 1, 2, 3, 4) and U are
divided, respectively, into ni and m subintervals. So, the sets
Ωi, i = 1, 2, are partitioned into N1 = Sn1n2n3n4m and
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N2 = (S− S)n1n2n3n4 cells, respectively. One point is chosen
from each cell. In this way, we will have a grid of points,
which are numbered sequentially as yj = (t j , x1 j , . . . , x4 j ,uj),
j = 1, . . . ,N , where N = N1 +N2.

Therefore, according to (38), the NLP problem (33)–(36)
is converted to the following LP problem:

Maximize
αj≥0

M∑

j=1

αj f0
(
yj
)

(41)

subject to

N∑

j=1

αjϕ
g
i

(
yj
)
= Δϕi, i = 1, . . . ,M1, (42)

N∑

j=1

αjψ
n
k

(
yj
)
= 0, k = 1, . . . ,M2, n = 1, 2, 3 , 4, (43)

N∑

j=1

αjϑs
(
yj
)
= aϑs , s = 1, . . . , S. (44)

Here, we discuss suitable total functions ϕis, ψks, and ϑss.
The functions ϕis can be taken to be monomials of t and the
components of the vector x as follows:

tix
j
2, x

j
2x

i
h, i ∈ {0, 1}, j ∈ {1, 2, . . .}, h ∈ {1, 3, 4}.

(45)

In addition, we choose some functions with compact support
in the following form [36, 37]:

ψ2r−1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin
(

2πr(t − t0)
ΔT

)
t ≤ tl

0 otherwise,

ψ2r(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− cos
(

2πr(t − t0)
ΔT

)
t ≤ tl

0 otherwise,

(46)

where r = 1, 2, . . . and ΔT = tl − t0. Finally, the following
functions are considered that are dependent on t only:

ϑs(t) =
⎧
⎪⎨

⎪⎩

1 t ∈ Js

0 otherwise,
(47)

where Js, s = 1, . . . , S, are given by (40). These functions are
used to construct the approximate piecewise constant control
[35–37]. By the above definition of ϑs, we consider t f as

Table 1: Results of implementing Algorithm 1.

tl tu a t∗f (a)

0 5297.45 2648.72 3370.06

2648.72 5297.45 3973.08 Infeasible

2648.72 3973.08 3310.90 3595.25

3310.90 3973.08 3641.99 3709.73

3641.99 3973.08

an unknown variable in the constraints (44) which can be
written as

�∑

j=1

αj = ΔT

S− 1

...

(S−1)�∑

j=(S−2)�+1

αj = ΔT

S− 1

S�∑

j=(S−1)�+1

αj = t f − tl,

(48)

where � = N/S. Of course, we need only to construct the
control function u(·), since x(·) can be obtained by solving
the ODEs (8). By using simplex method, a nonzero optimal
solution α∗i1 ,α∗i2 , . . . ,α∗ik , i1 < i2 < · · · < ik of the LP problem
(41)–(44) can be found where k cannot exceed the number
of constraints, that is, k ≤ M1 + M2 + S. Setting α∗i0 = t0,
a piecewise control function u(·) approximating the optimal
control is constructed based on these nonzero coefficients as
follows [35, 36]:

u(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uij t ∈
⎡

⎣
j−1∑

h=0

α∗ih ,
j∑

h=0

α∗ih

⎞

⎠

0 otherwise

, j = 1, 2, . . . , k,

(49)

where uij is the 6th component of yij .

To start the proposed method, one needs to have tl . Here,
a bisection method is proposed to find the desired lower
bound tl for optimal time t∗f . This algorithm has a simple
structure and is started with a given upper bound tu, where it
is assumed that the lower bound starts with tl = 0. Assuming
that t∗f (tl) denotes the solution of LP problem (41)–(44)
corresponding to the given lower bound tl , the bisection
method is outlined as follows.

Algorithm 1 (estimation of the lower bound tl). First, let τ =
[tl, tu], where tl = 0 and tu is an upper bound for t∗f .

Step 1. Let a = (tl + tu)/2 and solve the corresponding LP
problem to find t∗f (a). If no feasible solution is found for the
corresponding LP problem or t∗f (a) = a, set tu = a; else set
tl = a.
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Figure 1: The approximate suboptimal piecewise constant control u.
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Figure 2: Dynamic behavior of the state variables P, P, a and C versus time in the case of untreated (dashed line) and treated infected
patients (solid line).
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Figure 3: Phase space diagram for CD4+ T-cells (P), and CTLs (C).
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Step 2. If the length of the interval τ = [tl, tu] is small
enough, then choose tl as a good estimation for lower bound
t∗f else, go to Step 1.

5. Numerical Results

In this implementation, we setM1 = 10 and choose functions
ϕi, i = 1, 2, . . . ,M1, from C′(B) as follows:

x1, x2, x3, x4, x2
2, x3

2, x1x2, x3x2, x4x2, tx2. (50)

Furthermore, we set S = 13 and M2 = 6. Setting u = 0 in
(8), we find that at t0 = 1642, x(t0) = (8.19, 35, 0.05, 0.04).
Model parameters are chosen as follows [17]:

IP = 1.0, β = 0.01, τ p = 0.2, cp = 0, τp = 0.001,

cp = 20, θ = 0.02, γ = 0.8, ε = 0.154, IC = 0.2,

α = 0.3, v = 3,
(51)

and the following initial condition is used:

x(0) = (5, 100, 0.0005, 0). (52)

Besides, λ is set to λ = 10, and the length of treatment is set
to η = 500 (days). By using controllability on the dynamical
control system, one can assume A1 = [7, 10], A2 = [5, 85],
A3 = [0, 5], A4 = [0, 0.1], and U = [0, 1]. Furthermore, the
number of partitions in the construction of the set ΩN are
n1 = 4, n2 = 10, n3 = 4, n4 = 4, and m1 = 4. Initially,
an upper bound for optimal time t∗f is set to tu = 5297.45.
The results of implementing Algorithm 1 are summarized in
Table 1. Setting tl = 3642, we have an LP problem with 16000
unknowns and 47 constraints which is solved by the linprog
code of the optimization toolbox in MATLAB. The total CPU
time required on a laptop with CPU 2.20 GHz and 0.99 GB
of RAM was 17.23 minutes. The suboptimal time has been
found t∗f = 3943.2. The resulting suboptimal control and
the response of the system to the obtained control function
are depicted in Figures 1 and 2, respectively. Moreover, we
found P(t∗f ) = 4.9360, which is close to the exact value, that
is, 5 (CD4+

crit%). Note that the normal level of mature CD4+
T-cells is about 1000 cells/μL. The relationships between the
CD4+ T-cells, CTLs, and virus during the different stages of
the disease are shown in Figure 3 as a phase space diagram.

6. Conclusion

In this paper, we considered a dynamical system which
describes the various aspects of the interaction of HIV with
the immune system, to construct an optimal control problem
which maximizes survival time of patients. A measure
theoretical method is used to solve such kind of problems.
The method is not iterative, and it does not need any initial
guess of the solution, and numerical results confirmed the
effectiveness of this approach.

Numerical results show that in presence of treatment,
the survival time of patients can be considerably prolonged.

From Figures 2(b) and 2(c), it is concluded that in presence
of treatment (solid lines), the virus is controlled to very low
levels and CD4+ T-cells are maintained at high levels for
relatively long time. From Figure 2(d), an increase in CTL’s
occurs in response to therapy.

Figure 3(a) shows an inverse correlation between CD4+
T-cells and virus particles. Furthermore, Figure 3(b) shows
a clear correlation between the level of CTLs in the blood
and HIV progression. As the virus increases upon initial
infection, CTLs increase in order to decrease the virus.
But this situation changes after about 1000th day due to
destruction of CD4+ T-cells. Because these cells play an
essential role in stimulation of immune response and signal
other immune cells to eliminate infection by killing infected
cells. After the 1642nd day, an increase in immune response
can be observed which is due to recovery of CD4+ T-
cells in response to treatment. Immune response increases
for a while after discontinuation of therapy but ultimately
becomes extinct.
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