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It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force
and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the
vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics
yet interacts with muscle internal mass distribution, this study investigates two questions: (i) what is the time scale on which
the muscle responds to a force step? (ii) How does this response scale with muscle design parameters? Thereto, we simulated
accelerated contractions of alternating sequences of Hill-type contractile elements and point masses. We found that in a typical
small muscle the force levels off after about 0.2 ms, contraction velocity after about 0.5 ms. In an upscaled version representing
bigger mammals’ muscles, the force levels off after about 20 ms, and the theoretically expected maximum contraction velocity is not
reached. We conclude (i) that it may be indispensable to introduce second-order contributions into muscle models to understand
high-frequency muscle responses, particularly in bigger muscles. Additionally, (ii) constructing more elaborate measuring devices
seems to be worthwhile to distinguish viscoelastic and inertia properties in rapid contractile responses of muscles.

1. Introduction

In case the force-velocity relation of a muscle (usually
hyperbolic [1]: the Hill relation) is interpreted as a force law
and coupled to inertia loads as, for example, in computer
models of musculoskeletal multibody systems, it adds first-
order dynamics to the systems’ mechanical equations of
motion. Usually, the force-velocity relations of a specific iso-
lated muscle preparation (according to [2–4]: earliest known
experiments by Jan Swammerdam around 1663; later: e.g.,
[1, 5–19]) or lumped-muscle assemblies (e.g., [20–22]) are
determined through isotonic (e.g., [10, 13, 18]) or isokinetic
(e.g., [7, 10, 16, 17]) contractions or by accelerating external
inertia loads (e.g., [20, 21]).

In the isokinetic condition, a potential external inertia
load would be nonaccelerated, whereas the muscle internal
velocity distribution could not yet be guaranteed to have

cancelled out (maybe internally and locally accelerated).
Hypothesising that the muscle consists internally of just two
parts arranged in series, the contractile element (CE) and the
serial (visco-)elastic element (SEE), the isotonic condition is
often chosen to separate an assumed subsequent steady-state
response of the CE (and, thus, its isolated properties) from
the so-called “initial elastic response” of a muscle. The latter
is the finite period (in fibres below a millisecond [13, 23–27])
after a quick release in which the force settles to a new level, as
mostly presumed, through mere SEE properties. In analogy
to the isokinetic condition, however, the muscle internal
force distribution cannot be guaranteed to have cancelled
out during an isotonic contraction. That is, both contraction
modes are prone to represent in fact nonsteady situations
due to potential inertia loads involved, may they come from
inertia of the measurement device in series or muscle internal
masses themselves.



2 Computational and Mathematical Methods in Medicine

Some studies [28–30] have argued that muscle internal
inertia forces can be neglected. All these authors based their
argument on assuming that the force within one sarcomere
accelerates just one other sarcomere, that is, a very low
mass. In real muscle, however, all sarcomeres in parallel
(imagine a cut through a muscle’s cross-section) would
have to accelerate all masses in series on both sides of the
cut. Definitely, force generation of a real muscle cannot
work without almost synchronous contraction along its
whole mass distribution. Certainly, the force generated by
one sarcomere will accelerate the inertia of more than its
own and its direct neighbours. And indeed, there are some
experimental studies [24–26, 31] in which high-frequency
oscillatory responses to step excitations had been found,
indicating that muscle inertia may interfere with contraction.

As a consequence of this and the fact that finite con-
traction distances have to be allowed during any contraction
experiment, the measured results of both dynamic contrac-
tion conditions may delicately depend on muscle internal
mass distribution. In fact, all mentioned experimental
conditions are meant to finally determine the characteristics
of the CE within the muscle. We can conclude that, at least
theoretically, the so determined contractile muscle character-
istic (force-velocity relation) might not be identified with-
out taking inertia effects into account. Moreover, isolated
preparations have been examined solely for invertebrate,
arthropod, frog, toad, or small mammal muscles so far, that
is, for muscle masses in the range 0.0001 · · · 10 g (maximum:
20 g in a turkey muscle [32]), thus, much smaller than
those of humans or big mammals. Assuming geometric
scaling, muscle force would just scale quadratically (cross-
sectional area) with body length, whereas muscle mass
would scale cubically (volume). Thus, accelerating force per
muscle mass should decrease about linearly with body length.
Accordingly, it may well be that first-order dynamics does not
generally suffice to adequately describe muscle contraction
dynamics. Therefore, in our view, at least two questions
remain open. (i) Usually, experiments are performed on
small muscles, whereas computer models often refer to
upscaled muscles. Hence, the first question worth asking
seems to be whether and how a mass distribution, scaled
up to a design resembling bigger humans’ or mammals’
muscles, would bias the force-velocity relation. (ii) The
second question is in regard to all muscle sizes. What is
the time scale on which such inertia forces occur, especially
compared to the time scale of the “initial elastic response”?

To answer these questions, we conducted a computer
experiment in which modelling muscle dynamics was pur-
posely reduced to the force-length and force-velocity depen-
dencies of the CE. That is, we neglected any elasticity,
whether in parallel or in series, to be able to focus solely
on the CE force relationships. Usually, parallel elasticity does
not intervene when starting the contraction just below or at
about optimal fibre length. Serial elasticity can be neglected
in case the contraction does not start in some pre-stretched
condition like in, for example, activated isometry. Conse-
quently, we calculated in this study how a muscle, which is
modelled on the basis of classical Hill-type CE contraction
dynamics, would be biased by and interact with muscle

internal second-order dynamics (mass inertia). Thereby, the
muscle is assumed to be fully activated initially and subjected
to the maximum initial load gradient possible along its
length, while being not prestretched: one muscle end is fixed,
whereas the other end is released to contract freely.

2. Material and Methods

We simulated linear (onedimensional) dynamic muscle con-
tractions using in-house software “simsys” [33–35] which
incorporates the solver “de” [36] for time integration. The
solver’s absolute and relative error tolerances were set to
10−12.

We approximated the continuous mass distribution
along the muscle by modelling (Figure 1) a finite number
IM + 1 of discrete point masses (PMs) in an alternating
sequence with a corresponding number of IM contractile
elements (CEs) indicated by “i”. To keep the model as
simple as possible, we further assumed a homogeneous mass
distribution, that is, the same 1/(IM+1) portion of the overall
muscle mass M is attributed to each PM. For all models with
IM = 1, 2, 4, 8, 16, 32 CEs, we examined just one dynamic
load situation: a fully active muscle (all activities qi = 1, qi ∈
[0, 1]) contracting concentrically with one muscle end fixed
to the world, and the other end is released to contract freely,
ignoring gravity. This is the most dynamic, however, non-
prestretched situation conceivable, because we chose all IM
CEs to be at their (common) optimal length (lCE,i = lCE,opt,i =
lCE,opt) initially, not shortening (l̇CE,i = 0; the dot “·” denotes
the time t derivative) and, therefore, initially pulling with
their (common) maximum isometric force (FCE,i = Fmax,i =
Fmax). Consequently, the only PM to be accelerated initially
was the one at the free end, being exposed to the maximum
force gradient possible: FCE,IM = Fmax pulling on the one side,
whereas there is no force counteracting on the other side.
That is, we computed the decay of this singular force step
while going through an intermittent scenario of a force (and
acceleration) gradient distributed along the whole muscle
length lM = ∑IM

i=1 lCE,i. With this decay, we quantified the
time scale on which the muscle attunes to any load difference
between its two ends, depending on its CE characteristics and
internal inertia.

For this loading situation, we consider only two different
muscle designs. Basic muscle model parameters are the
muscle mass M, the maximum isometric force Fmax of all
the CEs and the overall muscle, and the optimal length
lCE,opt of all CEs determining the optimal over-all muscle

length lM,opt =
∑IM

i=1 lCE,opt,i = IM · lCE,opt. The first muscle
represents an averaged assembly of the four plantar flexors of
a piglet [21]: M = 6.5 g, Fmax = 30 N, lM,opt = 0.015 m, the
latter two parameters characterising static (isometric) muscle
properties. Dynamic concentric contraction properties are
characterised by two further parameters Arel,Brel (see next
paragraph), fixing the maximum concentric contraction
velocity vM,max = 0.15 m/s and the curvature of an assumed
hyperbolic force-velocity relation [1]. The second muscle
is a scaled version of this piglet muscle with hundredfold
mass (M = 650 g). This comes from scaling the piglet’s
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Figure 1: The six models used for simulating accelerated contractions of a muscle with an overall mass of 6.5 g are arranged from the left
to the right. The models differ (i) by having split the muscle mass into an increasing number (IM + 1) of point masses (PMs; depicted by
circles) connected through a corresponding number IM of CEs (depicted by “brushes”) and (ii) by distributing the optimal muscle length
lM,opt homogeneously to the optimal CE lengths lCE,opt,i = lM,opt/IM . The sum of the circle areas, symbolising the muscle mass, is constant
across the six models. The uppermost PM is always fixed to the world, whereas all other PMs can be accelerated by their adjacent CEs. Note
that there is no gravity. Generally, lM =

∑IM
i=1 lCE,i is the overall muscle length lM .

length (to lM,opt = 0.15 m, vM,max = 1.5 m/s) as well as
the cross-sectional area (meaning Fmax = 300 N), each by
a factor of ten. Thus, both basic contraction parameters
consistently scale tenfold, whereas the values of the dynamic
parameters Arel,Brel are retained unchanged. The human
pectineus muscle [37] or the medial head of the horse triceps
muscle [38] would be examples of such a muscle design.

Any muscle elasticity (parallel and in series to the CE) is
neglected. Also, activation dynamics qi(t) is not taken into
account (qi = 1 during complete contractions). Concentric
contraction dynamics of the CEs as applied in this study
has been completely described elsewhere [21, 39]. Here,
we give a short summary. The isometric force function
of a CE is modelled as FCE,isom,i(lCE,i, qi) = Fmax · qi ·
fisom(lCE,i), where fisom(lCE,i) ∈ [0, 1] is constructed from two
exponential (bell) curve branches (ascending and descending
limb; see parameter values in [21]) steadily and differentiably
connected at lCE,opt,i. Besides the isometric force parameter
Fmax, the CE’s hyperbolic (Hill-type) force-velocity relation
is determined by two further normalised (Hill) parameters
Arel,i = Ai/FCE,isom,i, Brel,i = Bi/lCE,opt,i. Ai, Bi are the
hyperbola’s asymptotes in nonnormalised units. They are
generally, just like FCE,isom,i, rather functions of the CE state
variables lCE,i, qi than constant parameters [21, 40]. Together,
both asymptotes fix vmax,i and the curvature of the force-
velocity relation. Our restriction to identical CEs which
contract fully activated around optimal lengths is achieved
by globally choosing Arel,i = Arel = 0.1 and Brel,i = Brel =
1.0 (1/s) [21] as constant parameters for each CE. Thus,
vmax,i = vmax = Brel/Arel · lCE,opt is also (almost: see Section 3)

a fixed parameter in our simulations. Therewith, vM,max =
IM · vmax scales directly with lM,opt in our model.

Generally, the change dF(x, t) = ẍ(x, t) · dM in the
force F(x, t) acting along the muscle longitudinal axis in x-
direction runs in proportion to the mass portion dM located
between position x and x + dx and to the respective current
acceleration ẍ(x, t) of this mass portion. Note that F(x, t)
means the force acting on one side of each mass portion, that
is, represents the force in the corresponding adjacent CE.
Our assumption of a homogeneous mass distribution (i.e.,
M/lM = const) is equivalent to a constant mass increment
dM = M/lM · dx per change in position dx. Thus, in our
model we find

dF(x, t) = ẍ(x, t) ·M/lM(t) · dx. (1)

The situation, in which the muscle is fixed at x = 0 and left
free at x = lM , is characterised by

ẍ(0, t) = 0,

ẍ(xCOM, t) = F(0, t)− F(lM , t)
M

= F|x=0(t)
M

,
(2)

with the boundary conditions F(lM , t) = 0 and F(0, t) =
F|x=0(t) applying at any time t. Now, if local accelerations
were distributed as homogeneously as mass (implying
xCOM(t) = lM(t)/2) along the muscle, that is,

ẍ(x, t) = a + b · x, (3)
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then, from comparing (3) with the two equations (2), we
could deduce a = 0 and b = 2F|x=0(t)/(M · lM(t)). For
homogeneously distributed accelerations we, thus, find

ẍ|x=lM (t) = ẍ(lM , t) = 2F|x=0(t)
M

(4)

as the end point acceleration. Once the acceleration distribu-
tion is known, the corresponding force distribution can be
calculated according to (1).

With F|x=0(t) being the force difference between the
resting (here: at x = 0) and the most accelerated (here: at x =
lM(t)) muscle part, and with ẍ|x=lM (t) being the difference
in acceleration between both of these muscle parts, we may
define

μeff(t) = F|x=0(t)
ẍ|x=lM (t)

(5)

as the “effective mass” of a muscle for which inertia, forces,
and kinematics are distributed along its longitudinal axis.
According to (4),

μeff = M
2

(6)

would be an indicator of accelerations increasing linearly
from the fixed to the free muscle end.

3. Results

The maximum contraction velocity vmax is generally a
function of of activity q [21, 40] and length lCE [21, 40–43]:
vmax(lCE, q) = Brel(lCE, q)/Arel(lCE, q) · lCE,opt. Essentially, in
our case of a fully active muscle (q = 1) always at lCE ≤ lCE,opt,
this means vmax(lCE) = Brel,0/Arel,0 · lCE,opt · fisom(lCE) [21, 40]
with Arel,0 = Arel(lCE = lCE,opt, q = 1), Brel,0 = Brel(lCE =
lCE,opt, q = 1) [21]. However, the time periods analysed here
are short enough for the CEs not to shorten by more than
0.25 · lCE,opt. Thus, vmax is well approximated by its absolute
maximum value vmax,0 = Brel,0/Arel,0 · lCE,opt (see Section 3.3
below: vmax > 0.95 · vmax,0).

3.1. Smaller Muscle. In Figure 2, the simulation results of a
contraction with one end fixed are shown for the smaller
muscle (M = 6.5 g, Fmax = 30 N, lM,opt = 0.015 m). After
about 0.5 ms, the PM at the free end of the muscle (and, thus,
the whole muscle) has reached vmax (Figure 2(a)). Then, the
muscle has contracted by about 0.01 · lM,opt. Modelling just
one CE (and, thus, one PM free to move: IM = 1) already
approximates the rise in contraction velocity of a continuous
mass distribution. An analytic solution for the force step
response of one CE accelerating the overall muscle mass (see
Appendix A) confirms our numerical results. The typical
time constant for this muscle, when approaching vmax, is
3.6 · 10−4 s. The initial response at v = 0 is faster by two
orders of magnitude.

The mass distribution is well approximated by modelling
few tens of PMs as the difference between the time courses
of the IM = 16 and IM = 32 models is not discernible

any more in Figure 2. Due to the hyperbolic force-velocity
relation the force exerted at the fixed end drops even sharper
(Figure 2(b)) than velocity rises. The IM = 1 model is enough
to predict the dynamics of this force decay. The ratio between
the fixed end force and the acceleration of the PM at the free
end (i.e., their differences between both ends, resp.), which
defines the effective mass μeff (5), reaches its stationary value
after about the very time in which the force has dropped to
almost zero (0.2 ms: Figure 2(c)).

Not surprisingly, we always get exactly μeff = M/2
(6) in case of IM = 1 because (3) is consistently fulfilled
throughout. In case of IM > 1, the initial value is μeff =
M/IM (i.e., limIM →∞(μeff) = 0) because maximum isometric
force acts initially on both sides of each PM, except for the
very PM at the free end. With increasing IM the stationary
effective mass value converges to a little more than μeff =
M/2. Note that μeff = M/2 is predicted in (4) exactly (6),
if the PM accelerations increase linearly with the distance
x from the fixed to the free end (3). A stationary effective
mass nearby μeff = M/2 indicates such an approximately
linear acceleration (and, thus, force) distribution already
after about 0.2 ms. Subsequently, the muscle still accelerates
(see time course of the velocity), albeit slightly and at low
forces.

3.2. Scaling. Here, we condense the scaling characteristics of
the muscle model, going without explicit plots. In our one-
dimensional model, which assumes a homogeneous mass
distribution along the muscle, the parameters Arel,Brel of
the hyperbolic force-velocity relation fully determine the
dimensionless time courses of forces and kinematic variables
(length, velocity, acceleration). As a consequence thereof,
the effective mass scales in proportion to force and time,
respectively, and reciprocally to length (5). When varying
solely one single muscle parameter, we find the following
strictly linear scaling:

(i) forces just scale with Fmax;

(ii) kinematic variables just scale with lM,opt;

(iii) time (i.e., length of time responses) scales with
M/Fmax and with lM,opt (see also Appendix A).

As we see in the next paragraph, time does still scale
approximately with fixed M · lM,opt/Fmax; however, the
dimensionless time courses of all variables are biased.
Note that we express scaling with the maximum isometric
force Fmax instead of the current isometric force FCE,isom

because (i) Fmax is a measure of cross-sectional area in
muscles (maximum stress is nearly a constant across muscle
dimensions), and (ii) our simulations are performed with a
fully activated muscle around the optimal length.

3.3. Bigger Muscle. The course of the force (Figure 3(b))
in a muscle representing an upscaled version (M = 650 g,
Fmax = 300 N, lM,opt = 0.15 m) of the one in Section 3.1
proves that the time scale is hundredfold, as expected due
to tenfold M/Fmax and ten-fold lM,opt. Yet, the courses of
the velocity (Figure 3(a)) and effective mass (Figure 3(c))
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Figure 2: Computer simulation of accelerated contractions of six muscle models with the same overall mass (6.5 g), maximum isometric
force (30 N), optimal length (0.015 m), and maximum contraction velocity (0.15 m/s). The muscles were fixed at one end and always fully
active (q = 1). Models differ just with respect to the number of accelerated discrete point masses approximating a continuous distribution
of muscle mass. The point masses were connected by an equal number IM (see insets in Figure 2) of contractile elements. Their respective
optimal lengths lCE,opt,i were chosen equal to the optimal muscle length lM,opt divided by IM . The graph depicts the velocity of the point mass
at the free end (a), the force at the fixed end (b), and the effective mass (c), that is, the ratio of force at the fixed end and acceleration of
the point mass at the free end, versus time. The effective mass to be expected for an exactly linear acceleration distribution along the muscle
would be half of the muscle mass (MassM = M; (6): μeff = M/2 = 3.25 g). The analytic solution for one CE accelerating one point mass
predicts (see Appendix A) a typical time of 3.6 · 10−4 s for this muscle to approach vmax.

also demonstrate that contraction kinematics is biased. The
effective mass does not saturate, as in the smaller muscle
(Figure 2(c)), before end point acceleration has reached zero.
This occurs at about 35 ms for IM = 1 and at about 30 ms for
IM = 32 (approximating continuous mass distribution IM →
∞), leading to a pole in the effective mass (Figure 3(c)).
This also means that, due to mass inertia, the force in the
(outermost: i = IM) CE acting on the PM at the free end
vanishes earlier than that of the opposite (i = 1) CE at

the fixed end. As a consequence, in the instant when the
PM at the free end is not accelerated any more (see the
pole in effective mass), since the CE force has dropped to
zero (thus, the outermost CE has reached vmax), the inner
elements (closer to the fixed end) shorten still slightly below
vmax. Note that the muscle has contracted by about 0.24 ·
lM,opt after 30 ms (compared to the smaller muscle: there,
vM,max is reached already after about 0.5 ms with about 0.01 ·
lM,opt change in length; see Section 3.1). That is, at this
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Figure 3: Computer simulation of accelerated contractions of six muscle models with the same overall mass (650 g), maximum isometric
force (300 N), optimal length (0.15 m), and maximum contraction velocity (1.5 m/s). The muscles were fixed at one end and always fully
active (q = 1). Models differ just with respect to the number of accelerated discrete point masses approximating a continuous distribution
of muscle mass. The point masses were connected by an equal number IM (see insets in Figure 3) of contractile elements. Their respective
optimal lengths lCE,opt,i were chosen equal to the optimal muscle length lM,opt divided by IM . The graph depicts velocity (a), force (b), and
effective mass (c) versus time. The effective mass to be expected for an exactly linear acceleration distribution along the muscle would be
half of the muscle mass (MassM = M; (6): μeff = M/2 = 325 g). The analytic solution for one CE accelerating one point mass predicts (see
Appendix A) a typical time of 3.6 · 10−2 s for this muscle to approach vmax. Note the hundredfold muscle mass, tenfold maximum isometric
force and optimal length, respectively, and hundredfold time scale as compared to the results presented in Figure 2.

instant vM,max has additionally dropped by (but not more
than: due to broad ascending branch of force-length relation
[21]) about five percent below its absolute maximum value
vM,max,0 = Brel/Arel · lM,opt due to its length dependency. This
latter effect superposes with the fact that the inner elements
still contract at submaximal velocity at this instant. As a
result, the theoretical absolute maximum vM,max,0 is never
reached.

In our model, muscle velocity decreases after that instant
of zero force at the free end, occurring at 30 · · · 35 ms. The

corresponding energy dissipation originates from those CEs
that contract beyond their vmax,i(lCE,i) (due to kinetic energy
of the adjacent PM). In this loading situation, we allowed
such low compressive forces (FCE,i < 0) that would arise from
steadily extrapolating the hyperbolic force-velocity relation
to vCE,i > vmax,i(lCE,i). Physiologically, some low compressive
forces should in fact occur in real muscles as these are always
somehow constrained in transverse direction. Whether this
steady extrapolation is backed physiologically remains open
owing to a lack of literature data. Due to such compressive
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forces, we find a maximum in the free end’s velocity, which is
lower than the absolute maximum value vM,max,0 that would
be theoretically expected from pure CE properties. Even
without compressive forces, the theoretical vM,max,0 would
never be reached. This is due to the fact that mere interaction
of mass inertia and force-velocity relation delay the increase
in contraction velocity long enough for part of the CEs
to shorten into the ascending branch of their force-length
dependency.

4. Discussion

4.1. Inertia in Finite Element Models. Besides modelling
skeletal muscles using Hill-type models, there exist many
other modelling approaches. For this study, Hodgkin-Huxley
models aiming to investigate electrophysiological cellular
properties [44, 45], structural three-dimensional models
using the governing equations of finite elasticity to describe
muscle mechanics [46–50] and combinations thereof [51,
52] seem to be of primary interest. Hodgkin-Huxley-like
models typically focus only on the electrophysiological
properties and hence ignore muscle mass entirely. In the
case of structural models, mass is included within the
governing equations of finite elasticity through mass density,
representing weight forces and inertia terms. Except for
[47, 53], inertia terms are typically ignored. In most cases,
quasi-static approaches are adopted, which simplify, from
a computational point of view, the governing equations of
finite elasticity. Ignoring muscle inertia and appealing to
quasi-static approaches might be a valid assumption when
considering isometric contractions or slow motions. How-
ever, as shown here, there exist contraction scenarios in
which it is no longer justifiable to ignore muscle inertia in
structural models.

4.2. Contraction Dynamics of Second Order? Muscle inertia
must be taken into account in specific modes of contraction,
particularly in responses to impact loads [54–60]. In such
a case, whole muscle contraction dynamics is of second
order. In concentric contractions, muscle masses do not
seem to play a relevant role because the characteristic of
contraction dynamics was originally found to be a force-
velocity relation, namely, the hyperbolic Hill relation [1].
The relation definitely depends explicitly on the external
load (force), whereas it is explicitly independent of internal
muscle inertia. However, force-velocity relations have ever
been determined in preparations of isolated small muscles of
a few grams rather than in isolated muscles of big mammals.
So far, in these preparations of isolated small muscles inertia
forces have not been found to bias contraction dynamics,
at least not in muscle states at a few milliseconds after
release.

In contrast, our simulation results predict that maximum
concentric contraction velocity, being one parameter in the
Hill relation, cannot be directly measured in whole muscle
preparations of big mammals. The other way round, if
the hyperbolic force-velocity relation really mapped the
concentric muscular contraction dynamics microscopically

[61, 62] and macroscopically [1, 63], then a big muscle
would never reach the corresponding maximum contrac-
tion velocity at zero load (Figure 3(a)). In big muscles,
therefore, muscle internal inertia should have to be factored
in, even during concentric contractions, when striving to
identify the contractile properties only. Consequently, a
first-order force-velocity relation would not be expected
to fully describe the macroscopic dynamics of larger
muscles.

4.3. Rapid Responses in Isotonic after Load Experiments: Just
Elastic? Contractions of frog fibre bundles with M = 0.06 g,
Fmax = 0.3 N, lCE,opt = 3.0 cm have been examined in a
former study [13]. The muscle force per mass ratio between
our small (piglet-like) muscle and a frog fibre bundle, which
has a hundredth of our muscle’s cross-sectional area, is about
the same. Consequently, time characteristics should approx-
imately be equal. The authors [13] stated: “We conclude
that the change of velocity follows the change in force very
quickly probably in less than 1 msec and certainly in less than
6 msec.” According to our simulations which include mass
inertia, vmax is reached after about 0.5 ms. Thus, the question
arises whether the time for levelling off at the new force in
isotonic quick-release contractions is really just due to serial
(visco-)elasticity rather than a mixture of (visco-)elastic and
inertia properties.

In other experiments on single frog fibres [64], again
with a comparable force per mass ratio, the measuring device
had an internal elasticity (in series with the muscle) with an
unloaded eigenfrequency of about 200 Hz, corresponding to
a time period of 5 ms. As an “initial elastic response” within
about 1 ms can be estimated from their plots on contracting
muscle, we would conclude that the muscle stiffness must
have been much higher than the device stiffness. Without any
device stiffness the usually proposed “initial elastic response”
should have occurred even faster than within 1 ms. If this was
true, the rapid response to force steps would even more likely
be a superposition of (visco-)elastic and inertia effects.

4.4. Experimental Implications for Studying Inertia in Muscle
Preparations. In case one aims to examine inertia effects in
the rapid responses of small muscle preparations (as frog,
toad, piglet) experimentally, measuring devices of very low
inertia, high stiffness, and at least 10−6 s time resolution
were indispensable. A force step should be favoured as
the experimental protocol, rather than a length or velocity
step. This is, because the interpretation of the experimental
results of kinematic disturbances depends on assuming
unknown material characteristics, whereas a force step is a
disturbance provoking the contractile kinematics in a natural
cause-effect chain, that is, not interfering with the material
characteristics during the (ideally infinitely short) step. As
to our knowledge, there has been one modern study [27]
fulfilling already three of the experimental requirements:
it used a force-step protocol for frog muscles with time
resolution of 10−6 s. Unfortunately, the resonance frequency
of the apparatus was not more than 5 · 104 Hz. Eventually,
they applied force steps at a length of about 10−4 s. To resolve
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inertia effects, a setup tuned for step lengths of at least
10−6 s would be required (ideally 10−7 s), while choosing for
a time resolution of at least the step length, accordingly. As
an alternative, longer fibres could be used. Additionally, any
tendinous material in series to the fibres should be removed
as good as possible, and the stiffness of the apparatus should
always be clearly higher than that of any remaining tendon
material.

4.5. Muscle-Inertia Interaction in Nonstationary Conditions.
If the hyperbolic force-velocity relation F(v) is linearised
at any operating point, an analytic solution can be derived
for the dynamic response of the muscle model (including
an accelerated mass) to a step in the external force (see
Appendix A). This solution predicts an aperiodic exponential
decay of the force step towards a limit velocity. Furthermore,
limit velocity and time-constant τ of the decay vary along
the operating points F(v). In fact, τ is simply the reciprocal
of the current slope of the force-velocity hyperbola times
the accelerated mass. Therefore, depending on the curvature,
the time-constant τ of the decay can vary one to two orders
of magnitude across all possible contraction states of a
muscle. Thus, adaptations to force steps happen quickly for
contractions with high force and slow velocity (i.e., fastest
around the isometric state), while it happens much slower
at low forces and high velocities. In the example calculated
in Appendix A (parameters of our smaller muscle from
Section 3.1), we find τ = 3.0·10−6 at v = 0, and τ = 3.6·10−4

at v = −vmax.
This step response is induced by the interaction of

inertia and force-velocity relation. In a technical sense,
this characteristic represents a low-pass filter with a state-
dependent cut-off frequency. Mechanically spoken, the force-
velocity relation is equivalent to a damper with a state-
dependent damping coefficient. This is in accordance with a
recently proposed macroscopic model for the CE [65]. In that
model, the CE consists of three simple mechanical elements:
an active energy source (AE), a parallel damper (PDE), and a
serial element (SE). There, the PDE is assumed to be a viscous
damper, with the damping coefficient depending linearly
on the CE force (high damping for high CE forces). With
this assumption, the model predicts the operating points
on the hyperbolic force-velocity relation from the force
equilibrium of the three elements. Obviously, the differential
equation defining a hyperbola (see (A.8) in Appendix A) is
mathematically equivalent to a manifold of force equilibria
of the CE elements such as proposed in [65]. All in all, it
seems the muscle’s hyperbolic force-velocity relation can be
viewed from at least three perspectives, which are equivalent.
(i) It can be considered a linearly force-dependent damping
coefficient for external inertia loads. (ii) It performs as a
low-pass filter for whole muscle contraction exposed to
external steps in force. And (iii) it represents a potential to
compensate (homogenise) muscle internal force and velocity
distributions.

In first attempts to implement the above-mentioned CE
as a mechanical assembly [66, 67], the SE was realised with
a linear mechanical spring introducing additional elasticity

(in series to possible SEE elasticity representing tendon
and aponeurosis). Such a CE-internal elasticity from the
SE superposes oscillations to the above-described aperiodic
exponential decay. Alternatively, this CE model allows also
to detail the assumed SE properties as viscoelastic or purely
damping. Each would be expected to reduce any oscillatory
behaviour. Both in technical implementations as proposed
above and in experimental preparations of physiological
muscle, these effects should be as much visible and, thus,
verifiable. Such experiments could, therefore, help to further
reveal the internal structure of assemblies of active muscle
fibres and help to push forward CE models proposed to
represent them. Heat measurements on muscles are another
means to check for the validity of different CE models
with the same force-velocity relation but different internal
designs (element properties) [65]. We would expect that heat
measurements should also be prone to inertia effects, may
they come from muscle internal masses or potential inertia
of the measuring device [68].

As a first approximation we can usually consider muscle
mass M to be scaled geometrically by either changing its
cross-sectional area S or its length as represented by its
optimal fibre length lM,opt. This implies that both mass
density ρ and maximum stress σmax are about invariant
parameters of muscles. Thus, in a real muscle its mass is not
an independent parameter as in our model, and the rule to
scale contraction times in proportion to M · lM,opt/Fmax as
expressed in Section 3.1 and in (A.11) and (A.12) can be
condensed to (A.13). We should be aware of the fact that
(A.11) and (A.12) do apply to any contracting muscle, may
it accelerate just its internal mass (as analysed numerically in
this paper) or an external mass that is usually much higher
than its own mass. In contrast, (A.13) applies to the specific
case of a muscle contracting just against its internal mass
under the above-mentioned approximative assumptions of
constant density and maximum stress. Thus, (A.13) tells us
that the contraction time for a muscle exposed to a step
in force, rather than analysed when accelerating an external
load, scales in fact with the square of its fibre length. We
would, therefore, expect that the effect of not reaching the
theoretical maximum contraction velocity vmax (Figure 3(a))
would occur in any muscle preparation with fibre lengths
that exceed a value somewhere between 1.5 cm and 15 cm,
regardless of muscle mass. In the end, it seems that it is not
the value of the muscle mass itself but the fibre length that
scales the response times to force steps (even quadratically,
see (A.13)). The effect occurs because contraction times
for the whole muscle increase due to the force gradient
decreasing with muscle extension, whereas the outermost
muscle portions (released immediately in a force step) are
always accelerated to their local vmax (and already decelerated
consecutively due to local compression) much faster on an
invariant time scale. For a 15 cm fibre, a muscle is predicted
to reach just 93% of vmax.

We dare this preliminary prediction subject to future
theoretical analyses explicitly including muscle internal elas-
ticity. Serial elasticity might not really help to further speed
whole muscle acceleration up. Parallel elasticity, however,
might be effective because it adds accelerative forces to the
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force-velocity relation. Yet, interaction with damping like the
force-velocity relation itself and with the mass distribution
in series might reduce its accelerating effect down to a
secondary level. Parallel elasticity is also a challenge to exper-
imenters because it usually biases contraction measurements
as soon as they are performed above or even at optimal
fibre lengths. To make our theoretical analysis of the force-
velocity relation contributing to accelerated contractions as
comparable as possible with experiments, we chose initial
conditions at which parallel elasticity is (almost) negligible,
that is, at optimal lengths. As a result, our bigger muscle
has already contracted by about 0.24 · lM,opt in the instant
when it starts to decelerate its all over contraction (see first
paragraph of Section 3.3). Because our model force-length
relation has an unusually broad ascending branch [21] the
isometric force for a CE shortened by considerable 24%
has only decreased a little to about 95% of its absolute
maximum. Therefore, it seems that reaching a contraction
velocity of just 0.93 · vmax is due to a mixture of local
compressive forces and the force-length relation in our
model simulations. Additional parallel elasticity would only
have the potential to compensate for the latter relation.
We would, therefore, expect that the phenomenon of not
reaching theoretical vmax in big muscles should also occur
when starting at initial lengths above the optimal fibre
length.

Finally, we would like to point to another interesting
aspect. The propagation velocity of muscle excitation on its
surface is about 4 m/s in vertebrate cross-striated muscles
[69]. In the smaller muscle, this means that an excitation
spike would need about an order of magnitude more time
to spread along the complete length of a fibre than to
reach vmax after a maximum force step down to zero: for
1.5 cm fibres we calculated τv=−vmax = 3.6 · 10−4 s, and we
find 0.015 m/(4 (m/s)) = 3.8 · 10−3 s. As τv=−vmax scales
quadratically with the fibre length (see Appendix A) we
calculate, however, τv=−vmax = 3.6 · 10−2 s in the bigger
muscle with a tenfold fibre length. In 15 cm fibres the
estimated propagation time of 0.15 m/(4 (m/s)) = 3.8·10−2 s
from one end to the other would, thus, already slightly
exceed τv=−vmax . Accordingly, when thinking of the muscle
response to a twitch as a response to an internal step in
force, the propagation velocity, rather than inertia effects,
may in fact limit the twitch time for a rise in force up
to about 7 cm fibre length (assumed the only end-plate is
located in the middle of the fibre). Yet, even in shorter fibres
it may be that inertia, rather than excitation propagation,
could limit twitch response times because τv=−vmax increases
linearly with muscle stress (see (A.13)), and twitch stress
should be clearly lower than maximum stress during a
fused tetanus. Additionally, any twitch time limitation by
excitation propagation would be brought nearer to inertia
limitation if a couple of end-plates were distributed along
a fibre. All in all, excitation propagation contributing to
the electromechanical delay restricts response times when
a rapid rise to a higher force level, that is, to an increased
activity is required [39]. In contrast, inertia effects, rather
than excitation propagation, should be a time limiting factor
in physiological loading situations when rapid changes in

external forces occur at some given activity level at which
Ca2+ is sufficiently available anyway along the whole fibre.

5. Conclusions
We expect that a significant progress in the time resolution
of muscle experiments and their sensitivity with respect to
measured mechanical variables and heat should allow to
verify the predictions made by such models of the contractile
muscular machinery that include the muscle mass distri-
bution. The vast majority of current models has neglected
muscle inertia and is, thus, not appropriate to understand
high-frequency oscillations that have already been seen
during some experiments [21, 56, 59, 60, 68, 70–74], let alone
even potentially higher frequencies of muscle internal mass
repositioning [24–26, 31]. The time scales, on which highly
dynamic responses occur when muscle fibre contractions
are disturbed by rapid (ideally infinitely steep) force steps,
are very likely not to be explainable without muscle inertia.
Such responses are eventually expected to depend on three
basic mechanical properties: elasticity, viscosity or damping
(leading to a release in heat), and inertia. In the model as
presented here, we neglected explicit modelling of elasticity
(and, therefore, oscillations), but we rather concentrated on
the prediction of the time scale on which (exponentially
damped) decays of disturbances would occur in case just
the well-known hyperbolic Hill relation between force and
velocity of active muscle fibres was present. Of course, these
time scales would be expected to be also depending on fibre
internal elasticity. This is even more the case, because the
Hill relation itself has been predicted to possibly emerge
from serial (visco-)elasticity that interacts with damping
properties [65–67]. Therefore, to explain the superposition
of (i) time constants for (exponentially damped) decays
of disturbances, (ii) oscillations from the interaction of
elasticity and muscle plus external inertia, and (iii) current
heat production, thus, to understand muscle design by
examining its mechanical and thermodynamical coupling
with the environment, more focus on muscle inertia as part
of muscle models seems to be indicated. In big muscles,
even the asymptotic performance when approaching high
velocities at low loads might depend on muscle inertia.

Appendix

A. Analytic Solution for a Simplified
Acceleration Scenario after a Force Step

To provide a check for correctness of our numerical results,
we provide an analytic solution of (2), that is, for the
equation of motion of the muscle model’s centre of mass
(coordinate: xCOM). It describes the corresponding accelera-
tion scenario following a force step, in which the complete
muscle mass M, located at xCOM, is driven by a Hill-type
force element (CE) of length l fixed to it (and to the world
somewhere at x < xCOM), which produces the contractile
force

Flin(v) = F0 +
F0 + A

B
· v, (A.1)



10 Computational and Mathematical Methods in Medicine

depending on contraction velocity v = l̇ = ẋCOM (negative
for concentric contraction). The symbols A = Arel · F0

(asymptote), B = Brel · lopt (asymptote), and F0 (current
isometric force) are the parameters (all positive) of the
nonlinear (hyperbolic) Hill relation F(v) = (B · F0 + A · v)/
(B − v) (see also (A.7) below). The symbol lopt is the
optimal value of the CE length l on which F0 depends (as
on muscle activity q, compare Section 2: F0 = F0(l, q) =
FCE,isom,i(lCE,i, qi) for the muscle represented by just one CE
with i = IM = 1). For Arel and Brel definitions we also refer to
Section 2, for their modelling and use see, for example, [21].

Note that we start our analysis with considering just
the linearisation Flin(v) of F(v) around the isometric point
v = 0,F(v = 0) = F0 as represented by the term in
parentheses on the right hand side of (A.1). The simplified
(linearised) force-velocity relation of an active muscle after
(A.1) transforms (2) into the linear inhomogeneous differ-
ential equation:

v̇ = −Flin(v)
M

= − F0

M
− F0 + A

M · B · v. (A.2)

The negative sign in −Flin(v) is due to making force and
velocity (and acceleration) directions consistent to each
other: v̇(v = 0) = −F0/M < 0 and v̇(v = −(B·F0)/(F0+A)) =
0. The general solution v(t) = vhom(t) + vinhom(t) of (A.2) is
the sum of the solution of the corresponding homogeneous
equation (neglecting −F0/M in (A.2))

vhom(t) = e−γ·t, (A.3)

with the exponent

γ = F0 + A

M · B , (A.4)

that is, the slope of Flin(v) (the damping coefficient D =
∂F/∂v = (F0 + A)/B; see (A.1)) divided by the mass M and
the particular solution

vinhom(t) = C0 + C1 · e−γ·t . (A.5)

Requiring (A.5) to fulfil (A.2) means C0 = −(1/γ) · (F0/M),
and requiring the specific initial condition v(t = 0) = 0 fixes
C1 = −1− C0. Thus, after all we find

v(t) = vhom(t) + vinhom(t) = 1
γ
· F0

M
· (e−γ·t − 1

)
. (A.6)

As a response to a force step (which is from F0 to zero
in our simulation, starting with v = 0), the linearisation
Flin(v) (A.1) of the hyperbolic Hill relation F(v) at v = 0
would predict that the velocity of the muscle’s centre of mass
approaches its limit value vend = vend,v=0 = limt→∞(v(t)) =
−(F0/(F0 + A)) · B = −B/(1 + Arel) exponentially with the
typical time constant τ = 1/γ. Now, imagine to substitute
the local linearisation of the complete nonlinear (hyperbolic)
Hill relation

F(v) = A · vmax + v

B − v
, (A.7)

which fulfils exactly (compare (A.1))

F(v) = ∂F(v)
∂v

(B − v)− A, (A.8)

instead of Flin(v) at any velocity value v into (A.2). The
absolute value of the limit velocity vend would then simply
increase up to vend,v=−vmax = −vmax = −(F0/A) · B = −B/Arel

with decreasing after-step force Fafter: vend = v(F = Fafter)
where v(F) is the inverse function of F(v). The exponential
response would not change in principle, but the typical
period τ = 1/γ would be modified numerically. Equations
(A.4) and (A.8) tell us that

γ = 1
M
· ∂F
∂v (A.9)

is the (current) slope ∂F/∂v (= (F0 + A)/B at v = 0) of
the hyperbolic force-velocity relation F(v), divided by the
mass M. The slope changes from ∂F/∂v = (F0/vmax) · ((1 +
Arel)/Arel) at v = 0 to ∂F/∂v = (F0/vmax) · (Arel/(1 + Arel)) at
v = −vmax, thus, both the slope ∂F/∂v and γ decrease by the
same factor

rslope =
(

Arel

1 + Arel

)2

(A.10)

from v = 0 to v = −vmax.
Expressing (A.4) in terms of the normalised Hill param-

eters Arel = A/F0, Brel = B/lopt provides τv around v = 0,
that is, the time constant for an exponential decay from the
isometric force F0 to a new force value F = Fafter < F0 still
nearby F0:

τv=0 = 1
γv=0

= M · Brel · lopt

F0 + Arel · F0

= M · lopt

F0
· Brel

1 + Arel

= M · lopt

F0
· Brel

Arel
· Arel

1 + Arel
.

(A.11)

Choosing F0 = Fmax (fully activated muscle at optimal
length) and the specific muscle parameter values for our
muscle(s) (Section 2: Arel = 0.1, Brel = 1.0 (1/s) [21]) we
find τv=0 = 3.0 · 10−6 s. For a vanishing after-step force
F = Fafter = 0 (as in our simulations in this study), the muscle
velocity v approaches −vmax where the typical period τv is
accordingly increased by the factor (1/rslope) ≈ 100 ((A.10)
with Arel = 0.1):

τv=−vmax =
τv=0

rslope
= M · lopt

F0
· Brel

Arel
· 1 + Arel

Arel
. (A.12)

For our muscle example with F0 = Fmax we, thus, find
τv=−vmax = 3.6 · 10−4 s. The equality Brel/Arel = vmax/lopt may
be helpful as more illustrative.

Because the mass M is the product of density ρ (≈
1 g/cm3) and volume V , the latter scales approximately with
the optimal length lopt and with the muscle cross-sectional



Computational and Mathematical Methods in Medicine 11

area S of the active muscle fibre assembly (M = ρ · V ≈
ρ · cV · S · lopt), and because F0 can be formulated as scaling
with Fmax (see Section 2), the latter being approximately
proportional to the product of S and the maximum stress
σmax (≈ 20 N/cm2 across muscles: F0 = cF · Fmax ≈ cF ·
σmax · S), we find ((A.11) and (A.12)) that τv should scale
quadratically with lopt:

M · lopt

F0
≈ cV · ρ

cF · σmax
· l2opt. (A.13)

Accordingly, we would predict that the exponential time
constant for a muscle contracting against its own inertia after
externally determined force steps does first and foremost
depend on its fibre length rather than on its own mass. If the
muscle contracts against an external mass M (usually clearly
higher than its own) and if there is no further force like, for
example, gravity the more general equation (A.12) always
applies because the mass is accelerated exponentially until
F(v) has vanished at v = −vmax. If there is a further force 0 ≤
Fext ≤ F0 counteracting F(v), the dynamics is described by an
accordingly modified differential equation. Then, (A.11) and
(A.12) may still be helpful for roughly estimating (the order
of magnitude of) the time that passes by until steady state
velocity vmax ≤ v ≤ 0 at F(v) = Fext is reached, namely, some
value corresponding to the F = Fafter = Fext case in between
the extremes of (A.11) and (A.12).
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