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Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action
kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10�17 liters) that local
signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs
or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium
signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated
subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small
subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace
calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding
altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete
stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast.
This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels
introduced by Yue and coworkers.

1. Introduction

Concentration changes of physiological ions and other
chemical species (such as kinases, phosphatases, and various
modulators of cellular activity) influence and regulate cel-
lular responses [1]. These dynamics are often modeled
using systems of deterministic ordinary differential equa-
tions (ODEs) that assume chemical species concentrations
are nonnegative real-valued quantities (i.e., the state-space
is continuous). In such descriptions, the rate of change of
the concentration of each species is usually specified under
the assumption of mass-action kinetics, that is, the rate of
a reaction is proportional to the product of reactant con-
centrations. However, under physiological conditions the
concentrations of chemical species are often quite low and,

in some cases, restricted subspaces in which these species
are contained are very small. For example, L-type calcium
channels in cardiac myocytes are typically clustered in small
“diadic subspaces” that have a volume of �10�17 liters,
with approximately 20,000 diadic subspaces per cell [2, 3].
Resting calcium concentration in the diad is typically 0.1
micromolar, a value that corresponds to an average of 0.6
calcium ions per subspace [4]. Because only whole numbers
of calcium ions can be present in a subspace at any given
time, the question arises: is it appropriate to use deterministic
ODEs to model subspace calcium dynamics?

Previous studies have compared discrete-state (stochas-
tic) and continuous-state (deterministic) models in the
analysis of biological and chemical systems, including models
of biochemical networks, enzyme kinetics, and population
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dynamics [5–21]. These studies have shown that in the
“large-system limit” (i.e., a large “copy number” of each
chemical species), the solution of discrete and continuous
models are equivalent [12]. However, for a small system, con-
centration values obtained from a continuous deterministic
model (an approximation that neglects concentration fluc-
tuations) can significantly deviate from the expected value
obtained from the discrete stochastic model. When chemical
reactions are higher than first order, there is no guarantee
that the deterministic mass-action formulation will agree
with, or be a good approximation to, the expected value
of species concentrations obtained from a chemical master
equation that accounts for discrete system states and con-
centration fluctuations [5]. An excellent study by Goutsias
discusses the relationship between the discrete and continu-
ous formulations for general biochemical systems [22] (for
theoretical context, see [23]).

Because of recent interest in the physiological relevance
of spatially localized control of voltage- and calcium-
regulated calcium influx and sarcoplasmic reticulum calcium
release in cardiac myocytes [24–26], we sought to determine
precisely when the conventional deterministic formulation
of these processes are a valid approximation. When is it
appropriate to model the dynamics of subspace calcium
using deterministic ODEs? When does one require a stochas-
tic description that accounts for the fundamentally discrete
nature of calcium-regulated calcium influx?

To answer this question, we constructed and analyzed
a minimal Markov model of a calcium-regulated calcium
channel and associated subspace. We compared the expected
steady-state subspace calcium concentration in this stochas-
tic model (a result that accounts for the small subspace
volume) with the result obtained using the corresponding
deterministic ODE model (an approximation that assumes
large system size). Section 2.1 introduces our model for-
mulation and shows the agreement between deterministic
and stochastic descriptions when subspace calcium does not
regulate calcium influx. However, when calcium binding
regulates channel activity (through either activation or
inactivation), the deterministic and stochastic descriptions
often disagree (Sections 2.2 and 2.3). In general, the effect
of concentration fluctuations in a spatially restricted calcium
domain with a calcium-regulated calcium influx pathway
(e.g., a stochastically gating L-type calcium channel) is
only well-approximated by the deterministic description
when the subspace volume is sufficiently (unphysiologically)
large or the kinetics of calcium binding to the calcium-
regulated channel are sufficiently fast. This principle was
also demonstrated using a physiologically realistic model of
calmodulin regulation of L-type calcium channels produced
by Yue and coworkers (Section 2.4).

2. Methods and Results

2.1. Calcium Influx and Subspace Calcium Concentration
Fluctuations. We begin with the case of a single calcium
channel that is associated with a spatially restricted sub-
space but not regulated by subspace calcium (Figure 1 and
Section 2.1). The description of the model in the absence
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Figure 1: Diagram of the components and fluxes in a minimal sub-
space model. Calcium influx α (in units of μM/s) leads to increased
calcium concentration c (units of μM) in a diadic subspace of
volume v (liters). Subspace calcium moves to the bulk passively
via diffusion at rate β (given by 0.01 ms�1). Bulk calcium at the
concentration c� � 0.1μM returns to the subspace at the same rate.
The equilibration time of subspace calcium is τ � 1�β � 100 ms
[27].

of calcium regulation simplifies the initial presentation of
the model and allows us to illustrate general properties of
subspace calcium concentration fluctuations. Subsequently,
we present a more complete model formulation that includes
calcium-regulated calcium influx (Figure 3 and Section 2.2).
For simplicity, we neglect the presence of endogenous cal-
cium binding proteins and assume a constant flux of calcium,
denoted by α, into the subspace. The subspace calcium
concentration is passively coupled with relaxation rate β �

0.01 ms�1 to the constant bulk concentration of c� � 0.1μM
[27]. These assumptions lead to the following deterministic
model of subspace calcium dynamics:

dc

dt
� α � β�c � c��, (1)

where the influx rate α has units of concentration per time
(e.g., μM/ms) and the calcium concentration c is a continu-
ous real-valued quantity.

2.1.1. Stochastic Model. In the corresponding stochastic
description of calcium influx into a diadic subspace, the state
variable is the number of calcium ions in the subspace (a dis-
crete quantity that we will denote by �C � �0, 1, . . . ,��, where
the caret (hat) indicates that �C is a dimensionless number of
molecules rather than concentration, and the capitalization
indicates a random variable. The fluctuating subspace cal-
cium concentration (also a random variable, denoted by C)
depends on both �C and the subspace volume (v), that is,

C �

�C
v
. (2)

Using this relationship, it is straightforward to derive the
transition rates between the discrete states of the stochastic
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model that are consistent with (1). The resulting state-transi-
tion diagram for the stochastic model is

0
α
�
β

1
α
�
2β

2�n � 1
α
�
nβ

n
α
�

�n�1�β
n � 1�, (3)

where the index that labels states, n � �0, 1, . . . ,��, ranges
over all possible numbers of calcium ions in the subspace and
the constant α is proportional to the subspace volume, that
is,

α � v�α � βc��. (4)

2.1.2. Master Equation and Steady-State Probability Distribu-
tion. If we write pn�t� � Pr��C�t� � n�, the equations for the
dynamics of the probability of each state in (3), that is, the
chemical master equation for the number of calcium ions in
the subspace, is given by

dp0

dt
� �αp0 � βp1,

dpn
dt

� ��α � nβ�pn � αpn�1 � �n � 1�βpn�1, n � 1, 2, . . . .

(5)

Note that the correspondence between the rate constants
in the deterministic (1) and stochastic (3)–(5) models is
established by substituting c � �c�v in (1) to find the rate of
change of the number of calcium ions in the deterministic
model, that is,

d�c
dt

� α � β�c. (6)

This equation indicates that �c increases at rate α (due to
influx and diffusion from the bulk), a value that is inde-
pendent of the number of calcium ions in the subspace. At
the same time, �c decreases at rate β�c, a value that is pro-
portional to �c because each ion has an opportunity to diffuse
into the bulk. Consequently, the transition rates leading out
of state �C � n in the stochastic model are given by α for the�C � n to n � 1 transitions and βn for the �C � n to n � 1
transitions.

To find the steady-state probability distribution of �C, we
set the left hand sides of (5) to zero to obtain

nβpn � αpn�1, n � 1, 2, . . . (7)

from which it follows that �pn� is a Poisson distribution with
parameter λ � α�β, that is,

pn � e�λ
λn

n!
. (8)

2.1.3. Analysis of Concentration Fluctuations. To see how the
subspace calcium concentration fluctuations predicted by
this minimal model depend on the parameters α, β, c�, and
v, recall that the mean and variance of the Poisson distribu-
tion (8) is equal to the parameter λ and, consequently, the

steady-state expected number of calcium ions in the subspace
is given by

E��C� � �

�
n�0

npn � λ �
α

β
� v	α

β
� c�
 � vc�, (9)

where the last equality defines c� as follows:

c� �
α

β
� c�. (10)

Using (9) and the fact that C � �C�v implies E�C� � E��C�� v,
we can identify c� as the expected subspace calcium concen-
tration:

E�C� � c�. (11)

Similarly, the steady-state variance of the number of calcium
ions in the subspace is

Var��C� � �

�
n�0

�n � E�C��2
pn � vc�, (12)

and Var�C� � Var��C��v2 implies that the variance of the sub-
space calcium concentration is

Var�C� � c�
v
. (13)

Note that the coefficient of variation of �C and C are identical
and inversely proportional to subspace volume, that is,

CV��C� � �Var��C��1�2�E��C� � 1�vc� and, similarly,

CV�C� �
�

Var�C�
E�C� �

�
Var��C��v2

E��C��v �
1
vc�

. (14)

This is a well-known principle from statistical physics: fluctu-
ation amplitudes scale with the reciprocal of the square root
of system size (the subspace volume v).

Figure 2 illustrates fluctuation amplitudes in the minimal
subspace model by plotting the steady-state probability dis-
tribution of �C and C (left and right columns, resp.). In the
first row, using subspace volume of v � v0 � 10�17 liters
and influx rate of α � 0.049μM/ms, the expected calcium
concentration is E�C� � c� � α�β � c� � 5μM, and the
expected number of subspace calcium ions is E��C� � v0c� �

30. In both cases the coefficient of variation is 1�30 � 0.18
(the spread of the distributions as illustrated is due to the
different x-axis scales). The following rows of Figure 2 show
that in a subspace three or ten times larger (v � 3v0 or
10v0), the coefficient of variation drops to 0.11 and 0.058,
respectively, when the calcium influx rate is scaled to result
in the same expected calcium concentration (c� fixed, see
(14)). As might be expected, concentration fluctuations in
the stochastic model are more pronounced for small volumes
and become negligible for large volumes, because CV�C� �
1�vc� � 0 as v � � for fixed c�.

Most importantly, the deterministic and stochastic de-
scriptions of this minimal subspace model agree in the
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Figure 2: Steady-state probability distribution of the number of calcium ions (�C, left column) and subspace calcium concentration (C, right
column) for subspace volume of v0 � 10�17 liters and subspaces that are 3 and 10 times larger. Parameters: α � 0.049μM/ms, β � 0.01 ms�1,
c� � 0.1μM; the steady-state expected subspace calcium concentration is E�C� � c� � 5μM.

following sense: the expected value of the fluctuating calcium
concentration in the stochastic model E�C� � c� � α�β � c�
is equal to the steady-state of the deterministic ODE that
neglects concentration fluctuations (found by setting the left
hand side of (1) to zero). Readers familiar with fluctuations
in biochemical models will understand that this agreement is
a consequence of the fact that the minimal subspace model
involves three elementary reactions, all of which are zeroth
or first order (see arrows in Figure 1).

2.1.4. Moment Calculation. The numerical results presented
above can be obtained analytically by considering the
dynamics of the moments of the number of calcium ions in
the subspace, defined as

μq �
�

�
n�0

nq pn. (15)

By conservation of probability, the zeroth moment μ0 � 1
and the first moment is the expected number of calcium ions
in the subspace (9),

μ1 � E��C�. (16)

The second moment μ2 is related to the variance of the
number of calcium ions via

Var��C� � μ2 � �μ1�2
. (17)

By differentiating (15) with respect to time and substituting
for the time derivatives using the master equation (5), it can

be shown that the zeroth moment is constant (dμ0�dt � 0)
and, furthermore,

dμ1

dt
� α � βμ1,

dμ2

dt
� α � �2α � β�μ1 � 2βμ2,

(18)

where we have used μ0 � 1. Setting the left hand sides of these
equations to zero, we see that steady-state first and second
moment are μ1 � α�β and μ2 � α�β � �α�β�2, consistent with
(11) and (17).

2.2. Stochastic Subspace Model with Calcium Regulation.
This section augments the subspace model presented above
to include calcium regulation of a calcium channel (see
Figure 3). We assume that calcium binding instantaneously
modifies the conductance of the channel, that is, the rate
of calcium influx into the domain is α0 when the channel
is calcium-free and α1 when the channel is calcium-bound.
We further assume the channel has two binding sites for
calcium and, for simplicity, approximate rapid sequential
binding of calcium ions with instantaneous binding. Thus,
the transitions between the two distinct states of the subspace
(the so-called “stochastic functional unit” or “calcium release
unit”) occur at rates k�c2 and k�, respectively, (Figure 3,
curved arrows). Note that the rate constant k� has units
of ms�1, k� has units of μM�2 ms�1, and the dissociation
constant for calcium binding, denoted by κ, has units of μM
and is given by κ2

� k��k�.
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Figure 3: Diagram of the components and fluxes in a subspace model that includes calcium-regulated calcium influx. A single calcium
channel (with two calcium binding sites) is associated with a subspace of volume v. The calcium influx rate is α0 and α1 when calcium
is unbound and bound, respectively, and the transition rates between these states are k�c2 and k�, where c is the subspace calcium
concentration. Subspace calcium is passively coupled at rate β to the bulk cytosol with constant concentration c�.

2.2.1. Stochastic Model. Let us denote the states of the
stochastic system by �n, 0� and �n, 1�, where n � �0, 1,
. . . ,�� and the second element of the ordered pairs, either 0
or 1, indicates calcium-free and bound channel, respectively.

With a little thought we can sketch the following state-
transition diagram for the stochastic subspace model with
calcium influx,

�0, 0� α0
�
β

�1, 0� α0
�
2β

�2, 0� α0
�
3β

�3, 0� α0
�
4β

�4, 0� �

2k
�

� k� 6k
�

� k� 12k
�

� k�

�0, 1� α1
�
β

�1, 1� α1
�
2β

�2, 1� �

, (19)

where k
�

� k��v2. The rate of calcium binding to the channel
in the stochastic model is inversely proportional to the square
of the volume, because of the concentration dependence of
the association reaction (k�c2

� k��c2�v2). The downward
transitions between states �n, 0� and �n � 2, 1� include the
combinatorial coefficient, n�n � 1�, double the number of
ways that two indistinguishable calcium ions can be chosen
from the n ions in the subspace. This factor of two is

required so that the microscopic propensity k
�

agrees with
the macroscopic rate k�c2 for large n and v with c � n�v fixed,
that is,

n�n � 1�k� � n�n � 1�k�
v2

� k��c2
�

c

v
�, (20)

an expression that approaches k�c2 as v � � [28].

2.2.2. Master Equation. Let us write p0
n�t� to indicate the

probability that at time t the channel is calcium-free and�C � n. Similarly, p1
n�t� is the probability that �C�t� � n

and the channel is calcium bound. Reading off the transition
rates from the state-transition diagram (19), we write the

following master equation for the calcium-regulated channel
and subspace:

dp0
n

dt
� � �α0 � nβ � n�n � 1�k��p0

n

� α0p
0
n�1 � �n � 1�βp0

n�1 � k
�p1

n�2,

dp1
n

dt
� � �α1 � nβ � k

��p1
n

� α1p
1
n�1 � �n � 1�βp1

n�1 � �n � 2��n � 1�k�p0
n�2.

(21)

Similar to the approach described in the previous section, we
define the moments of the number of calcium ions in the
subspace jointly distributed with the state of the channel, as
follows:

μ0�1
q �

�

�
n�0

nq p0�1
n , (22)

where the superscript 0�1 indicates either index occurring
on both the left and right hand sides of the equality. Note
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that the zeroth moments sum to unity by conservation of
probability (μ0

0 � μ1
0 � 1). The expected number of calcium

ions in the subspace conditioned on the channel being calcium
free or bound, respectively, is given by

E0�1��C� � ��n�0 np
0�1
n

��n�0 p
0�1
n

�
μ

0�1
1

μ
0�1
0

. (23)

Similarly the second moments μ0�1
2 are related to the condi-

tional variances via

Var0�1��C� � μ
0�1
2

μ
0�1
0

�

��μ
0�1
1

μ
0�1
0

��
2

. (24)

2.2.3. Moment Calculation. By differentiating (22) with
respect to time and substituting for the time derivatives using
(21), it can be shown that the time-derivatives of the zeroth-
moments, μ0

0 and μ1
0—that is, the probability of the channel

being in the calcium free or bound state—are given by

dμ0
0

dt
� �k

�

μ0
2 � k

�

μ0
1 � k

�μ1
0, (25)

dμ1
0

dt
� k

�

μ0
2 � k

�

μ0
1 � k

�μ1
0, (26)

where we note that dμ0
0�dt � dμ1

0�dt � 0 and μ0
0 � μ1

0 � 1. In
the same way, the equations for the first moments, μ0

1 and μ1
1,

are found to be

dμ0
1

dt
� α0μ

0
0 � βμ

0
1 � k

�

μ0
3 � k

�

μ0
2 � k

�μ1
1 � 2k�μ1

0,

dμ1
1

dt
� α1μ

1
0 � βμ

1
1 � k

�

μ0
3 � 3k

�

μ0
2 � 2k

�

μ0
1 � k

�μ1
1.

(27)

Setting the left hand side of (25) to zero, we find that the
steady-state probability of a calcium-bound channel is

μ1
0 �

μ0
2 � μ

0
1

κ2v2
�

E0�C2� � E0�C��v
κ2
� E0�C2� � E0�C��v , (28)

where in the second equality we have used μ0
2 � μ0

0E0��C2� �
μ0

0v
2E0�C2�.
Note that as the volume increases (v � �), E0�C��v

becomes negligible compared to E0�C2�, while E0�C2� ��E0�C��2
as the conditional variance goes to zero (Var0�C� �

0). Thus, in the large system limit, the probability that the
channel is in the calcium-bound state is given by

μ1
0 �

�E0�C��2

κ2
� �E0�C��2 . (29)

In the case of a calcium-activated channel, μ1
0 is the open

probability.

2.2.4. Analysis of Concentration Fluctuations. The moment
analysis in the previous section suggests that the expected
calcium concentration in the subspace given by

E�C� � μ0
0E0�C� � μ1

0E1�C� (30)

and the probability that a calcium-activated channel is open,
popen � μ1

0, may depend on the subspace volume. In order
to analyze the effect of small system size and concentration
fluctuations at steady-state, we integrated (21) and deter-

mined the probability distributions �p0�1
n � for various model

parameters.
Figures 4(a) and 4(b) show the probability distribution

for v � v0 and 8v0 using a representative set of parameters
(see caption). In these calculations, the channel is closed
when calcium-free and open when calcium-bound, that is,

α0 � vβc� � vβc� � v�α � βc� � � α1. (31)

For this reason, Figures 4(a) and 4(b) show a conditional
expectation for the calcium concentration (vertical dotted
lines) that is greater when the channel is calcium bound
(E1�C� � E0�C�). Note that the eight-fold increase in system
size leads to a significant increase in the channel open
probability, that is, popen � μ1

0 = 0.23 and 0.78 for v �

v0 and 8v0, respectively. Thus, the open probability of the
channel is significantly influenced by the subspace volume,
in spite of the fact that the calcium influx rate is scaled
so that in the absence of calcium-regulation there is no
effect of volume (α constant, as in Section 2.1). Comparison
of Figures 4(a) and 4(b) also shows a qualitative change
in the probability distribution of the subspace calcium
concentration (unimodal when v � v0, bimodal when v �

8v0).
Figure 4(c) shows the expected calcium concentration

E�C� (30) and open probability (popen � μ1
0) for the

calcium-activated channel as a function of subspace volume
v and different rate constants for calcium binding k� (fixed
dissociation constant κ). Both E�C� and popen increase with
subspace volume v, that is, the restricted volume of a
physiological subspace leads to an open probability and
expected calcium concentration that is less than predicted in
the corresponding (approximate) continuous description.

Both the open probability and expected calcium concen-
tration asymptotically approach values in a range that are
easily precalculated. For example, E�C� and popen must be
greater than the values obtained by assuming channel gating
is extremely slow, in which case E�C� � c� and popen �

c2
�
��κ2

� c2
�
�, because the transition from the calcium-

free to -bound channel usually occurs with a subspace
that is equilibrated with bulk calcium. In addition, E�C�
and popen are always less than the values obtained under
the assumption of rapid channel binding, values given by
simultaneous solution of popen � c2��κ2

� c2� and c �

popenα�β�c�. These fast and slow system limits are indicated
in Figure 4(c) by red and blue horizontal lines, respectively.
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Figure 4: Subspace volume-dependence of calcium fluctuations
and open probability of a calcium-activated channel. Steady-state
probability distribution for v = v0 (a) and 8v0 (b) for the calcium-
activated channel (κ � 2μM, k� � 0.05μM�2 ms�1) [29, 30]. (c)
Steady-state E�C� and popen � μ1

0 for integer multiples of the unitary
volume v0 and different rate constants for calcium binding k� (0.005
to 0.15 μM�2 ms�1) with κ fixed.

In order to further characterize the effect of subspace vol-
ume on the calcium-regulated channel and subspace dynam-
ics, we defined the small system deviation Δ as

Δ �
E�C� � E�C�

�

E�C�
�

, (32)

where E�C� is calculated using a system volume of v � v0 and
E�C�

�
is the same quantity calculated in the large system

size limit (v � �, numerically estimated using v � 10v0).
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Figure 5: Percentage small system deviation (Δ, (32)) as a function
of unitary subspace volume v0 and influx parameter c� for a single
calcium-activated channel (κ � 2μM, k� � 0.005μM�2 ms�1) and
calcium-inactivated channel (κ � 0.63μM, k� � 0.05μM�2 ms�1).

Figure 5 shows the small system deviation as a function of
unitary subspace volume v0 and influx parameter c� for
a calcium-activated channel. In all cases, Δ was negative,
meaning that E�C� for v � v0 was suppressed below the large
system size limit and increased with volume (cf. Figure 4(c)).
For small c�, Δ was near zero. For intermediate values of c�
(5–10 μM), the suppression was quite large (Δ � �60%). As
v0 increased, Δ becomes less negative and approaches zero.
In general, as c� increased above this range, the suppression
ultimately becomes negligible.

For comparison, Figure 5(b) shows the small system
deviation for a calcium-inactivated channel. In general, the
magnitude of Δ for the calcium-inactivated channel was
smaller than the calcium-activated channel. For small c� (1–
3 μM), the magnitude of Δ increased with c�, while above
this range Δ was essentially independent of c�. As with the
calcium-activated channel, the magnitude of Δ decreased
and approached zero as v0 increased.

2.3. Calcium Regulation of Multiple Channels. The previous
section analyzed the effect of subspace volume when the
influx pathway involves calcium regulation of a single chan-
nel. In this section, we assume that the total number of
channels increases with subspace volume (see Figure 6). As
before, we assume that calcium binding instantaneously



8 Computational and Mathematical Methods in Medicine

β
c∞c

Unit volume

Single channel

Multiple channels

α

β
c∞c

v
α α

β
c∞c

β
c∞c

2α

2v

2v
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levels, α0 and α1, depending on whether calcium is free or bound.
In the alternative scaling, the number of channels increases in
proportion to the volume v, and when there are many channels the
calcium influx rate may take many values between α0 and α1.

modifies the calcium channel conductance, that is, the rate
of calcium influx into the domain is determined by α0 when
all channels are calcium-free and α1 when all channels are
calcium-bound.

2.3.1. Deterministic Model. Assuming as before that two free
calcium ions C bind to channel B to form the complex C2B,
we can write the following kinetic scheme:

2C � B
k�

�
k�

C2B. (33)

The deterministic ODE system that applies in the case of a
large subspace volume is

dc

dt
� α0

b

bt
� α1

bt � b

bt
� β�c � c�� � k�c2b � k��bt � b�,

db

dt
� �k�c2b � k��bt � b�,

(34)

where we have written c � �C� and b � �B�. Because the total
(calcium-free plus-bound) concentration of channels, bt ��B� � �C2B�, is a constant determined by initial conditions,
we have eliminated the equation for �C2B�. At steady-state
the channels will be in equilibrium with subspace calcium,
that is, b�bt � κ2�κ2

� c2.Thus, in the case of a calcium-
activated channel �α0 � 0,α1 � 0�, the steady-state calcium
concentration satisfies

0 � α1
c2

κ2
� c2

� β�c � c��, (35)

while in the case of a calcium-inactivated channel (α0 � 0,
α1 � 0),

0 � α0
κ2

κ2
� c2

� β�c � c��. (36)

Figure 7 shows bifurcation diagrams for the steady-state
calcium concentration in both cases. For the calcium-
activated channel there is a range of κ that leads to bistability
(Figure 7(a)), while no bistable regime exists for a calcium-
inactivated channel (Figure 7(b)).

2.3.2. Stochastic Model. Following the notation developed in
the previous section, we write pmn � P��C � n, �C2B � m, t� �

P��C � n,�B � �bt � m� for n � �0, 1, . . . ,�� and m ��0, 1, . . . ,�bt� and, where �bt is the total number of channels
(for integer �, �bt � � when v � �v0). The state-transition
diagram for the Markov process (not shown) is analogous
to (19) but with �bt � 1 rows as opposed to two. The master
equation for the dynamics of the calcium channel and
subspace calcium concentration is

dpmn
dt

� � �αm � nβ �mk� � n�n � 1���bt �m�k��pmn
� αmp

m
n�1 � �n � 1�βpmn�1

� �m � 1�k�pm�1
n�2

� �n � 2��n � 1���bt �m � 1�k�pm�1
n�2 ,

(37)

where αm � v�αm � βc�� and

αm � α0

�bt �m�bt � α1
m�bt . (38)

In (38), it is understood that terms in the master equation
involving negative indices (i.e., n or m � 0) evaluate to zero.

2.3.3. Concentration Fluctuations. Figure 8(A) shows the
steady-state probability distribution for v � v0, 2v0 and 4v0

for a calcium-activated channel with dissociation constant
chosen so that the deterministic system is monostable (κ �

0.45μM). For v � v0, there is one channel and two
channel states (closed and open). For the closed channel, the
distribution of calcium concentration is Poisson-like with
conditional mean near c�, while for the open channel, the
conditional mean is near c�. For v � 2v0 and 4v0, there are
two or four channels and thus three or five system states,
each corresponding to a particular number of free versus
bound channels (38). While the conditional expectation of
the calcium concentration is always between c� and c�, these
distributions deviate from Poisson.

Figure 8(B)a shows E�C� and popen for subspace volumes
v given by different discrete multiples of the unitary volume
v0. Using parameters that lead to a monostable deterministic
ODE system, we find, similar to the case of the single
channel (Figure 4), a significant deviation between the



Computational and Mathematical Methods in Medicine 9

0

5

c
(μ

M
)

10−1 100 101

κ (μM)

Calcium-activated channel

(a)

0

5

10−1 100 101

κ (μM)

Calcium-inactivated channel

c
(μ

M
)

(b)

Figure 7: Bifurcation diagram showing the steady-state calcium
concentration c as a function of dissociation constant κ in the
deterministic ODE model for a subspace containing multiple
calcium-activated (a) and calcium-inactivated (b) channels. Other
parameters as in Figure 2.

expected calcium concentration and open probability for
a small subspace as compared to the large system limit
(35). As expected, both E�C� and popen approached the
fast/large system limit as v increased. This also occurs for
fixed v with increasing k�, that is, the rate constant for
calcium binding. For fixed κ, smaller values of k� can
cause Δ to approach �100%, that is, the small volume
associated with a diadic subspace can almost completely
suppress the open probability of a calcium-activated channel.
When parameters are chosen so that the deterministic ODE
system is bistable, the dependence of E�C� and popen is
more complex (Figure 8(B)b). Interestingly, the small system
deviation in this case is often a biphasic function of system
volume.

Figure 9 shows analogous results for calcium-inactivated
calcium influx. As with the calcium-activated channel, E�C�
and popen were suppressed below the fast/large system limit
(Figure 9(B)). Δ is often negative, but became negligible as

k� increased. Similarly, as v increased, both E�C� and popen

approached the fast/large system limit.
Figure 10 summarizes the dependence of the small

system deviation (Δ, (32)) on the unitary subspace volume
(v0) and calcium influx parameter (c�) for the scaling
that involves multiple calcium-activated and -inactivated
channels. In all cases, Δ was negative, meaning that E�C� was
suppressed compared with the large system values predicted
by the deterministic ODE model. Up to 80% suppression
was observed for the calcium-activated channel, but for the
calcium-inactivated channel the maximum suppression was
20%. In both cases, the largest suppression (most negative
Δ) occurs when popen is small (i.e., small c� for the calcium-
activated channel and large c� for the calcium-inactivated
channel). In general, as the unitary volume v0 is increased,
there is less suppression compared to the large system size
limit.

2.4. The Effect of Domain Size in a Model of Calmodulin-
Mediated Channel Regulation. In the previous sections, we
demonstrated that the expected steady-state subspace con-
centration determined using a minimal model of a calcium-
activated or -inactivated channel was volume-dependent
and could greatly differ from the steady-state concentration
computed from deterministic ODEs. In this section, we show
similar results for a state-of-the-art model of calmodulin-
mediated calcium regulation.

Both the N-lobe and C-lobe of calmodulin have two
binding sites for calcium. Depending on the calcium channel
type (L, N, or P/Q), calcium binding to the C-lobe has been
shown to be responsible for either activation or inactivation
of the channel, while N-lobe binding appears to be primarily
responsible for channel inactivation [32]. Yue and colleagues
demonstrated that the C-lobe responds primarily to the local
subspace calcium concentration, while the N-lobe responds
to the global or bulk concentration [31]. Tadross et al.
developed a 4-state model for calmodulin regulation of the
calcium channel (see Figure 11(A)) that includes states for
the calmodulin regulator lobe (either the C-lobe or N-lobe)
bound to a preassociation site that does not alter channel
activity (state 1), unbound (state 2), bound to two calcium
ions (state 3), or bound to two calcium ions and an effector
site that does alter channel activity (state 4) [31]. Tadross et
al. demonstrated that depending on the model parameters, in
particular the ratio of the transition rates between states, the
calmodulin regulation was sensitive to either local or global
calcium levels.

Using this published model as a starting point, we
formulated the corresponding discrete Markov model. The
elementary reactions for calmodulin-mediated regulation of
the channel are

S1

γ�

�
δ�

S2
k�c2

�
k�

S3

γ�

�
δ�

S4, (39)

where states S1 and S2 are calcium-free, states S3 and S4

are calcium-bound, and state S4 determines the fraction of
channels activated (or inactivated) by calmodulin. When it
is assumed that a single calmodulin molecule is colocalized
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with the calcium channel (as in Section 2.2), the master
equation takes the following form:

dp1
n

dt
� � �α0 � nβ � γ

��p1
n

� α0p
1
n�1 � �n � 1�βp1

n�1 � δ
�p2

n,

dp2
n

dt
� � �α0 � nβ � δ

�
� n�n � 1�k��p2

n

� α0p
2
n�1 � �n � 1�βp2

n�1 � γ
�p1

n � k
�p3

n�2,

dp3
n

dt
� � �α0 � nβ � γ � k

��p3
n

� α0p
3
n�1 � �n � 1�βp3

n�1

� δ�p4
n � �n � 2��n � 1�k�p2

n�2,

dp4
n

dt
� � �α1 � nβ � δ

��p4
n

� α1p
4
n�1 � �n � 1�βp4

n�1 � γ
�p3

n,

(40)

where for a calmodulin-activated channel α0 and α1 are given
by (31).

Figure 11(B) shows the steady-state probability distri-
bution numerically calculated from these equations. Using
a parameter set referred to as “slow CaM,” Tadross et al.
showed that calmodulin was primarily sensitive to the local
subspace calcium level (representing the C-lobe) when cal-
cium binding to calmodulin was slow [31]. With “slow CaM”
parameters, we found that calmodulin bound to the effector
site (S4) had the greatest steady-state probability. Because the
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calmodulin binding was slow, each conditional distribution
had their respective largest peaks near the slow limit (c� for
states S1 and S2, c� for S3 and S4) (Figure 11(B)a). Using
an alternate parameter set referred to as “SQS,” Tadross et
al. showed that calmodulin was primarily sensitive to the
global calcium level (representing the N-lobe), when calcium
binding to calmodulin was fast. Similar to the slow CaM
case, state S4 had the greatest steady-state probability using
the SQS parameters. Due to the fast binding kinetics, the

conditional distributions were more similar than in the slow
CaM case (Figure 11(B)b). For both parameter sets, the
calcium concentration distribution for the low occupancy
states (S1 and S2) were bimodel, with peaks near c� and c�.

Figure 12 shows the small system size suppression Δ for
both slow CaM and SQS parameter sets assuming a single
calmodulin-regulated channel. As in our simplified model
(Figure 5), Δ was quite large in magnitude for some condi-
tions (up to 30% suppression). For the calmodulin-activated
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channel, the dependence of Δ on v0 and c� was similar to our
simplified model (cf. Figure 5(a)), decreasing in magnitude
and approaching 0 as v0 or c� increased.

The parameter space for the calmodulin-inactivated
channel differed somewhat from our simplified model
(Figure 5(b)). For both the slow CaM and SQS parame-
ters, Δ decreased as c� or v0 increased. Additionally, for
both the calmodulin-activated and -inactivated channels, Δ
had greater dependence on v0 for the SQS parameters, which
is consistent with calmodulin being more sensitive to the
bulk concentration (since increasing v0 greatly influences the
number of ions entering from the bulk).

We also calculated the small system deviation Δ for the
case of multiple calmodulin-regulated channels (Figure 13).
For the calmodulin-activated channel, results were similar
to our simplified model (Figure 10(a)), in particular Δ
approached 0 as both c� and v0 increased. The magnitude
of Δ was smaller for the SQS parameters compared with
the slow CaM parameters, consistent with faster kinetics
approaching the large system limit and calmodulin being less
sensitive to the local calcium concentration. The parameter
space for multiple calmodulin-inactivated channels also dif-
fered somewhat from our simplified model (Figure 10(b)).
In general, the magnitude of Δ decreased as c� increased.
However, in contrast with the parameter space using SQS
parameters, Δ was fairly insensitive to v0 using slow CaM
parameters, which is consistent with calmodulin being, in
this case, less sensitive to the bulk calcium concentration.

3. Discussion

We developed a minimal model of a calcium-regulated
channel in a small subspace and formulated a Markov model
in which each possible discrete state is represented. For small
subspace volumes, we found that the value predicted by a
continuous-state, deterministic ODE model often deviated

from the expected steady-state calcium concentration in
the discrete-state, stochastic model. We analyzed how this
deviation depends on channel binding kinetics, subspace
volume, and calcium influx rate. We demonstrated that the
deterministic description also deviated from the stochastic
model in a physiologically realistic model of calmodulin-
mediated calcium channel regulation.

3.1. Physiological Implications. Many studies have mod-
eled the influence of signaling proteins on intracellular
and transmembrane ion channel/receptor kinetics, such as
calcium/calmodulin-dependent kinase II phosphorylation
[33] or beta-adrenergic signaling [34] in cardiac myocytes
and glutamate receptor activation in neurons [35]. Many of
these signaling interactions occur in small volumes (e.g., the
cardiac dyad [4] and neuronal synapse [36]) and include
binding interactions with species present in low concentra-
tion (calcium and glutamate, resp.). In cardiac myocytes, the
local calcium concentration can greatly influence the whole
cell response through calcium-induced calcium release,
the sodium-calcium exchanger current (which can trigger
activation of an action potential), and a host of intracellular
signaling pathways [37]. We found that a stochastic model
that accounts for the discrete nature of such interactions
may deviate from the corresponding deterministic ODE
model. Under certain conditions, the small system deviation
is negligible, in particular for the case of a large calcium
influx rate (Figure 10). During a cardiac action potential,
many L-type calcium channels are synchronously opened,
and thus the calcium concentration rapidly increases from
the micro- to millimolar range. Similarly, following neuronal
firing the glutamate concentration in the synaptic cleft can
increase several orders of magnitude [35]. In these situations,
the deviation of species concentrations from that suggested
by deterministic ODE models may not be physiologically



14 Computational and Mathematical Methods in Medicine

0.5

1

2

4

2 4 6 8 10 2 4 6 8 10

−30

−20

−10

0

−30

−20

−10

0

−30

−20

−10

0

−30

−20

−10

0

Δ
 (

%
)

Δ
 (

%
)

C
aM

-a
ct

iv
at

ed
C

aM
-i

n
ac

ti
va

te
d

v 0
(×

10
−1

7
L)

0.5

1

2

4

v 0
(×

10
−1

7
L)

Slow CaM SQS

c∗ (μM) c∗ (μM)

Figure 13: Small system deviation for multiple calmodulin-activated and -inactivated channels, using “slow CaM” and “SQS” parameters.

significant. However, during resting conditions, the devi-
ation may be significant, and concentration fluctuations
due to the small subspace volume could influence chan-
nel dynamics (Sections 2.2–2.4). It has been shown that
stochastic openings in calcium release channels in the dyadic
subspace of cardiac myocytes during diastole can lead to
spontaneous calcium release and arrhythmias during heart
failure [38]. Our findings demonstrate that a discrete model
of the subspace concentration may be important in this
physiological context, because it is likely that fluctuations due
to the small number of calcium ions play a significant role in
generating spontaneous calcium release events.

In addition to demonstrating that a discrete/stochastic
model of calcium-regulated calcium influx often deviates
from a continuous/deterministic description, we analyzed
how subspace volume and concentration fluctuations influ-
ence channel dynamics. Because calmodulin effectively colo-
calizes with the L-type calcium channel [39], the results
associated with the “single channel” volume scaling (Figure 5
and Section 2.2) are most relevant. Such colocalization is
ubiquitous; many regulators have been shown to colocalize
with channels or receptors, including phospholamban with
calcium ATPase in the sarcoplasmic reticulum membrane
[40], G-protein receptor kinases with G-protein receptors on
the cell membrane [41], and Bax with voltage-dependent ion
channels in the mitochondrial membrane [42]. Additionally,
the volume of diadic subspaces can be greatly altered during
pathophysiological conditions. For example, the L-type cal-
cium channels and ryanodine receptors localization in the
dyad is disrupted during heart failure and the subspace
volume in which these channels reside is much greater
in heart failure than during physiological conditions [43].
Our findings show that when a small number of molecules

are present in the subspace (small v0 and c�), subspace
volume can greatly influence the steady-state properties of
stochastically gating channels (Figures 10 and 13).

3.2. Relation to Prior Studies. Prior work by our lab has
investigated calcium channel regulation through a host of
various mechanisms. Groff and Smith investigated the influ-
ence of inactivation on calcium spark dynamics in a chan-
nel regulated by both calcium-activation and -inactivation
[44]. Mazzag et al. demonstrated that residual calcium
that accumulates in a subspace during channel openings
can influence channel gating [27]. Perhaps more relevant
to this study of how concentration fluctuations depend
on the subspace volume and influence average rates of
calcium binding, channel gating, and calcium influx, Smith
and coworkers previously investigated how the number of
subspace domains and the number of channels per subspace
can influence cellular responses. Williams et al. demonstrated
that a population of subspace domains can be represented by
a probability density approach and can be utilized to simulate
global calcium dynamics [45]. Hartman et al. utilized a
model of a small number of coupled calcium activated
channels to predict the global calcium release dynamics in
response to pharmacological modification of single channel
kinetics [46]. However, this study is the first to compare a
model of calcium channel regulation accounting for the finite
subspace volume (and using a discrete representation of the
number of subspace calcium ions) with the corresponding
ODE formulation that assumes a large system size (and uses
a continuous representation of calcium concentration).

Only a few previous studies have utilized a discrete repre-
sentation of calcium ions in the context of cardiac myocyte
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subspace dynamics. Winslow and colleagues simulated the
spatial location of discrete diffusing calcium ions, as well
as the spatial structure and geometry of the L-type calcium
channel and ryanodine receptor in the cardiac dyad [47].
They demonstrate that stochastic fluctuations produce vari-
ability in the L-type calcium channel-ryanodine receptor sig-
naling interactions (specifically excitation-contraction cou-
pling gain), but their analysis does not distinguish between
the influence of fluctuations due to channel gating, calcium
diffusion, and small calcium ion number. Similar to this
study, von Wegner and Fink presented a stochastic model of
the L-type calcium channel, incorporating calcium diffusion,
buffering, and channel gating and conductance, and they
demonstrated how calcium concentration fluctuations could
influence downstream signalling pathways [48]. Our results
are novel in their focus on the influence of subspace volume
and the kinetics of calcium-regulation of an L-type channel.
Most importantly, we provide a thorough analysis of the
deviation of the approximate deterministic description from
the full stochastic model and clarify the conditions leading to
large versus small deviations.

Previous studies have modeled biochemical reaction
networks using master equations and compared results with
deterministic ODE models. McQuarrie demonstrated in
1963 that for first-order reactions, the expected steady-state
concentrations derived from the chemical master equation
and deterministic ODEs agree [5]. In Section 2.1, calcium
influx from an unregulated channel is modeled using zeroth-
and first-order reactions and, consequently, the stochastic
and deterministic descriptions must agree. Our observation
that concentration fluctuations increased as the subspace
volume became smaller is consistent with well-understood
principles of statistical physics and should come as no
surprise [23].

Darvey et al. demonstrated for several generic second-
order reactions, the expected concentration computed from
the chemical master equation may deviate from the cor-
responding ODE model [20]. The deviation is typically
negative (i.e., Δ � 0), with greatest suppression when con-
centration fluctuations are large. Other recent studies have
demonstrated that the concentrations of species in stochastic
biochemical networks can deviate from deterministic ODE
descriptions. In agreement with our findings, the deviation
is often negative [18, 21, 28], although positive deviation
was observed in some biochemical systems [12, 49]. Our
findings are consistent with Darvey et al., in that Δ had
the greatest magnitude when either the subspace volume
or calcium influx rate was small (Figure 10) (both result in
larger concentration fluctuations, see (14)).

We found that the small system size deviation was
particularly complex in cases where the deterministic ODE,
that is, the model appropriate for the large system size
limit, is bistable (Figure 8). Lestas et al. recently investigated
bistability/bimodality in a network of gene regulation and
demonstrated that bistability in the deterministic ODE
model did not imply bimodality in the discrete system and,
conversely, bimodality in the discrete system did not imply
bistability in the corresponding ODEs [50]. We obtained
similar results, as bimodality in distribution was not present

in the bistable system for v � v0 (Figure 4(a)) but was present
for v � 8v0 (Figure 4(b)). Conversely, for the calmodulin-
regulated channel, bimodality was present in the distribution
for the monostable system (Figure 11). Interestingly, for the
bistable system, E�C� computed from the discrete model
need not be well approximated by either of the two stable
equilibria in the deterministic model; rather, E�C� is given by
an intermediate value and can have a complex dependence
of subspace volume (Figure 8(C)). But it is important to
note that the small system size deviation does not require
a bistable deterministic model. The deviation can be quite
pronounced even in a monostable deterministic model
(Figures 8(B), 9, and 10).

3.3. Limitations. The two-state kinetic models of the calcium
channel introduced in Section 2.1 is minimal and should be
interpreted as phenomenological (as opposed to statistical)
model of single channel kinetics, that is, the topology and
parameters of this model were not obtained by fitting
to patch clamp recordings [51]. On the other hand, the
kinetic model for regulation of the calcium channel pre-
sented in Section 2.4 is state-of-the-art. Both minimal and
physiologically realistic channel models are affected by the
decision to account for (or neglect) fluctuations in calcium
concentration that result from the small number of ions in
the subspace.

The most significant limitation in the model formulation
is our neglect of spatial dynamics of calcium diffusion
within the dyadic subspace and the details of the spatial
arrangement of the ryanodine receptors [47, 52]. However,
for the purposes of the present study, that is, investigation
of the influence of concentration fluctuations on the regu-
lation of calcium influx, a nonspatial Markov chain model
that includes subspace volume as a model parameter and
accounts for the finite number of calcium ions in the domain
is sufficient.

Another limitation of the present work is that we focus
on stationary statistics, for example, the expected value of the
steady-state subspace calcium concentration, in our analysis
of the deviation of continuous ODE description from the
discrete stochastic formulation. Future studies could address
how transient dynamics, for example, the cellular response to
a depolarizing voltage step, excitation-contraction coupling
gain, and so forth, are affected by calcium concentration fluc-
tuations resulting from small subspace volume.

4. Conclusions

Our findings demonstrate the physiological relevance of con-
centration fluctuations in both minimal and realistic models
of a calcium-regulated channels associated with subspaces
of small volume. The take home message is: concentration
fluctuations do not “average out” in a manner that causes
stochastic and deterministic descriptions of subspace dynamics
to be equivalent. Future studies will investigate how subspace
calcium concentration fluctuations may influence global
calcium dynamics and plasma membrane electrical activity
in physiological and pathophysiological conditions.
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[12] C. A. Gómez-Uribe and G. C. Verghese, “Mass fluctuation
kinetics: capturing stochastic effects in systems of chemical
reactions through coupled mean-variance computations,”
Journal of Chemical Physics, vol. 126, no. 2, Article ID 024109,
2007.

[13] M. Calder, A. Duguid, S. Gilmore, and J. Hillston, “Stronger
computational modelling of signalling pathways using both
continuous and discrete-state methods,” in Computational
Methods in Systems Biology, vol. 4210 of Lecture Notes in
Computer Science, pp. 63–77, 2006.

[14] O. Wolkenhauer, M. Ullah, W. Kolch, and K. H. Cho, “Mod-
eling and simulation of intracellular dynamics: choosing an
appropriate framework,” IEEE Transactions on Nanobioscience,
vol. 3, no. 3, pp. 200–207, 2004.

[15] T. E. Turner, S. Schnell, and K. Burrage, “Stochastic approach-
es for modelling in vivo reactions,” Computational Biology and
Chemistry, vol. 28, no. 3, pp. 165–178, 2004.

[16] K. Vasudeva and U. S. Bhalla, “Adaptive stochastic-determin-
istic chemical kinetic simulations,” Bioinformatics, vol. 20, no.
1, pp. 78–84, 2004.

[17] H. Qian, S. Saffarian, and E. L. Elson, “Concentration fluctu-
ations in a mesoscopic oscillating chemical reaction system,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 99, no. 16, pp. 10376–10381, 2002.

[18] I. J. Laurenzi, “An analytical solution of the stochastic master
equation for reversible bimolecular reaction kinetics,” Journal
of Chemical Physics, vol. 113, no. 8, pp. 3315–3322, 2000.

[19] H. Wang and Q. Li, “Master equation analysis of deterministic
chemical chaos,” Journal of Chemical Physics, vol. 108, no. 18,
pp. 7555–7559, 1998.

[20] I. G. Darvey, B. W. Ninham, and P. J. Staff, “Stochastic models
for second-order chemical reaction kinetics. The equilibrium
state,” The Journal of Chemical Physics, vol. 45, no. 6, pp. 2145–
2155, 1966.

[21] Q. Zheng and J. Ross, “Comparison of deterministic and
stochastic kinetics for nonlinear systems,” The Journal of
Chemical Physics, vol. 94, no. 5, pp. 3644–3648, 1991.

[22] J. Goutsias, “Classical versus stochastic kinetics modeling of
biochemical reaction systems,” Biophysical Journal, vol. 92, no.
7, pp. 2350–2365, 2007.

[23] J. E. Keizer, Statistical Thermodynamics of Nonequilibrium Pro-
cesses, Springer, Berlin, Germany, 1987.

[24] S. Wray and T. Burdyga, “Sarcoplasmic reticulum function in
smooth muscle,” Physiological Reviews, vol. 90, no. 1, pp. 113–
178, 2010.

[25] R. L. Winslow and J. L. Greenstein, “Cardiac myocytes and
local signaling in nano-domains,” Progress in Biophysics and
Molecular Biology, vol. 107, no. 1, pp. 48–59, 2011.

[26] M. B. Cannell and C. H. T. Kong, “Local control in cardiac E-
C coupling,” Journal of Molecular and Cellular Cardiology, vol.
52, pp. 298–303, 2011.

[27] B. Mazzag, C. J. Tignanelli, and G. D. Smith, “The effect of
residual Ca2+ on the stochastic gating of Ca 2+-regulated
Ca2+ channel models,” Journal of Theoretical Biology, vol. 235,
no. 1, pp. 121–150, 2005.

[28] J. Wu, B. Vidakovic, and E. O. Voit, “Constructing stochastic
models from deterministic process equations by propensity
adjustment,” BMC Systems Biology, vol. 5, no. 187, pp. 1–21,
2011.

[29] I. Györke and S. Györke, “Regulation of the cardiac ryanodine
receptor channel by luminal Ca2+ involves luminal Ca2+
sensing sites,” Biophysical Journal, vol. 75, no. 6, pp. 2801–
2810, 1998.

[30] M. A. Huertas and G. D. Smith, “The dynamics of luminal
depletion and the stochastic gating of Ca2 +-activated Ca2 +
channels and release sites,” Journal of Theoretical Biology, vol.
246, no. 2, pp. 332–354, 2007.

[31] M. R. Tadross, I. E. Dick, and D. T. Yue, “Mechanism of local
and global Ca2+ sensing by calmodulin in complex with a
Ca2+ channel,” Cell, vol. 133, no. 7, pp. 1228–1240, 2008.

[32] H. Liang, C. D. DeMaria, M. G. Erickson, M. X. Mori, B.
A. Alseikhan, and D. T. Yue, “Unified mechanisms of Ca2+
regulation across the Ca 2+ channel family,” Neuron, vol. 39,
no. 6, pp. 951–960, 2003.



Computational and Mathematical Methods in Medicine 17

[33] Y. L. Hashambhoy, J. L. Greenstein, and R. L. Winslow, “Role
of CaMKII in RyR leak, EC coupling and action potential
duration: a computational model,” Journal of Molecular and
Cellular Cardiology, vol. 49, no. 4, pp. 617–624, 2010.

[34] J. Heijman, P. G. A. Volders, R. L. Westra, and Y. Rudy,
“Local control of β-adrenergic stimulation: effects on ventric-
ular myocyte electrophysiology and Ca2+-transient,” Journal
of Molecular and Cellular Cardiology, vol. 50, no. 5, pp. 863–
871, 2011.

[35] S. Pendyam, A. Mohan, P. W. Kalivas, and S. S. Nair,
“Computational model of extracellular glutamate in the
nucleus accumbens incorporates neuroadaptations by chronic
cocaine,” Neuroscience, vol. 158, no. 4, pp. 1266–1276, 2009.

[36] D. A. Rusakov, M. Y. Min, G. G. Skibo, L. P. Savchenko,
M. G. Stewart, and D. M. Kullmann, “Role of the synaptic
microenvironment in functional modification of synaptic
transmission,” Neurophysiology, vol. 31, pp. 99–101, 1999.

[37] D. M. Bers, “Cardiac excitation-contraction coupling,” Nature,
vol. 415, no. 6868, pp. 198–205, 2002.

[38] W. Chen, G. Aistrup, J. Andrew Wasserstrom, and Y. Shiferaw,
“A mathematical model of spontaneous calcium release in
cardiac myocytes,” American Journal of Physiology, vol. 300, no.
5, pp. H1794–H1805, 2011.

[39] M. X. Mori, M. G. Erickson, and D. T. Yue, “Functional
stoichiometry and local enrichment of calmodulin interacting
with Ca2+ channels,” Science, vol. 304, no. 5669, pp. 432–435,
2004.

[40] D. L. Stenoien, T. V. Knyushko, M. P. Londono et al.,
“Cellular trafficking of phospholamban and formation of
functional sarcoplasmic reticulum during myocyte differen-
tiation,” American Journal of Physiology, vol. 292, no. 6, pp.
C2084–C2094, 2007.

[41] J. Krupnick and J. Benovic, “The role of receptor kinases and
arrestins in G protein-coupled receptor regulation,” Annual
Review of Pharmacology and Toxicology, vol. 39, Article ID
2890319, 1998.

[42] M. Narita, S. Shimizu, T. Ito et al., “Bax interacts with the
permeability transition pore to induce permeability transition
and cytochrome c release in isolated mitochondria,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 95, no. 25, pp. 14681–14686, 1998.

[43] L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke,
and H. Cheng, “Orphaned ryanodine receptors in the failing
heart,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 103, no. 11, pp. 4305–4310, 2006.

[44] J. R. Groff and G. D. Smith, “Calcium-dependent inactivation
and the dynamics of calcium puffs and sparks,” Journal of
Theoretical Biology, vol. 253, no. 3, pp. 483–499, 2008.

[45] G. S. B. Williams, M. A. Huertas, E. A. Sobie, M. S. Jafri,
and G. D. Smith, “A probability density approach to modeling
local control of calcium-induced calcium release in cardiac
myocytes,” Biophysical Journal, vol. 92, no. 7, pp. 2311–2328,
2007.

[46] J. M. Hartman, E. A. Sobie, and G. D. Smith, “Spontaneous
Ca2+ sparks and Ca2+ homeostasis in a minimal model
of permeabilized ventricular myocytes,” American Journal of
Physiology, vol. 299, no. 6, pp. H1996–H2008, 2010.

[47] R. L. Winslow, A. Tanskanen, M. Chen, and J. L. Greenstein,
“Multiscale modeling of calcium signaling in the cardiac
dyad,” Annals of the New York Academy of Sciences, vol. 1080,
pp. 362–375, 2006.

[48] F. Von Wegner and R. H. A. Fink, “Stochastic simulation of
calcium microdomains in the vicinity of an L-type calcium

channel,” European Biophysics Journal, vol. 39, no. 7, pp. 1079–
1088, 2010.

[49] R. Grima, “Study of the accuracy of moment-closure approx-
imations for stochastic chemical kinetics,” The Journal of
Chemical Physics, vol. 136, Article ID 154105, 2012.

[50] I. Lestas, J. Paulsson, N. E. Ross, and G. Vinnicombe, “Noise
in gene regulatory networks,” IEEE Transactions on Automatic
Control, vol. 53, pp. 189–200, 2008.

[51] B. Sakmann and E. Neher, Single-Channel Recording, Springer,
2nd edition, 1995.

[52] J. R. Groff and G. D. Smith, “Ryanodine receptor allosteric
coupling and the dynamics of calcium sparks,” Biophysical
Journal, vol. 95, no. 1, pp. 135–154, 2008.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


