
.Journal of Thronncai Medrcme. Vol. 3, pp 191-21 1 
Reprints ava~lahlt: dlrectly from [he publiiher 
Photocopymg permmed by l~cense only 

Q 2001 OPA (Overrear Publishers Association) N V 
Published by license under 

the Cordon and Breach Sc~ence 
Puhl~rhers Impnnt. 

A Model of Dispersion in Perifusion Systems 
PAUL R. SHORTEN* and DAVID J.N. WALL' 

Biomathematics Research Centre, Department of Mathematics & Statistics, Universiry of Canterbuq, Private Bag 4800, Chrrsrchurch, I ,  
New Zealand 

(Received 4 September 2000) 

The perifusion apparatus is an experimental tool used to model information transfer in endo- 
crine systems. The major drawback of the penfusion system derives from the dispersion, dif- 
fusion and mixing of the hormone within the apparatus which distort the original released 
hormone concentration profile. In this paper we develop a mathematical model of the perifu- 
sion system that accounts for a number of observable features in the measured secretory pro- 
file. We also consider associated inverse problems, the solution of which enhance perifusion 
data measurements and unmask the underlying secretory events. In contrast with the raw data, 
the deconvolved data supports the concentration dependent, rapid activation of CRH-induced 
ACTH secretion. The perifusion chamber can be modeled by an advection-diffusion equation, 
and we develop general theory analysing the validity of this approximation. We also provide a 
characterisation of the degree of ill-posedness of the inverse advection-diffusion equation in 
terms of the perifusion parameters. 
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1. INTRODUCTION 

Information transfer in a number of endocrine systems 
occurs through rapid modulation of hormone levels in 
concentration pulses. The temporal architecture of the 
endocrine glandular signaling process is believed to 
convey important biochemical information to the target 
tissue, and also represents a signature of the responsive 
endocrine cells (Veldhuis, 1991). Therefore to under- 
stand the endocrine glandular physiology, the time 
domain structure of hormone synthesis and release is 
required. Such a quantitative understanding of the 
underlying glandular physiology is also a prerequisite 
for the formulation and testing of hypotheses of the 

underlying molecular mechanisms (LeBeau et al., 
1997; Li et al., 1997; Shorten et al., 2000). This knowl- 
edge also aids in the understanding of various endo- 
crine glandular pathophysiological conditions. 

The perifusion apparatus is an in vitro experimental 
tool used to model the dynamics of information trans- 
fer in a number of endocrine systems (McIntosh and 
McIntosh, 1983; McIntosh et al., 1984; Evans et al., 
1985). This transfer is mediated by the modulation of 
hormone concentration levels. The perifusion appara- 
tus allows the hormonally stimulated release of hor- 
mones to be investigated. In this system, a liquid 
saline medium flowing at a constant rate, is pumped 
through the pipe over cells, which secrete a hormone 
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CRH + Saline 
FIGURE 1 Schematic diagram of the perifusion apparatus. A saline solution carrying corticotropin releasing hormone (CRH) is pumped via 
a peristaltic pump down a pipe of length 8 ,  to the cell perifusion chamber. A solenoid system allows the flowing medium to be switched 
between the saline and the CRH solutions. Corticotroph cells in the perifusion chamber then secrete adrenocorticotropic hormone (ACTH), 
which travels down a pipe of length e,  to the collector. The radius of the perifusion pipes is denoted by R 

pump 
- 

in response to another hormone in the flowing 
medium. The temporal concentration profile of this 
released substance is then measured at some down- 
stream location. This downstream temporal measure- 
ment is a hormone concentration measurement 
averaged over the cross-section of the pipe. The pipe 
is typically 1 rnm in diameter, and has a total length 
(el + t4) of about 0.75 m. A schematic diagram of the 
perifusion apparatus is shown in Figure 1. 

The perifusion chamber is a circular cylinder that is 
4 mm in diameter and 25 rnrn in length, and typically 
contains about five million cells, predominantly in the 
top layer of a porous packing material (see Figure 2). 
This packing material is typically a combination of 
substances in the form of beads. The chamber is sealed 
with rubber plugs, pierced with a length of syringe nee- 
dle over which is stretched a length of nylon cloth (10 
pm pore size) to retain the contents of the column. The 
chamber is sealed within a thermojacket, allowing a 
constant cellular temperature of 37°C. 

One may ask: What features does the engineering 
of the perifusion apparatus confer on the measured 
secretory projile? 

t 

The major drawback of the perifusion system 
derives from the dispersion, diffusion and mixing of 
the hormone in the tubing of the perifusion apparatus. 
This generates a distortion in the experimentally 
observed hormone concentration profile. In this paper 
we develop a mathematical model of the perifusion 
apparatus to understand this observed distortion in the 
hormone concentration profile. This model of the two 
dimensional fluid flow in the perifusion system 
accounts for a number of observable features in the 
measured secretory profile. Although this direct prob- 
lem of prediction of elution concentration has been 
considered in connection with the perifusion appara- 
tus (Smith et al., 1991), very little research has 
addressed associated inverse problems and their rele- 
vance to the improvement of data interpretation. In 
this paper we investigate these inverse problems, 
which are associated with the interesting mathemati- 
cal problem of signal reconstruction after transmis- 
sion through an advective and diffusive medium. We 
use the developed deconvolution strategies to 
enhance data measurements in the perifusion system, 
allowing the unmasking of the underlying secretory 
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FIGURE 2 Schematic diagram of the perifusion chamber. Fluid 
flow into and out of the perifusion chamber is through needles of 
small diameter. Pituitary corticotroph cells lie in the top layer of the 
bead slurry packing. The bead packing material is a combination of 
Sephadex G25 and Bio-Gel P2, which absorb water and small mol- 
ecules by diffusion, but not larger molecules such as ACTH. Based 
on figure from Smith et al. (1991) 

events. However, due to the ill-posedness of the 
inverse problem, one cannot expect to completely 
remove the distortion in the measurement. 

We have previously considered related inverse 
problems associated with the pure shear dispersive 
mass transport of a material concentration down a 
tube, when the flowing medium has a two-dimen- 
sional velocity profile (Shorten and Wall, 1998; 
Shorten arid Wall, 2000). Although diffusive effects 
in the direction of fluid flow in the perifusion system 
are negligible, the contribution of molecular diffusion 
transverse to the direction of fluid flow is an impor- 
tant contributing factor in the observed distortion in 
perifusion experiments. The inverse problems consid- 
ered in this paper also include this hormone diffusion. 

A number of researchers have incorporated this 
molecular diffusion into models of the perifusion 
chamber via an advection-diffusion equation (Kao, 
1989; Smith et al., 1991). In this paper we also con- 
sider a general theory indicating under what condi- 
tions this approximation is valid, and how the 
parameters in the advection-diffusion model relate to 
measurable quantities in the perifusion system. 

Hormone concentration levels are sometimes 
measured in vivo. In experiments associated with 
stress-levels in horses, a cannula tube is inserted in 
vivo to sample blood downstream from the pituitary, 
allowing cells to be monitored in their natural envi- 
ronment (Alexander et al., 1988). However blood dis- 
plays a marked shear-dependent viscosity, and a finite 
yield stress may be necessary before flow can com- 
mence. Thus for the pipe diameters used in these 
experiments blood does not behave in a Newtonian 
manner. Although Newtonian fluids are specifically 
considered in this paper, the methods described here 
are also applicable in deconvolution problems associ- 
ated with the non-Newtonian fluid flow in the afore- 
mentioned experiments (Shorten, 2000). 

The paper plan is as follows. In Section 2 we 
develop a mathematical model of the perifusion sys- 
tem which is based on the experimental system of 
Evans et al. (1985). This model includes the shear dis- 
persion, mixing, and molecular diffusion of the mate- 
rial tracer within the apparatus. In Section 3 we 
compare numerical solutions of the perifusion model 
with arginine vasopressin (AVP) pulse validation 
experiments. In Section 4 we consider the mathemat- 
ics associated with the model. Section 4.1 outlines the 
Taylor approximation to the concentration dispersion 
within the pipe; a one-dimensional advection-diffu- 
sion equation. Section 4.2 discusses the importance of 
the model boundary conditions and their effect on the 
model solutions. In Section 5 we investigate the 
inverse problem of source reconstruction associated 
with the advection-diffusion equation. We consider 
the degree of ill-posedness of the inverse problem in 
Section 5.1, the problem regularisation in Section 5.2, 
and the construction of numerical schemes for the sta- 
bilised problem in Section 5.3. In Section 6 we illus- 
trate our reconstruction algorithm for the perifusion 
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FIGURE 3 Schematic diagram of the perifusion apparatus illustrating the model geometry and location of the concentration symbols co, Q, ,  
Q2,  Q3, and Q4. The concentration symbol subscripts designate the geometric location of the different model stations 

apparatus. In Section 7 we use the methods developed 
in the earlier sections to account for signal dispersion 
in CRH-induced ACTH measurements from equine 
corticotrophs. 

2. THE PERIFUSION MODEL 

The model of the perifusion apparatus includes the 
geometry of the system along with the shear disper- 
sion, mixing, and molecular diffusion of the material 
tracer. A schematic diagram of the perifusion model 
geometry is shown in Figure 3. 

The pipe from the pump to the perifusion chamber 
is m in diameter (2R), and on average is 0.35 m 
in length (e l ) .  The pipe from the chamber to the col- 
lector is also m in diameter, and on average is 
0.4 m in length (t4). The perifusion chamber is 2.5 x 

m in length and 4 x lop3 m in diameter (2Rc). 
Therefore the perifusion chamber volume is 0.31 me. 
However, 20% of the chamber volume is filled by the 
plugs, (see Figure 2), and so the fluid before the cells 
comprises about 0.125 m€ of the chamber volume. 
Thus the length of fluid from the chamber entrance to 
the pituitary cells is 0.01 m (€2). The cells are located 
in the centre of the chamber above the packing mate- 
rial (see Figure 2). The packing material fills about 
60 % of the volume in the region between the pitui- 
tary cells and the chamber outlet. The packing mate- 

rial is largely settled in the lower part of the chamber. 
Therefore the volume of fluid in the chamber between 
the pituitary cells and the chamber outlet is 0.05 m€, 
and thus the length of fluid below the pituitary cells is 
3.75 x lop3 m (t3). 

There are four different regions of fluid flow in the 
model of the perifusion system. The fluid is assumed 
to be Newtonian, and thus the fluid velocity profile of 
the viscous, incompressible fluid in the pipes is 
described by the well known Poiseuille distribution 

where r is the circular polar radial coordinate associ- 
ated with the cylindrical coordinate system so that the 
z-axis is aligned with the axis of the tube. The radius 
of the pipe is R, and the maximum flow velocity is 
u,. The material tracer within the pipes undergoes 
shear dispersion, and diffusion across and along the 
pipe. For the Reynolds number associated with the 
perifusion system, the fluid flow in the pipes is fully 
developed after 6 pipe diameters (Knudsen and Katz, 
1958), (p 228 et seq.). Therefore the region of devel- 
oping flow is negligible in the pipes. However the 
flow within the chamber is slightly different. The 
fluid before the cells undergoes mixing (Mason, 
2000), and we shall assume that the material tracer 
within this region is perfectly mixed. As the secreted 
ACTH does not enter the region before the cells and 
the length of pipe in the chamber between the pitui- 
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tary cells (and the chamber outlet is small, the flow is 
assumed to be laminar and not developed within this 
region. Blecause the flow is not developed in the 
chamber between the pituitary cells and the chamber 
outlet, only axial diffusion need be considered. The 
packing material distribution effects the amount of 
diffusion that can occur. If the packing is evenly dis- 
tributed and the flow rate is constant, then the amount 
of signal distortion is less than if the packing has set- 
tled to the lower part of the chamber. This is because 
the fluid travels faster through an evenly distributed 
packing material with no change in the diffusion coef- 
ficient. The flow rate through the perifusion system is 
0.16 melrnin, and the travel time from the pump to the 
collector is about 150 s (Evans et al., 1988). It follows 
that v,, the maximum flow rate in the pipes, is 
6.8 x ms-l, and c, the average chamber fluid 
velocity, is 2.125 x lop4 ms-l. Note that the fluid 
velocity through the packing material is much greater 
than ;~i;l. 

CRH, AVP, and ACTH have molecular weights of 
1084,4872, and 5500 Da respectively (Watanabe and 
Orth, 1987). These molecular weights allow the diffu- 
sion coefficients for these hormones in saline solution 
to be estimated (Weast, 1999; Washburn, 1926), and 
are shown in Table I along with the model parameters. 

We now discuss the model equations. The 
cross-sectional average material concentration at the 
pump, chamber entrance, pituitary cells, chamber 
exit, and collector are denoted by cg, Ql, Q2, Q3, and 
Q4 respectively (see Figure 3 ). The mass transport of 
the material tracer volume concentration, cl(z, r, t), in 
the pipe from the pump to the perifusion chamber can 
be modeled by 

where D is the coefficient of molecular diffusion, u(r) 
is the Poiseuille distribution (2 .1 ,  and 

I 
+ a? + is the Laplacian operator in r 

circularly symmetric cylindrical coordinates. Because 
the injection of material into the pipe is independent 
of r, cl(O.,r,t) = co(t). The net rate of change in the 

chamber concentration is the net amount of material 
entering the chamber per second divided by the cham- 
ber volume. That is 

Integrating this equation we obtain the chamber out- 
put concentration 

Q2(t) = 

where 

is the time of travel for fluid at the chamber centre to 
move a distance e2. The mass transport of the material 
tracer volume concentration, c3(z,t), in the chamber 
from the pituitary cells to the chamber outlet is given 

by 

where z is now measured from the pituitary cells posi- 
tion and c3(0,t) = Qz(t). The mass transport of the 
material tracer volume concentration, c4(z,r,t), in the 
pipe from the chamber to the collector is given by 

where z is now measured from the chamber exit. 
Because the injection of material into the pipe is again 
independent of r, c4(0,r,t) = c3(e3,t). At time t = 0 the 
initial concentration of the material tracer within the 
pipe is assumed to be zero, i.e., 

q ( z ,  T, 0) = Qz(0) = ~ ( z ,  0) = Q ( Z ,  r, 0) = 0, 

and the walls of the pipes are assumed to be imperme- 
able, so that 
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TABLE I Table of relevant model perifusion parameters 

Parameter Definition Value 

R pipe radius 5 x m 

RC chamber radius 2 x m 

e 1 input pipe length 0.35 m 

(2 chamber mixing region length 0.01 m 

e3 length of fluid below cells 3.75 x m 

output pipe length 

maximum pipe fluid velocity 

average pipe fluid velocity 

- 
?Ir average chamber fluid velocity 2.125 x ms-I 

CRH diffusion coefficient 

AVP diffusion coefficient 

ACTH diffusion coefficient 

effective CRH diffusion coefficient 

effective AVP diffusion coefficient 

effective ACTH diffusion coefficient 

Because fluid flow into and out of the perifusion 
chamber is through needles of small diameter (see 
Figure 2), we assume that there is purely advective 
flow at these points, that is the diffusive flux is zero 

dcl (32 
so that - (el,  t )  = 2 (4, t )  = 0. Similarly at the 

d z  d z  
collector there is purely advective flow with 

This boundary condition is termed Danckwerts' 
boundary condition (Smith, 1988), and therefore the 
material tracer cannot travel by diffusive means from 
the chamber to the inlet pipe, from the outlet pipe into 
the chamber, or from the collector into the outlet pipe; 
see Figures 1 and 3. Danckwerts' boundary condition 
is discussed further in Section 4.2. For simplicity, we 
shall also assume that there is no diffusive transport 
between the mixing chamber and the region between 
the pituitary cells and the chamber outlet. Given that 
the region before the pituitary cells is assumed to be 
perfectly mixed, this assumption does not signifi- 
cantly affect the problem solution. 

3. PERIFUSION PULSE EXPERIMENTS 

In this section we compare numerical solutions of the 
perifusion model developed in Section 2 with perifu- 
sion pulse validation experiments. In these experi- 
ments radioactively labelled arginine vasopressin 
(AVP) replaces the CRH shown in Figure 1. The radi- 
oactive AVP pulses are injected into the apparatus, 
and AVP concentrations are measured at the collector. 

The model equations (2.2), (2.4), (2.6), and (2.7) 
relate the injected concentration profile to the concen- 
tration measured at the collector. Analytical solutions 
to (2.6) are available* (see Section 4. I), and (2.4) sim- 
ply relates the chamber input concentration to the 
chamber concentration. However, simple analytical 
solutions to the direct problems (2.2) and (2.7) (along 
with boundary and initial conditions) are not readily 
available, and thus a numerical procedure must be 
employed to solve the direct problem. This problem is 
very well known, and there exists a multitude of 
approaches. The solution scheme considered here is 
an explicit finite difference scheme, where the opera- 

* Note that (2.6) is a one-dimensional advection-diffusion equation whereas equations (2.2) and (2.7) are two-dimensional advection-dif- 
fusion equations 
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Time (s) 

FIGURE 4 Comparison of the perifusion model and the 2 min pulse experimental data (Evans, 2000). (A) The input pulse co. (B) The model 
concentration at the chamber entrance Q, .  (C) The model concentration at the cells Q2. (D) The model concentration at the collector, Q4 (-), 
and the average of three experimental data sets (- - -). The error bars indicate the maximum and minimum values in the data sets, and cpm 
denotes counts per minute 

tors a,, 3,, 82, a,", and 8, in (2.2) and (2.7) are 
approximated by the finite difference operators 6,, 

6,, ,j;, &,", and 6d respectively, where 6-, 6+, ti0, 

and 6L  are the backward, forward, central, and second 
central finite difference operators, respectively (Strik- 
werda, 1989). This is an explicit time stepping 
method, and if the time step is sufficiently small then 
the scheme is stable. This scheme provides sufficient 
resolution if the time step is appropriately small, and 
the spatial mesh sizes are smaller than their associated 
mesh Reynolds numbers (Strikwerda, 1989), (Section 
6.4). Similar numerical results can also be obtained 

with the alternating direction implicit (A.D.I.) and 
locally one-dimensional (L.O.D.) methods, which are 
unconditionally stable. 

Numerical simulations along with experimental 
results are shown in Figure 4. The numerical tech- 
nique outlined above is used to predict the down- 
stream cross-sectional average concentration profile 
generated by a 2 min upstream injection pulse of AVP 
with concentration 5900 cpm150pt. The input pulse, 
co, is shown in Figure 4 A, Q1 is shown in Figure 4 B, 
Q2 is shown in Figure 4 C, and Q4 is shown in 
Figure 4 D along with the experimental measurement 
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FIGURE 5 Comparison of the perifusion model (-) for the 1 and 5 min pulse experimental data (- - -). (A) The 1 min AVP injection pulse. 
(C) The 5 min AVP injection pulse. (B) The 1 min pulse is significantly attenuated, whereas (D) the 5 min pulse retains much of its original 
shape 

(Evans, 2000). A linear spline (- - -) has been fitted 
through the average of three experimental data sets, 
and the error bars indicate the maximum and mini- 
mum values in the data sets. The pipes allow a moder- 
ate amount of dispersion of the pulse, and the mixing 
operator in (2.4) slightly delays the peak in concentra- 
tion and smoothes the incoming pulse. Because the 
diffusion coefficient in (2.6) is a molecular diffusion 
coefficient, there is little dispersion in the perifusion 
chamber region from the cells to the chamber outlet, 
and therefore the functional form of Q3 is very similar 
to Q2 and is not shown. 

The model prediction for 1, and 5 rnin upstream 
injection pulses is shown in Figure 5 B and D. There 
is significant attenuation of the 1 min pulse, whereas 
the 5 min pulse retains much of its original amplitude. 
These results show that the model, based on the fluid 
flow and the geometry of the system, agrees favoura- 
bly with the experimental data, particularly for the 
longer pulses, where the relative amount of noise is 
lower. 

The major discrepancy with the experimental data 
is that the predicted model concentration profiles 
decrease to zero at a faster rate. It is possible that the 
bead matrix in the chamber slightly impedes the flow 
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of the material tracer, thus delaying the decrease in 
the measured concentration profile. However it would 
be specula~tive to include such an effect in the model. 
The model also predicts slightly lower peak concen- 
tration levels. Possible causes of this are that the fluid 
is partially pseudoplastic, there is only partial mixing 
within the cell chamber, or we have slightly underesti- 
mated DILvp for the saline solution. These three 
aspects all enable less dispersion. However, the cur- 
rent system data is not sufficiently accurate to eluci- 
date the finer details of the dispersion. 

4. DIFFUSIVE AND SHEAR DISPERSIVE FLOW 

The basic phenomenon of dispersion in shear flow 
has been understood since Taylor, (1953) considered 
the direct problem of the transport of a diffusing 
material tracer injected into a Poiseuille flow. Many 
researchers have analysed the direct problem in more 
detail for a range of applications (Aris, 1953; Watt 
and Roberts, 1995; Phillips and Kaye, 1996). An 
inverse problem associated with the estimation of the 
molecular diffusion coefficient, from measured con- 
centration profiles after dispersion, was also consid- 
ered by Taylor, (1954). This inverse problem is one of 
the earliest inverse problem investigations in this 
area. We now consider a related inverse problem 
associatedl with dispersive flow in pipes. The inverse 
problem is that of finding co(t) given measurements 
of the crloss-sectional average concentration Ql(t). 
Simple analytical solutions to the direct problem 
(equation 2.2, along with boundary and initial condi- 
tions) are not readily available, and the inverse prob- 
lem is thlarefore difficult to tackle. We proceed by 
constructing approximate solutions to the direct prob- 
lem in thils section, and the resulting inverse problems 
are considered in Section 5. 

4.1. The Taylor approximation 

Taylor, (1953) observed that under certain conditions, 
the dispersion of concentration in a pipe could be 
approximated by a more simple model, a one-dimen- 

sional advection-diffusion equation. That is, because 
of diffusive migration between different streamlines, 
the material tracer not only experiences a translatory 
motion with mean flow velocity, but an apparent dif- 
fusive spreading in the axial direction. 

The Taylor approximation to (2.2) is valid if the time 
necessary for advective effects to appear is large when 
compared with the time during which radial variations 
in concentration are reduced via molecular diffusion. 
Mathematically this equates to the condition 

where the length of pipe the material is spread over is 
of order e (Taylor, 1953). Taylor heuristically sug- 
gested that ratios of 10: 1 are permitted in the inequality 
(4.1) (Taylor, 1954). Taylor's analysis is based on the 
observation that the transfer of material across planes 

for which z1 = z - at is constant, where v is the 
average flow velocity, is dependent only on the radial 
diffusion of material. Because Taylor's approximation 
assumes that the radial variation in c is small relative to 

dc  , 

that in the axial direction, it follows that - is inde- 
321 

ac a Q  
pendent of r, and - % - (Taylor, 1954), where Q 

821 821 
is the cross-sectional average concentration. It can then 
be shown that Q, relative to a plane zl, obeys a diffu- 

sive process with effective diffusion coefficient 

where K is Taylor's constant (Aris, 1953), which is 
1/48 in Newtonian flow. From the continuity equation 
for Q, namely 

where q, denotes the rate of material transfer relative 
to planes zl, and d ,  denotes differentiation with 
respect to time at a point where zl is constant, it fol- 
lows that the advection-diffusion equation approxi- 
mation to the concentration dispersion is 
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This result can also be derived from the more general 
theory in Aris ( 1  956) for shear dispersion in a pipe of 
arbitrary cross-section, with an arbitrary velocity pro- 
file and spatially varying diffusion coefficient. This 
more general analysis considers the movement of the 
centre of gravity of the distribution of solute, and the 
associated higher moments. This theory indicates that 
the solute tends to become normally distributed with 
variance D + q, i.e., there is an apparent diffusive 
spreading of the material tracer with effective diffu- 
sion coefficient D + q. 

The boundary and initial conditions associated with 
Taylor's advection-diffusion approximation (4.4) are 

Solutions to the Taylor advection-diffusion equation 
(4.4), along with the boundary and initial conditions 
(4.5)-(4.7), can be found using Laplace transforms 
and are of the form 

where the bounded kernel for this equation is 

Equation 4.8 defines the operator mapping the con- 
centration cg to Q, the average concentration at z. 

The Taylor theory allows the partial differential 
equations (2.2) and (2.7) to be suitably approximated 
by the advection-diffusion equations 

Observe that q is significantly larger than the molecu- 
lar diffusion coefficient D (see Table I). This approxi- 
mation is valid if (4.1) exhibits a ratio of at least 10: 1. 
However for the geometry and molecules under con- 
sideration in the perifusion system, a ratio of at most 
3: 1 can be obtained. Therefore the Taylor approxima- 
tion (4.10) is on the borderline of reasonable approxi- 

Time (s) 

FIGURE 6 Comparison of Ql for the full perifusion model (-), the 
pure shear dispersion model (- - -), and the Taylor approximation (- 
- -) for a 5 min injection pulse of AVP (co) 

mations to (2.2) and (2.7). This approximation is 
shown in Figure 6. 

A notable feature of this diagram is that the con- 
centration peak for the Taylor and full perifusion 
model is higher than that for the pure dispersion 
model. This is because the material tracer is able to 
diffuse from the centre of the pipe into the slower 
fluid near the pipe boundary, thus counteracting the 
pure dispersive effect of the velocity gradient. 
Although the minimum travel time down the pipe is 
shorter in the Taylor model, the Taylor approximation 
to the full perifusion model is quite good, given that 
the approximation is near the suggested borderline of 
reasonable approximation. We now examine the Tay- 
lor advection-diffusion solution sensitivity to the 
model boundary conditions. 

4.2. Boundary conditions 

In this section we consider how the model boundary 
conditions (4.5) and (4.6) affect solutions to the Tay- 
lor advection-diffusion equation (4.4). This has previ- 
ously been investigated by Smith et al. (1991). Our 
more detailed analysis yields extra insight into the 
importance of the model boundary conditions, and we 
discuss this for the perifusion system model. 
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The boundary condition (4.5) at the pump (see 
Figure 3) is in fact an approximation to the true 
boundary condition 

dc 
vco ( l )  = Vc(0, r ,  t )  - D - (0 ,  r ,  t )  ; az 

where co is the concentration time profile of the 
released hormone at the injection point, and 6 is the 
average cross-sectional flow velocity. This equation is 
simply ob~ained by balancing the concentration flux 
across the inlet, which includes an advective and a 
diffusive component. The extra diffusive term in 
(4.11) was deemed to be particularly important in a 
model of the perifusion column (Smith et al., 1991). It 
should be noted that D in (4.11) is the material molec- 
ular diffusion coefficient not Taylor's effective diffu- 
sion coefficient, q This is because the Taylor theory 
does not apply to very short lengths of pipe where the 
flow is yet to develop. 

The solution to the Taylor advection-diffusion 
equation (4.4) with the boundary conditions (4.11) 
and (4.6) can be found using Laplace transforms, and 
is expressible in the operator form (4.8), but where 
now the kernel is 

where erfc is the complementary error function, and 

Because ID is several orders of magnitude smaller 
than q foir the perifusion problem, this change has a 
very small effect on the model solutions. The Taylor 
approximations (4.8) to Ql for the perifusion system 
model with kernels (4.9) and (4.12) are shown in 
Figure 7 ( -  - -) for a 5 rnin injection pulse of CRH. 
The two solutions are indistinguishable. Thus, 
because advective effects are more significant than 
diffusive effects at the pipe inlet in the perifusion sys- 
tem, the diffusive term in (4.11) is not important for 
perifusion system models and can safely be omitted. 

Time (s) 

FIGURE 7 Comparison of Q ,  with a 5 minute injection pulse of 
CRH(Co) for the Taylor approximations (4.8) with kernels (4.9) 
(- - -), (4.12) (- - -), (4.14) (...), and the Smith et al. approximation 
((4.12) with D = q) (-). The solutions with kernels (4.9) and (4.12) 
are indistinguishable 

However, (4.12) is for a semi-infinite pipe, and for 
a more realistic finite pipe of length t, the appropriate 
boundary condition at the pipe exit is Danckwerts' 

dc boundary condition (2.9) (i.e., - (&, t )  = 0 ). The 
d z  

solution to this more complicated Taylor advec- 
tion-diffusion equation, with boundary conditions 
(4.11) and (2.9), can be found by separation of varia- 
bles, and can be expressed in the form of (4.8), but 
where now the kernel is 

where a, satisfies 

CY sin Xnz + cos Xnz dz = I 
and A, are solutions to the transcendental equation 

X 2  ttan X B  - (u + @)A - CYD = 0, (4.16) 
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with 

The Taylor approximation (4.4) to Ql for a 5 min 
injection pulse of CRH with kernel (4.14) is shown in 
Figure 7 (...) . This solution has a slightly higher peak 
than the Taylor approximation with kernel (4.12). 
Thus Danckwerts' boundary condition has a small but 
distinguishable effect on the perifusion model solu- 
tion. 

The kernels (4.12) and (4.14) simplify significantly 
if D = q, and were considered by Smith et al. (1991) 
as models of the perifusion chamber. The Taylor 
approximation to Ql for a 5 min injection pulse of 
CRH with kernel (4.12) and D = q is shown in 
Figure 7 (-). This simplifying assumption has a sig- 
nificant effect on the model prediction of Ql.  How- 
ever this simplifying assumption is not valid, since q 
is typically at least five orders of magnitude larger 
than D for the perifusion system problem. Therefore, 
correct specification of the boundary conditions is 
particularly important, especially so for the perifusion 
system. 

5. THE INVERSE ADVECTION-DIFFUSION 
EQUATION 

We now consider an inverse problem associated with 
dispersive flow in pipes. To this end we just consider 
reconstruction after transmission down the pipe con- 
necting the pump and the perifusion chamber 
depicted in Figures 1 and 3. The full inverse problem 
connected with the perifusion apparatus is discussed 
in Section 6. The inverse problem is that of recon- 
struction of the source concentration co(t) from meas- 
urement of Ql(t), the cross-sectional average 
concentration at the pipe exit. Under the conditions 
explained in Section 4.1 (equation 4. I), the dispersive 
flow of concentration in a pipe can be approximated 
by the advection-diffusion equation (4.4). Therefore, 
because analytical solutions to the advection-diffu- 
sion problem are available, we consider the source 
reconstruction problem within this advection-diffu- 

sion framework. In this section we also consider the 
degree of ill-posedness of the associated inverse prob- 
lem, the problem regularisation, and the construction 
of numerical schemes for the corresponding stabilised 
problem. 

This inverse advection-diffusion problem has also 
been analysed by Smith and Wake (1990), and HBo 
(1996, 1997). Smith and Wake (1990) found an ana- 
lytical solution to the inverse problem, however this 
involved an infinite series of time derivatives of the 
downstream concentration measurement and is of 
limited practical use. HBo (1996) considered numeri- 
cal methods based on a mollification method with 
Dirichlet and de la VallCe Poussin kernels. The solu- 
tion scheme presented here is based on the method of 
mollification with a Gaussian kernel. Similar prob- 
lems excluding advection have been examined exten- 
sively (Weber, 1981; EldCn, 1987; EldCn, 1988; 
Murio and Roth, 1988; Murio, 1989; Guo et al., 1990; 
Seidman and EldCn, 1990; Murio, 1993; Regirkka 
and EldCn, 1997; Berntsson, 1999). 

5.1. Problem conditioning 

In this section the inverse problem of reconstruction 
of the source concentration co(t) from Ql(t), via (4.8) 
with kernel (4.9), is considered. As we shall see, this 
inverse problem is always ill-posed for realistic meas- 
urement data. This is because measured data can gen- 
erally only be placed in the space of square integrable 
functions, L ~ ,  or at most the space of continuous func- 
tions, C, and in these function spaces the inverse 
problem mapping operators are unbounded. It is 
therefore central to our analysis to show that the 
inverse problem can be made a well-posed problem. 
That this can be done is well known, and there are a 
number of regularisation techniques available. We 
shall use the method of mollification, based on the 
treatment of Murio (Murio, 1993). 

We now examine the stability of the inverse prob- 
lem of estimation of cg, from knowledge of Q = Ql(t). 
To understand the degree of ill-posedness it is con- 
venient to perform a Fourier analysis of (4.4). Talung 
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the Fourier transform of (4.4) with respect to time, we 
obtain the differential equation 

where the Fourier transform of the function Q is 
defined by 

By requiring bounded solutions as z + co then implies 
that the operator mapping Q -+ co in the Fourier 
transform domain is 

where 

with u = L, 
4<71 

for o = sign(a), and we have used the principal square 
root. Because Re(I(6,a)) -+ 1 as lcl + m, it follows 
from (5.3) that Q is not just a function in L2(F!), but its 
high frequency behaviour is such that 1 1  0 1 1  
decreases at exponential order as 151 + m. This is 
because by Parseval's theorem co E L* e 6 E L ~ .  
It is readily observed that for a general noise function, 
n(t) E L ~ ( R ) ,  assumed to be additive to Q(t) and so 
perturbating Q, there is no reason to believe that the 
high-frequency components of 6(<) will be subject 
to such rapidly decreasing behaviour, and it therefore 
follows that there is no guarantee that the resultant 

& ( E )  will be in L2(F!). This illustrates that the 
inverse signal reconstruction problem is severely 

A 

ill-posed i.e., Q must decrease faster than any poly- 
nomial. It is therefore apparent that Sobolev spaces 
(Dautray and Lions, 1988) do not suffice in placing 
quantitative measures on the degree of ill-posedness, 
so we pro~ceed by defining spaces with exponential 
weights. 

The degree of ill-posedness is apparent if we con- 
sider the family of Hilbert spaces ES furnished with 
the norm 

It then follows that E? = L2, ES1 C_ ES2 if $1 > s2, 
and ES = C"' for s > 0. One can also show that if s l  > 
s2, then EQ is dense in Es2, and Esl is compactly 
embedded in Es2 with the compact isometry opera- 
tor JI. The proof is similar to that for Sobolev spaces 
(Kress, 1989), (p 111 ). By standard means it follows 
that if L is a bounded operator then the inverse of the 
compact operator (L o J): L? -+ E? is an unbounded 
operator. Rewriting (5.3) allows the Fourier transform 
of an operator T to be defined by 

This operator U is also defined by (4.8). Fourier trans- 
form theory than shows that : E O  + E e 2 / " ,  and 
as we deduced previously (T o JI)-' is an unbounded 
operator. From this argument one can therefore 
deduce that increasing & with q fixed generates a 
more ill-posed problem. In contrast, increasing q 
with 4 fixed generates a more well-posed problem. 

We have previously observed that ( ( Q ^ / ( 2  decreases 
at exponential order as 151 + m. It follows that we can 
interpret the product of exponential terms in (5.6) as a 
low-pass filter. A simple measure of the degree of 
smoothing is the frequency for which the filter attains 
half-maximum value. For our problem this can be 
shown to be 

Because E 3  is a strictly increasing function of a, it 
follows that the inverse problem is in some sense 
more well-posed as 21 increases. However for 
jj > 0, lim ,,,, E; = l i rn , ,~(~ = m, and € 4  is 
not a strictly increasing function of q.  For fixed a, 
E g  is a convex function, and thus attains a minimum 
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when d&i = 0. The maximum amount of smooth- 
ing occurs at this minimum, which is when 

which interestingly contains a golden mean type 
number. This critical diffusive value separates the 
inverse problem into two domains, where the diffu- 
sive processes respectively increase and decrease the 
amount of data smoothing respectively. Thus for q 2 

qcrit the inverse problem becomes less ill-conditioned 
as q increases, whereas for q < qcrit the inverse prob- 
lem becomes more ill-conditioned as q increases. For 
the perifusion system qcrir = 1.5 x lop3 m2.s-I > 
~ C R H ,  q ~ v p ,  and ~ A C ~ H  within the pipes, and 

qcrit = 9.5 x m2.s-I > DCRH, DAVP, and DACTH 
within the chamber (see Table I). Therefore, for the 
fluid flow rates within the perifusion system, increas- 

ing q or D respectively increases the degree of 
ill-conditioned of the inverse problem associated with 
the perifusion system. 

The advection-diffusion equation approximation to 
the dispersion in the pipe has generated a considera- 
bly more ill-posed inverse problem than the corre- 
sponding problem for pure shear dispersive flow 
discussed in Shorten and Wall (1998). We now inves- 
tigate the regularisation of this more ill-posed inverse 
problem. 

5.2. Problem regularisation 

The problem is to get a regularised approximation to 
the function co when given a modified function Q,; 
where due to measurement difficulties the true func- 
tion Q, has been corrupted by a noise function n, so 
that 

The functions Q, and n, are defined on the interval I= 
[O, TI, for a given value of T > 0. To proceed, we 
extend the data Q, to the interval Is = [-36, 36 + T ] ,  

and define the mollifier of Q, JsQ, with mollification 
radius 6 by 

1 
with ~ ~ ( 2 )  = -e-x2/h2 

SJ;; X E R .  (5.9) 

The following elementary result is central to our sta- 
bility proof (Murio, 1993). 

Lemma: Murio's Consistency. With f E C' and if f'I2 
I M then 

This consistency result shows that as 6 4 0, then 

( J 6 f  -, f .  
To convert this problem into a well-posed problem 

consider the effect of mollification of the measured 
function Q, that is look at the solution to the problem 
when Q is replaced by J8Q. Due to the linearity of the 
direct problem, cg is then replaced by J6c0, and it can 
be shown that (5.3) becomes 

A (ze) 
.Jdco (<) = - exp 
6 

It is now seen that the effect of the mollification is to 
bound the growth of the exponential function for large 
values of 151. In fact 

with f > 0 and bounded above for non-zero and 6. 
Related inverse problems when q = 0 are examined in 
Wall and Lundstedt (1998). It follows that 
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where co corresponds to co when Q is replaced by 
Q,. The stability result then follows directly from 
Parseval's theorem. 

Lemma 5.1 I f  Q, Q, E L2 then 

We see the mollification method provides the 
inverse mapping operator with a Lipschitz continuity 
result, when the data Q, E C, provided 6 > 0 is fixed. 
Furthermore as I lQ,-Ql l + 0 ,  the parameter 6 can be 
reduced, and the consistency error is then decreased, 
provided Q E C1. Lemma 5.1 and Murio's consist- 
ency lemma then provides the well-posedness of the 
inverse problem: 

Theorem 5.2. The mollified inverse problem is stable 
with respect to perturbations in the data Q. I f  the 
exact boundalyfunction Q E C' with I lQ1l l2 < M  then 
the solution , J s q  to the moll$ed inverse problem 
satisfies 

Having shown that the mollification procedure pro- 
vides a well-posed formulation of the inverse prob- 
lem, we now consider a numerical scheme to compute 
the regularised solution. 

5.3. Numerical methods 

We now investigate stable marching schemes to solve 
the regularised inverse problem. The stabilised prob- 
lem under consideration is to find J6co(0,t) = J6Q(0, t )  
for times t of interest, and some 6 > 0 ,  given that 
J8Q(z, t)  satisfies 

where Q,, is the noise corrupted data measurement. 
We now consider approximate solutions to (5.16) by 

means of finite difference equations. Consider the 
uniform discretisation of the z-t plane: { ( z ,  = nh, 
t j = j m ) , n = O , l ,  ..., N ; N h = C j = 0 , 1 ,  ..., M ; M m = L  
> t ) ,  where L depends on h and m in a way to be 
specified later. If we define the grid function 

= Js Q ( z ,  , t ) , then the partial differential equa- 
tion in (5.16) can be approximated by the consistent 
finite-difference scheme 

for j = 1 , 2 ,  . M n = 1 , 2 ,  ..., N, where 

y N =  J 6 Q n , ( t j ) ,  j = 0 , 1 ,  ..., M  and \ ' o n = O ,  
n = 0,1, . . ., N. This space marching scheme has local 
truncation error O(h  + r n 2 )  as h, m + 0 ,  and 
requires two initial conditions, V: and yN+l. The 
second data function, J6G,, = J6 Q ( t  + h, t) ,  can eas- 
ily be obtained by solving the well-posed direct prob- 
lem (4.8) in the quarter plane z > e ,  t > 0 ,  with initial 
condition Q(x, 0 )  = 0 ,  and boundary condition Q(4, t )  
= J8Qm. Note that as we march back in space, at each 
step we must drop the estimation of the concentration 
profile by one temporal discretisation step. To deter- 
mine the solution 5' on the interval [0, TI therefore 
requires that L = T + t m h .  For h sufficiently small, 
the space marching scheme in (5.17) can be shown to 
be consistent with the stabilised problem (5.16) and 
stable (see Appendix A). 

6. PULSE RECONSTRUCTION IN 
PERIFUSION EXPERIMENTS 

We now consider the inverse problem of predicting 
the input concentration co from knowledge of the out- 
put concentration measurement Q4. This inverse 
problem can be divided into four smaller inverse 
problems; three inverse advection-diffusion equations 
and one inverse mixing problem. The deconvolution 
procedure for the inverse advection-diffusion equa- 
tion has been discussed in Sections 5 .  The results in 
this section were obtained with a mollification radius 
of 6 = 62.5 s, and mesh intervals of N = 50, and 
M  = 250 respectively (see Section 5) .  



206 PAUL R. SHORTEN and DAVID J.N. WALL 

The full inverse problem discussed here requires 
the solution to an inverse mixing problem, which we 
now briefly discuss. This interesting, and useful 
inverse problem is the reconstruction of Ql from 
measurement of Q2. In general this is severely 
ill-posed. However in the radial-independent case 
with Ql(r, t) = Ql (t), or equivalently v ( r )  = G :  (2.3) 
simplifies significantly. From (2.3) it then follows 
that the ill-posedness in computing Ql(t) from Q2(t) is 
equivalent to a differentiation. A simple procedure for 
numerically computing Ql is to compute the deriva- 
tive in (2.3) in a stable manner using the mollification 
method (Murio, 1989), which is outlined in 
Section 5.2. 

I I 
0 200 400 600 800 1000 

Time (s) 

The full deconvolution process is shown in 
Figure 8, where a 2 rnin experimental curve from 
Figure 4 D is used as the concentration measurement 
Q4. The predicted concentration at the cells, chamber 
entrance, and pump are shown in Figure 8 B, C, and 
D respectively. The input pulse is unable to be com- 
pletely reconstructed for two reasons. Firstly the 
model is an approximation to the actual system, and 
we have used the Taylor approximation to this model. 
The second and more important reason is that because 
the inverse problem is ill-posed, we cannot expect to 
reconstruct the high frequency components of the 
input concentration. What we have reconstructed is a 
reasonable approximation to the mollified input. 

Time ( s )  

FIGURE 8 Prediction of the input concentration from an output concentration measurement in a 2 min pulse validation experiment. (A) The 
output concentration measurement Q4 (- - -), and its mollification (-). (B) The predicted concentration at the cells (Q2). (C) The predicted 
chamber entrance concentration (e l ) .  (D) The predicted input concentration (co) (-), and the actual input concentration (- - -) 
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Time (s) Time (s) 

FIGURE 9 CRH-induced ACTH secretion data. (A) The 10 min CRH input pulse (co) of 0.1 nM (- - -), and the ACTH measurement (Q4) 
collected in 5 min fractions (+), along with a cubic spline fit (-). (B) Predicted CRH concentration profile at the pituitary cells (Q2) (- - -), 
and the predicted ACTH concentration profile secreted by the pituitary cells (-) 

The reconstructions for the 1 and 5 min pulses in 
Figures 5 13, D are similar (not shown). 

7. CRH-INDUCED ACTH DATA 
ENHANClEMENT 

We have observed that there is a certain amount of 
dispersion in the signal travelling down the perifusion 
system, particularly for pulses of short duration. The 
methods developed in Sections 3 and 6 are now used 
to account for this in CRH-induced ACTH measure- 
ments frorn equine corticotrophs (Evans et al., 1993), 

(P 396). 
In these experiments a 10 min CRH input pulse of 

0.1 nM is Input into the perifusion system (Figure 9 A 
(- - -)). Using the direct problem solutions from (2.2) 
and (2.4), we can then predict the CRH concentration 
profile that the cells are exposed to (see Figure 9 B 
(- - -)). Secondly, given the collected ACTH concen- 
tration profile measurement, the ACTH concentration 
profile secreted by the pituitary cells can be estimated 
using the theory developed in Section 5. The ACTH 
measurement collected in 5 min fractions is shown in 
Figure 9 A (+), along with a cubic spline fit (-), and 
the reconstruction is shown in Figure 9 B(-). Because 
the secreted ACTH concentration profile in Figure 9 

B is of long duration, the dispersion in the ACTH 
concentration profile is minimal. 

The deconvolution in Figure 9 B supports the con- 
centration dependent, rapid activation of CRH-induced 
ACTH secretion, and a delayed return to basal ACTH 
secretion following the termination of the CRH pulse. 
This contrasts with the raw data in Figure 9 A, which 
suggests a significant delay in activation of the 
CRH-induced ACTH secretion. Our deconvolution 
interpretation agrees with data from the microperifu- 
sion system, which allows the delivery of square 
wave pulses of CRH to the cells, ACTH measure- 
ments very near the cells, and a much shorter sam- 
pling interval of 5 s (Watanabe and Orth, 1987). The 
ACTH responses for 3 min CRH pulses from the 
rnicroperifusion system are shown in Figure 10. The 
onset of ACTH secretion is rapid compared with the 
delay in the return to basal ACTH secretion levels fol- 
lowing the termination in the CRH pulse. 

The decay in ACTH secretion following the termi- 
nation of the CRH pulse can be suitably approximated 
by an exponentially decaying function. The rate of 
decay in this function is then a simple measure of the 
time for ACTH secretion to return to basal levels. 
This rate of decay can be more accurately determined 
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F'IGURE 10 Experimental ACTH output collected in 5 s fractions from ovine pituitary corticotroph cells for a 3 min CRH pulse (indicated by 
the horizontal oCRF bar). Higher concentrations of CRH induce a greater ACTH response. The onset of ACTH secretion is rapid compared 
to the delay in ACTH secretion returning to basal following the termination in the CRH pulse. Data from Watanabe and 01th (1987), p1139 
(reproduced by permission of the Society for Endocrinology) 

from the deconvolved data, particularly for data 
obtained from short CRH pulses. Interestingly this 
rate of decay appears to depend on [CRH] (see 
Figure 10). 

For the raw data in Figure 9, one can associate 1 
nM CRH with an ACTH secretion rate of about 
6.5 mgK. Because the cells are nearly exposed to 1 
nM CRH, there is little error in this statement. How- 
ever, due to dispersion, similar associations between 
the injected CRH concentration and the measured 
ACTH concentration for shorter CRH pulses will not 
be valid (see Figure 5 for a graphical interpretation of 
this). This can be partially alleviated using the decon- 
volution procedure developed in this paper. 

The cell does not see a square wave CRH profile, 
and it is difficult to predict what the cell would secrete 
given a square wave CRH profile. To do so would 

require knowledge of the cellular functional relation- 
ship between CRH and ACTH secretion. However 
this relationship is not known, and in fact the experi- 
ments are designed to infer this relationship. One can 
argue that cells in vivo are never exposed to square 
wave hormone pulses. This is because the hormone 
must travel in the bloodstream, and therefore a certain 
amount of signal dispersion must occur. However the 
microperifusion system is superior to the perifusion 
system, as it enables the delivery of a wider range of 
CRH inputs, with higher resolution in the ACTH 
secretion rate. Justifiably this superior system is more 
expensive to setup. However, because the cellular 
system is nonlinear, knowledge of the square wave 
response does not provide knowledge of the ACTH 
output for arbitrary CRH input concentrations. 
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8. DISCUSSION 

The major drawback of the perifusion system derives 
from the dispersion and mixing of the material tracer 
within the pipe. This is particularly significant for 
input pulses of short duration. We have constructed a 
mathematical model of the fluid flow in the perifusion 
system, and observed that it explains a number of 
observable features in the measured concentration 
profile. We have also constructed a useful approxima- 
tion to the model, the advection-diffusion equation, 
and outlined under what conditions the approximation 
is valid and how the associated parameters relate to 
measurable quantities. 

The major drawbacks of the perifusion system have 
been highlighted, and a number of improvements can 
be based om these drawbacks. In order to circumvent 
the dispersion in the perifusion system a number of 
improved systems have been devised, notably the 
microperifusion apparatus designed by Watanabe and 
Orth (198i'), which eliminates the pipes altogether. 
One can also decrease the dispersion in the pipes by 
using a pseudoplastic fluid, or by increasing the fluid 
flow rate. I'Iowever the pituitary cells do not behave 
normally if the fluid flow rate is too large, so this is 
not a viable option. Decreasing the cell chamber vol- 
ume will also reduce the amount of dispersion in the 
input concentration profile. 

We have: also introduced a class of inverse prob- 
lems in order to deconvolve, or take account of the 
introduced experimental errors in the perifusion appa- 
ratus. These ill-posed inverse problems involve the 
estimation of a temporally varying upstream concen- 
tration from measurement of a cross sectional average 
material concentration at some downstream location. 
Due to the ill-posedness of this inverse problem, there 
is a limit to the degree of data improvement. How- 
ever, in contrast with the raw data, this deconvolution 
supports the concentration dependent, rapid activation 
of CRH-induced ACTH secretion, along with a 
delayed return to basal ACTH secretion following the 
termination of the CRH pulse. This interpretation 
agrees with data obtained from the microperifusion 
system. 
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APPENDICY A. 
INVERSE: PROBLEM REGULARISATION 

Theorem A. 1. For h suflciently small, the space 
marching scheme in (5.17), with initial conditions 
p ( t )  = JsQm(t) and 

where K is given by (4.9), is consistent with the stabi- 
lisedproblem (5.16), and is stable. 

Proof In order to analyse the stability of the marching 
scheme (5.17), we consider the following equivalent 
scheme: 

where U can be interpreted as an intermediate flux 
variable. The discrete Fourier transform, f ,  of f j  = 

f om), for j an integer, is defined by 

f = x f j e x p ( i j m w ) ,  05 llcl <n/rn. (A.3)  
i 

Taking the discrete Fourier transform of (A.2) we 
have 

where Isin(wm)l I Awl. The following stability argu- 
ment is based on a similar argument in Murio, 1993 (p 
80). It follows that 

rna:c(lVol, 16'1) < 

where Fm is the flux at z = 4, which can be estimated 
through the second kind operator 

where K is given by (4.9), and hl> 0 is fixed. It fol- 
lows from standard theory that l lFmI I 2  is bounded by 
ell lQml 12, for some fixed positive constant cl (Linz, 
1985), (p 40). Therefore 

From Poisson's summation formula 

we can show that 

for 6 2 m. Therefore integrating (A.7) with respect to 
w, and taking square roots we have 

e lw ~ 2 6 "  
4 sup [exp((+T--)] 

O<Iwl<$ 
4 

where Nh = 4, and (1 + x ) ~  < exp (Nx). It follows that 
if 6 > then 

and the stability result for fixed 6 > 0 follows from 
Parseval's equality. 0 


