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We formulate a model to describe the dynamics of hepatitis C virus (HCV) considering four
populations: uninfected liver cells, infected liver cells, HCV and T cells. Analysis of the model reveals
the existence of two equilibrium states, the uninfected state in which no virus is present and an
endemically infected state, in which virus and infected cells are present. There exists a threshold
condition that determines the existence and stability of the endemic equilibrium. We discuss the
efficacy of the therapy methods for hepatitis C in terms of the threshold parameter. Success of the
therapy could possibly be predicted from the early viral dynamics in the patients.
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INTRODUCTION

Infection with hepatitis C virus (HCV) represents a public

health problem with an alarming prevalence (2–15%)

throughout the world (Neumann et al., 1998). The

existence of hepatitis C was not appreciated until 1975,

when the application of recently developed diagnostic test

for hepatitis A and B revealed that many cases were

neither hepatitis A nor hepatitis B. The causative agent

was identified in 1989 (Purcell, 1994).

The HCV is commonly transmitted via blood and blood

products. Its transmission by other routes as unprotected

sex, perinatal transmission from infected mother to

offspring, etc. have been proposed but remain controver-

sial and probably of minor importance.

The incubation period of hepatitis C averages 50 days.

Acute hepatitis C is generally a mild disease with a

mortality rate of 1%. However, more than 50% of acute

cases progress to chronicity, and some of them will

eventually evolve to cirrhosis or hepatocellular carcinoma,

or both (Purcell, 1994).

In acute infection, the most common symptom is

fatigue. However, the majority of cases (up to 90%) are

asymptomatic. This makes the diagnosis of hepatitis C

very difficult.

The current treatment for hepatitis C consists in the

application of interferon (IFN) a-2b with dose from 3 to

15 million international units (mlU). However, the

treatment with IFN is successful in only 11–30% cases.

In Neumann et al. (1998) an analysis of the efficacy of

IFN-a therapy is presented. In addition, it has been

reported that IFN used in combination with ribavirin

(another antiviral agent) is more effective than the

treatment with only IFN (Purcell, 1994). No vaccine is

available for hepatitis C, since a major obstacle to vaccine

development is the probability of extensive antigenic

variation between different strains (Lemon and Brown,

1995).

Appropriate mathematical models can be helpful to

answer biologically important questions concerned with

pathogenesis, the dynamics of the immune response and

effectiveness of drug treatment. Models to understand the

immune response to persistent virus and effectiveness of

drug therapy have been formulated by several authors.

Thus, Nowak and Bangham (1996) used a simple

mathematical approach to explore the effects of individual

variation in immune responsiveness on virus load and

diversity. They found that a better indicator of CTL

responsiveness is the equilibrium virus load, rather than

the abundance of virus specific CTLs. Nowak et al. (1996)

formulated a model that provided a quantitative under-

standing of HBV replication dynamics. Their analysis had

implication for the optimal timing of drug treatment and

immunotherapy in chronic HBV infection. Payne et al.

(1996) formulated a model of hepatitis B virus infection to

address important features of the infection, namely the
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wide manifestations of the infection and the age

dependence thereof, and the typically long delay before

the development of virus-induced liver cancer. Bonhoeffer

et al. (1997) analyzed the dynamics of virus populations,

the role of the immune system and resistance of drug

therapy in limiting virus abundance in infections with HIV

or hepatitis B. Neumann et al. (1998) used a mathematical

model to analyze the efficacy of treatment with IFN-a

therapy.

In this paper, we formulate and analyze a model for the

HCV dynamics. Our model is closely related to the models

proposed in Nowak and Bangham (1996), Nowak et al.

(1996), Payne et al. (1996), Bonhoeffer et al. (1997) and

Neumann et al. (1998), but here we consider the immune

response by adding the virus-specific T cell population,

and we make a global analysis of the model equations. As

in Nowak and Bangham (1996), Nowak et al. (1996) and

Bonhoeffer et al. (1997), we find a threshold parameter R0

(the basic reproductive number of the virus) which

determines the dynamical behavior of the infection. This

parameter is further used to account for the efficacy of

hepatitis C therapy.

THE MODEL

Before the formulation of the model we remark some facts

about the immune response to hepatitis C. Antibodies,

cytokines, natural killer cells and T cells are essential

components of a normal immune response to virus. For

HCV, infected individuals generally develop antibodies

reactive with the core (C) protein as well as several

nonstructural protein antigens of HCV. However, there is

no evidence that HCV antibodies, even when present in

high serum titers protect against new cell infections or

progression of the disease (Lemon and Brown, 1995).

On the other hand, CD8 þ cytotoxic T lymphocytes

have been identified in the liver of chronically infected

humans and chimpanzees (Lemon and Brown, 1995).

These cells are activated by a signal given by the virus to

the immune system, either on the surface of the infected

cells or on antigen-presenting cells. However, the relative

contribution of T cells response to immunity and to

disease pathogenesis remains uncertain. It is apparent that

they are not capable of eliminating the infection (Lemon

and Brown, 1995).

Here, we will consider only T cells response. One of the

questions that we want to address by mathematical models

is how important is this response on the dynamics of the

infection.

Our model contains four variables: healthy liver cells Hs

or target cells, infected liver cells Hi, virus load V, and

CD8 þ cytotoxic T cells. The assumptions are the

following.

Healthy liver cells Hs are produced at a constant rate bs

and die at a constant rate ms; Hs cells become infected at

a rate proportional to the product of Hs and V, with

constant of proportionality k, and once infected die with

a constant rate mi; T cells kill infected cells Hi at a rate

proportional to the product of Hi and T, with constant of

proportionality d.

Even when the acute HCV infection appears to be lytic,

for chronic HCV infection it is not completely clear

whether the virus is intrinsically cytopatic in infected

hepatocytes. However, it appears more likely that the liver

damage is immunologically mediated, as in chronic

hepatitis B. Hepatocellular damage is probably initiated

by the activation of virus-specific cytotoxic T cells

(Lemon and Brown, 1995). Then it is reasonable to

assume that the average life time of infected cells (1/mi) is

shorter than the average life-time of healthy cells (1/ms).

Thus, in the following we will assume mi $ ms:
Hepatitis C virions are produced inside the infected

cells at a rate of p virions per infected cell per day. On the

other hand, viruses die at a per capita constant rate mv.

In the presence of HCV, supply of new T cells is

given by

bTV 1 2
T

Tmax

� �
;

where bT is the rate of growth of T cells, Tmax is the

maximum T cell population level. On the other hand T

cells die at a per capita constant rate mT.

These assumptions lead to the following differential

equations:

_Hs ¼ bs 2 kHsV 2 msHs
_Hi ¼ kHsV 2 dHiT 2 miHi

_V ¼ pHi 2 mvV _T ¼ bTV 1 2
T

Tmax

� �
2 mTT ð1Þ

All parameters in the model are positive. It is a simple

matter to verify that Eq. (1) satisfy the existence and

uniqueness conditions. Moreover, the region

V ¼ {ðHs;Hi;V ; TÞ [ R4
þjHs þ Hi # HM;V # VM; T

# TM}

where HM ¼ bs=ms; VM ¼ ðp=mVÞHM; and TM ¼

ðbT=m
*
T ÞVM with m*

T ¼ mT þ ðbT=TmaxÞVM; is positively

invariant for system (1), because the vector field on the

boundary does not pint to the exterior. Therefore, solutions

starting in V will remain there for t $ 0: In the following

we will assume that initial conditions are always given

in V.

Remark. We observe that HM is the maximum number of

cells in a healthy liver, therefore VM is maximum virus

load supported by an organism. On the other hand TM ,

Tmax represents the maximum number of T cells generated

in an individual with hepatitis C.

EQUILIBRIUM SOLUTIONS

We now show that in V there are two possible steady

states, one with no virus present, an uninfected steady
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state, and another with a constant level of virus, an

endemically infected steady state.

The equilibrium solutions of (1) must satisfy the

following algebraic equations.

0 ¼ bs 2 kHsV 2 msHs 0 ¼ kHsV 2 dHiT 2 miHi

0 ¼ pHi 2 mVV 0 ¼ bTV 1 2
T

Tmax

� �
2 mTT : ð2Þ

From the first, third and fourth equations of (2), it can be

seen that the equilibrium points satisfy the following

relations

H*
s ¼

bs

kV * þ ms

;

H*
i ¼

mVV *

p
;

T * ¼
bTTmaxV *

bTV * þ mTTmax

:

If V * ¼ 0; we obtain the uninfected steady state

solution

I0 ¼
bs

ms

; 0; 0; 0

� �
; ð3Þ

in which there is no infection. Consequently, all hepatic

cells are healthy and H*
s ¼ bs=ms is the number of liver

cells in a healthy individual.

If V * – 0; then substituting H*
s ; H*

i ; and T* in the

second equation of system (2), we obtain after some

calculations that V* must satisfy the following quadratic

equation

rðV * Þ ¼ AV *2 þ BV * þ C; ð4Þ

with coefficients given by

A ¼ kbTmVðdTmax þ miÞ;

B ¼ 2 kbsbTpþ dbTmsmVTmax þ kmimVmTTmax

þ bTmimsmV;

C ¼ mimsmVmTTmax 2 kbspmTTmax:

Now, we see conditions such that Eq. (4) has a solution

0 , V * , VM:
First, note that

rðVMÞ ¼
kb2

sbTp2dTmax

m2
smV

þ
kb2

sbTp2

msmV

mi

ms

2 1

� �
þ dbsbTpTmax þ bsbTpmi þ mimsmVmTTmax

þ kbspmTTmax

mi

ms

2 1

� �

and

_rðVMÞ ¼
2kbsbTpdTmax

ms

þ kbsbTp
2mi

ms

2 1

� �
þ dbTmsmVTmax þ kmimVmTTmax þ bTmimsmV

are bigger than zero since mi $ ms; and all the coefficients

are non-negative. Then, the existence of positive solutions

of Eq. (4) will depend on the sign of r(0) and _rð0Þ:We have

the following cases: (a) rð0Þ . 0: In this case it is easy to

see that rð0Þ ¼ C . 0 implies _rð0Þ ¼ B . 0; therefore Eq.

(4) has no solutions 0 , V * , VM: (b) rð0Þ ¼ 0: In this

other case we have that _rð0Þ . 0; and therefore the only

positive root is V * ¼ 0: (c) rð0Þ , 0: Clearly in this case

there exists a unique root 0 , V * , VM:
From (2) it is easy to verify that if 0 , V * , VM; then

the non-trivial equilibrium I1 ¼ ðH
*
s ;H

*
i ;V

* ; T * Þ [ V:

Note also that C , 0 is equivalent to
kbsp

mimsmV

. 1: Then,

summarizing we have the following theorem.

Theorem 1. Let R0 be given by

R0 ;
kbsp

mimsmV

ð5Þ

If R0 # 1; then I0 ¼ ððbs=msÞ; 0; 0; 0Þ is the only

equilibrium point in V; if R0 . 1 then the endemically

infected equilibrium

I1 ¼ ðH
*
s ;H

*
i ;V

* ; T * Þ

¼
bs

kV * þ ms

;
mVV *

p
;V * ;

bTTmaxV *

bTV * þ mTTmax

 !
ð6Þ

will also lie in V.

The threshold parameter R0 defined by (5) is called the

basic reproductive number of the virus. The value of this

parameter plays a central role in the dynamics of system

(1) with important implications in the treatment of

hepatitis C.

The parameter R0 has an interesting biological mean-

ing: assume that an initial virus load V0 is introduced in a

healthy organism with bs=ms healthy liver cells. These

viruses produce in average, (kbs=msmVÞV0 infected cells

during their lifespan. Since each infected cell produces

p=mi virions during its lifespan, ðkbsp=mimVmsÞV0 ¼

R0V0 is the average number of new virions produced by

the initial virus load V0 in a healthy organism.

It is worthy to observe that R0 depends only on six of the

ten parameters in the model.

STABILITY OF THE UNINFECTED STEADY

STATE

In this section, we study the stability properties of the

trivial or uninfected equilibrium state I0. The Jacobian
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matrix J ðHs;Hi;V; TÞ of system (1) is given by

2kV 2 ms 0 2kHs 0

kV 2dT 2 mi kHs 2dHi

0 p 2mV 0

0 0 bT 1 2 T
Tmax

� �
2 bTV

Tmax
2 mT

0BBBBBB@

1CCCCCCA:
ð7Þ

Then, the local stability of I0 is governed by the

eigenvalues of the matrix

JðI0Þ ¼

2ms 0 2k bs

ms
0

0 2mi k bs

ms
0

0 p 2mV 0

0 0 bT 2mT

0BBBBBB@

1CCCCCCA; ð8Þ

which clearly are 2ms; 2mT and the roots of the quadratic

equation

l2 þ ðmi þ mVÞlþ mimV 1 2
kbsp

msmVmi

� �
¼ 0: ð9Þ

The other two eigenvalues of J(I0) have negative real

part if and only if the coefficients of (9) are positive, and

this occurs if and only if R0 , 1: Therefore I0 is locally

asymptotically stable for R0 , 1: We can actually show

that it is globally asymptotically stable in V for R0 # 1:
To prove this, we use the Lyapunov function

UðHs;Hi;V; TÞ ¼ pHi þ miV : ð10Þ

The orbital derivative of U is given by

_U ¼ 2mimV 1 2
kpHs

mimV

� �
V 2 pdHiT : ð11Þ

Since Hs # bs=ms; the expression inside the bracket in

(11) is non-negative for R0 # 1 and therefore _U # 0 in V.

The subset where _U ¼ 0 is defined by the equations

V ¼ 0 HiT ¼ 0 if R0 , 1

V ¼ 0 or Hs ¼
bs

ms

; HiT ¼ 0 if R0 ¼ 1:

From inspection of system (1), it can be seen that the

maximum invariant set contained in _U ¼ 0 is the plane

V ¼ 0; Hi ¼ 0: In this set system (1) becomes

_Hs ¼ bs 2 msHs
_Hi ¼ 0 _V ¼ 0 _T ¼ 2mTT

which implies that solutions started there tend to the

equilibrium I0 as t goes to infinity. Therefore, applying

LaSalle–Lyapunov Theorem (Hale, 1969) it follows that

I0 is locally stable and all trajectories starting in V

approach I0. Summarizing, we have proven the following

Theorem 2. The uninfected steady state I0 of system (1)

is globally asymptotically stable in the region V.

STABILITY OF THE ENDEMICALLY INFECTED

STATE

For R0 . 1; the equilibrium I0 becomes an unstable

hyperbolic point, and the endemically infected equili-

brium, I1 emerges in the region V. The local stability

of I1 is given by the Jacobian of (1) evaluated in this

point:

that can be rewritten as

2 bs

H*
s

0 2kH*
s 0

kV * 2
kH*

s p

mV
kH*

s 2dH*
i

0 p 2mV 0

0 0 mTT *

V *
2 bTV *

T *

0BBBBBBBBB@

1CCCCCCCCCA
when we take into account the identities:

kV þ ms ¼
bs

H*
s

; dT * þ mi ¼
kH*

s V *

H*
i

;

V *

H*
i

¼
p

mV

; dT * þ mi ¼
kH*

s p

mV

;

bT 1 2
T *

Tmax

 !
¼

mTT *

V *
;

bTV *

Tmax

þ mT ¼
bTV *

T *
;

which are obtained from system (3). Hence, the

characteristic polynomial of the linealized system is

given by

2kV * 2 ms 0 2kH*
s 0

kV * 2dT * 2 mi kH*
s 2dH*

i

0 p 2mV 0

0 0 bT 1 2 T *
Tmax

� �
2 bTV *

Tmax
2 mT

0BBBBBBBB@

1CCCCCCCCA
;

PðlÞ ¼ det

2
bs

H*
s

2 l 0 2kH*
s 0

kV * 2
kH*

s p

mV
2 l kH*

s 2dH*
i

0 p 2mV 2 l 0

0 0 mTT *

V *
2

bTV *

T *
2 l

0BBBBBBBBB@

1CCCCCCCCCA
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After some calculations we obtain

PðlÞ ¼ l4 þ a1l
3 þ a2l

2 þ a3lþ a4 ð12Þ

with

a1 ¼ mV þ
bs

H*
s

þ
bTV *

T *
þ

kH*
s p

mV

;

a2 ¼
bs

H*
s

bTV *

T *
þ mV þ

kH*
s p

mV

 !" #

þ
bTV *

T *
mV þ

kH*
s p

mV

 !
;

a3 ¼ dmVmTT * þ k 2pH*
s V *

þ
bs

H*
s

bTV *

T *
mV þ

kH*
s p

mV

 !
;

a4 ¼ dmVmTT * bs

H*
s

þ
k 2pbTH*

s ðV
* Þ2

T *
: ð13Þ

Using the Routh–Hurwitz criteria (Gantmacher, 1960),

the local stability of the endemic equilibrium I1 will be

established if we show that

D3 ¼

a1 1 0

a3 a2 a1

0 a4 a3

��������
�������� ¼ ða1a2 2 a3Þa3 2 a2

1a4 . 0; ð14Þ

since the coefficients a1, a2, a3 and a4 of the characteristic

polynomial P(l ) are all positive.

To see that condition (14) is satisfied, it is convenient to

adopt the following notation:

A ¼
bs

H*
s

; B ¼
bTV

T *
C ¼

kH*
s p

mV

; D ¼ dmVmTT *

E ¼ kmVV * ; F ¼ C þ mV; G ¼
bTV *

Tmax

:

In terms of the variables above we rewrite the coefficients

a1, a2, a3 and a4 as

a1 ¼ Aþ Bþ F;

a2 ¼ ABþ aF þ BF;

a3 ¼ ABF þ CE þ D;

a4 ¼ ADþ BCE:

After tedious calculations we obtain the following

expression

ða1a22 a3Þa3 2 a2
1a4

¼ A3B2F þ A2BDþ A2CEF þ A2B3F

þ B2DF þ A3ðBF 2 2 DÞ þ B3ðAF 2 2 CEÞ

þ 2A2BðBF 2 2 DÞ2 AB2CE þ ABFðBF 2 2 DÞ

þ ABFðAF 2 2 CEÞ2 A2DF 2 B2CEF

þ CEðAF 2 2 CEÞ þ DðBF 2 2 DÞ2 2CED:

ð15Þ

On the other hand, from the equations in equilibrium (3)

we obtain the relations:

A ¼
E

mV

þ ms; D ¼ CmVmT 2 mimTmV;

and from them it is easy to see that the following

inequalities are satisfied

AF 2 . 2EC; BF 2 . 2D; BF 2 . BC 2: ð16Þ

Now, from (16) we have the following inequalities

2A2BðBF 2 2 DÞ2 AB2CE

¼ A2BðBF 2 2 2DÞ þ AB2ðAF 2 2 CEÞ . 0 ð17Þ

ABFðBF 2 2 DÞ þ ABFðAF 2 2 CEÞ2 A2DF

2 B2CEF

¼ ABF 3ðAþ BÞ2 ABFðCE þ DÞ2 FðA2D

þ B2CEÞ

. ABF 3ðAþ BÞ2 ABFðCE þ DÞ

2 F
A2BF 2

2
þ

B2AF 2

2

� �

¼
ABF 3ðAþ BÞ

2
2 ABFðCE þ DÞ

¼ ABF
AF 2

2
2 CE

� �
þ ABF

BF 2

2
2 D

� �
. 0; ð18Þ

and

DðBF 2 2 DÞ þ CEðAF 2 2 CEÞ2 2CDE

. D 2 þ ðCEÞ2 2 2CDE ¼ ðD 2 CEÞ2 $ 0 ð19Þ

From (17)–(19) it follows inequality (14). Therefore we

have proved the following theorem.
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Theorem 3. For R0 . the endemically infected state I1

is in V and it is locally asymptotically stable.

DISCUSSION

Starting with a description of healthy and infected liver

cells Hs, Hi, virus load V and virus specific T cells, we

have developed a model for hepatitis C dynamics. While

our model is overly simple in that it does not account for

the immune response to HCV infection or mechanisms of

cell death other than killing by cytotoxic T cells, it has

some interesting predictions.

The basic reproductive number of the virus, R0 has been

used largely in understanding the persistence of viral

infections within individuals (see for example Nowak,

1996 and Bonhoeffer et al., 1997), and in the population.

For this model, R0 ¼ bskp=mimsmV and it has to be above

one for successful chronic HCV infection. If R0 # 1; then

the level of virus load and infected cells will

monotonically decrease and ultimately be eliminated.

This decrease may be due to the fact, that virus does not

infect enough cells, or infected cells die without producing

a sufficient number of viral progeny. In this aspect, the

model is similar to epidemiological models in which

infected individuals must infect at least a critical number

of individuals for an epidemic to occur. As in

epidemiological models, we have two steady states, an

uninfected steady state where the virus, infected cells and

reactive T cells are not present; and an endemically

infected steady state where all four populations of the

model are maintained.

FIGURE 1 Numerical solution of model (1). The graphs show healthy liver cells, infected liver cells virus load and T cells versus time. The parameters
in the simulation are: bs=ms ¼ 5; 000; ms ¼ mT ¼ 0:02=day; mi ¼ 0:5=day; mV ¼ 5=day; k ¼ 0:00003; p ¼ 100 virions per milimiter per cell per day,
d ¼ 0:00001; bT ¼ 0:0003: In this case R0 ¼ 0:6:
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Figures. 1 and 2 illustrate the typical behavior of the

healthy and infected liver cells, virus load and T cells

initially positive. In Fig. 1 R0 ¼ 0:6; whereas in Fig. 2,

R0 ¼ 1:2: Notice that temporal courses of the liver cells

and the virus load present damped oscillations.

One interesting feature of our model is that R0 does not

depend on the T cell immune response of the organism. It

appears that activation of virus-specific T cells are more

related with the liver damage in chronic hepatitis C

(Lemon and Brown, 1995), and it is probably that the

effect of the immune response is reflected in the mortality

rate of infected cells mi.

Clinical studies has been done to document the efficacy

of recombinant IFN-a in the treatment of chronic hepatitis

C (Lemon and Brown, 1995; Poynard et al., 1998).

Although IFN has been approved for treatment of chronic

hepatitis C, it has been showed that it is successful in only

11–30% of the cases (Neumann et al., 1998), and the

mechanism of action is not well understood. In a recent

paper, Neumann et al. (1998) analyzed this problem. They

hypothesized that IFN acts by blocking the production or

release of virions rather than by blocking the novo

infections. Using mathematical analysis coupled with

clinical studies, they corroborated their hypothesis, and

also they estimated the efficacy of IFN therapy, that is, the

percentage of HCV production blocked by different doses

of IFN. Furthermore, they estimated the infected cell rate.

In this paper, we use a more theoretical point of view to

analyze the effects of the current treatment with IFN. It is

clear that in order to control the disease (i.e. the virus load

declines to zero), we have to reduce R0 below the value one,

and this can be achieved reducing k or p below critical values

or increasing mV or mi above critical values. It is worth to

note that R0 is directly proportional to k and p, and inversely

FIGURE 2 Numerical solution of model (1). The graphs show healthy liver cells, infected liver cells, virus load and T cells versus time. The parameters
in the simulation are: bs=ms ¼ 5; 000; ms ¼ mT ¼ 0:02=day; mi ¼ 0:5=day; mV ¼ 5=day; k ¼ 0:00003; p ¼ 200 virions per millimeter per cell per day,
d ¼ 0:00001; bT ¼ 0:0003: In this case R0 ¼ 1:2:
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proportional to mi, mV, which implies that increasing the

mortality of the infected cells and the free virus could be a

mechanism to achieve a fast decrease in the virus load. Of

course, this will depend on the range of the parameters.

Combination therapies that reduce the rate of “de novo”

infections k, production rate of virions p and at the same

time rise the mortality of infected cells or virus, could be

much more effective that the current therapy with IFN,

which is assumed that essentially blocks production of new

virons. Recent reports have suggested that ribavirin in

combination with IFN is more effective that the treatment

with only IFN (see Poynard et al., 1998). Studies on

combination therapy are under way, but results are still

inconclusive.

The model can be used to study the relation between the

parameters involved in the infection and the endemic virus

load. Endemic virus load is directly correlated with k and p

(Fig. 3); and inversely correlated to mi and mV (Fig. 4).

These correlations suggest that immune control through

faster killing of infected cells or free virus may have an

important role in lowering HCV load.

Also, Figs. 3 and 4 show that the magnitude of the

variation virus load is sensible to the values of the

parameters. Virus load increases for small values of k and

p, but saturates for large values of these parameters. On

the other hand, for small values of mi and mV, virus load

decreases rapidly, but for larger values it remains almost

constant. This suggests that strong or weak response to

treatments depends on the state of viral, infection and

immune parameters, and the success of the therapy could

possibly the predicted from the early knowledge of these

parameters in the patients.

Substituting the endemic values V *=H*
i ¼

p
mV

in the

expression R0 ¼ 1 we obtain the equivalent threshold

FIGURE 3 V* vs. k, p, respectively. The initial values of the parameters for V * ¼ 0 are: bs=ms ¼ 5; 000; ms ¼ mT ¼ 0:02=day; mi ¼ 0:5=day;
mV ¼ 5=day; k ¼ 0:00003; p ¼ 100 virions per millimeter per cell per day, d ¼ 0:00001; bT ¼ 0:0003:
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condition for HCV infection

V *

�H
*
i

¼
ms

k
ð20Þ

where �H
*
i ¼

H*
i

bs=ms
is the proportion of infected cells.

Theoretically, this means that in order to clear the

infection, the quotient of the virus load and the proportion

of infected cells has to be less or equal than the right hand

side of Eq. (20). Now, V* and �H
*
i could be obtained from

clinical tests and k and ms could be estimated from data

(see Neumann et al., 1998) for an estimation of ms) in

order to test the feasibility of this model.
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