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We have extended an automaton model of brain tumor growth to study the effects of treatment. By varying
three treatment parameters, we can simulate tumors that display clinically plausible survival times. Much
of our work is dedicated to heterogeneous tumors with both treatment-sensitive and treatment-resistant
cells. First, we investigate two-strain systems in which resistant cells are initialized within predominantly
sensitive tumors. We find that when resistant cells are not confined to a particular location, they compete
more effectively with the sensitive population. Moreover, in this case, the fraction of resistant cells within
the tumor is a less important indicator of patient prognosis when compared to the case in which the
resistant cells are scattered throughout the tumor. In additional simulations, we investigate tumors that are
initially monoclonal and treatment-sensitive, but that undergo resistance-mutations in response to
treatment. Here, the tumors with both very frequent and very infrequent mutations develop with more
spherical geometries. Tumors with intermediate mutational responses exhibit multi-lobed geometries, as
mutant strains develop at localized points on the tumors’ surfaces.
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INTRODUCTION

The most severe grade of astrocytic brain tumor,

glioblastoma multiforme (GBM) is one of the deadliest

forms of human cancer. The typical approach for treating

GBM involves surgical resection of as much of the tumor

as possible, followed by radiation treatment and

chemotherapy (Holland, 2000). Despite these techniques,

long-term prognoses are still rather bleak. Drug resistant

tumor cells are a formidable obstacle in this regard. Within

a single tumor of monoclonal origin, there can develop

multiple sub-populations, each of which may be

characterized by different growth-rates and treatment

susceptibilities (Yung et al., 1982; Paulus and Peiffer,

1989; Berkman et al., 1992; Coons and Johnson, 1993).

Treatment resistance is itself a complex phenomenon.

There is no single cause of resistance, and many

biochemical aspects of it are poorly understood.

Chemoresistant strains can either be resistant to a single

drug or drug family (individual resistance), or they can be

resistant to an array of agents (multidrug/pleotropic

resistance) (Bredel, 2001). Cellular mechanisms behind

multidrug resistance include increased chemical efflux

and/or decreased chemical influx, such as with P-

glycoprotein (P-gp)-mediated drug resistance (Endicott

and Ling, 1989; German, 1996).

Complicating the situation further, resistance can arise

at variable times during tumor development. Some tumors

are resistant to chemotherapy from the onset. This has

been described as inherent resistance, because it exists

before chemotherapeutic drugs are ever introduced.

In other cases, however, treatment initially proves

successful, and only later does the tumor, prove resistant.

This is an example of acquired resistance, as it develops in

response to treatment (Bredel, 2001). There are at least

two possible mechanisms for this type of tumor behavior.

Acquired resistance may result from a small number of

resistant cells that are gradually selected for throughout

the course of treatment. At the same time, there is also

evidence suggesting that chemotherapeutic agents may

induce genetic or epigenetic changes within tumor cells,

leading to a resistant phenotype. For example, Poppenborg

et al. (1997) have reported that a glioma cell line pretreated

with cis-diamminedichloroplatinum(II) (cisplatin) shows
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increased cisplatin resistance compared to untreated cells.

Their data suggest that the resistance is mediated by

induced mutations and up-regulated glutathione levels.

Other studies indicate that chemotherapy may increase

cellular levels of P-gp mRNA and protein in various forms

of human cancer (Chadhary and Roninson, 1993; Gekeler

et al., 1994). A tumor’s response to radiation therapy can

also depend on underlying genetic factors. A cell’s

inherent radio-resistance may stem from the efficiency of

DNA repair mechanisms in sublethally damaged cells

(Gerweck et al., 1977; Kayama et al., 1991; Zhang et al.,

1993).

In response to this dilemma, theoreticians have

developed a number of mathematical models to explain

tumor treatment and resistance. Brain tumors are, in many

ways, ideal candidates for theoretical modeling. Their

rapid growth and resilience suggests that many may be

investigated as self-organizing, dynamic systems (Kraus

and Wolf, 1993; Deisboeck et al., 2001). Mathematical

approaches to tumor treatment offer a perspective that

current in vivo/in vitro techniques cannot. Some of the

earliest work toward understanding drug resistance comes

from Coldman and Goldie (1979). They proposed a model

which links a tumor’s drug sensitivity to its rate of

spontaneous resistance mutations. They hypothesized that

tumors may experience mutations that lead to resistance

against drugs to which they have not been exposed

previously. The following differential equation was

utilized to relate the mean volume of a resistant strain to

total tumor volume:

dm

dt
¼

m

N
þ a 1 2

m

N

� �
: ð1Þ

In this equation, m is the mean volume of the resistant

strain, N is the total volume of the tumor and a is the

mutation rate per cell generation. With the assumption that

back mutations (resistant to sensitive) may occur, the

expected number of resistant cells for a tumor of size N is

given by

m ¼
1

2
ð1 2 N 22aÞN: ð2Þ

Later work built upon this topic to consider such issues

as the effectiveness of various drug protocols, as well as

the outcome of treatment on tumors with both actively

dividing and quiescent cells (Coldman and Goldie, 1985;

1986).

Additional investigations have likewise studied the

effects of treatment on heterogeneous tumors. Tracqui

et al. (1995) considered chemotherapy in light of the

invasive ability of glioma cells. With a simple

deterministic approach, they found that the effects of

treatment in one patient do not agree with standard tumor

growth models, unless a resistant sub-population is also

considered. In 1998, Panetta relied upon sets of coupled

ordinary differential equations to model the size of two

sub-populations in time:

dx

dt
¼ ½r1 2 d1ðtÞ�x ð3Þ

dy

dt
¼ b1d1ðtÞx þ ½r2 2 d2ðtÞ�y: ð4Þ

In these equations, x represents the sensitive cell

population, y represents the resistant cell population, r1

and r2 are their respective growth-rates and d1 and d2 are

their respective drug sensitivities. Panetta’s investigation

touched upon several topics, including the development of

treatment protocol and the delivery of combination

chemotherapy. Birkhead et al. (1987) similarly employed

coupled ordinary differential equation in their study,

which considered both cycling and resting tumor cells.

Both classifications included treatment-sensitive and

treatment-resistant cells. Sensitive cells could convert to

resistant cells, while cycling and resting cells could inter-

convert. In several scenarios, the treatment routine and the

cellular sensitivity were varied to illustrate general

principles of successful chemotherapy. In other work,

Costa et al. (1995) and Boldrini (2000) attempt to

formulate effective treatment methodologies by analyzing

tumor-systems from an optimization perspective.

In the more general context of clonal heterogeneity,

Michelson et al. have proposed several models describing

the emergence of sub-populations. They first developed a

deterministic model to study the dynamics of inter-strain

competition in both classically competitive and emergent

environments (1987). This approach is an extension of a

model initially proposed by Jansson and Revesz (1974).

Later, Michelson et al. (1989) devised a stochastic analog

to the first investigation. Here, processes were governed

by a Fokker–Planck probability density function, for

which solutions were generated numerically. They

demonstrated that both the deterministic and stochastic

models suggest a like picture of tumor dynamics. These

studies did not specifically examine differential drug

resistance among strains, but they are quite applicable to

the topic. In a later paper, Michelson (1989) focused on

treatment with an investigation of the P-gp pump,

multidrug resistance, and its reversal.

These previous models have attempted to approach

tumor treatment with a great deal of mathematical rigor.

At the same time, one could envision certain ways by

which their scope could be extended. With deterministic

approaches, for example, the sets of equations that govern

tumor behavior often do not correspond to the

characteristics of individual tumor cells. An important

goal of studying tumor development is to illustrate how

their macroscopic traits stem from their microscopic

properties. Another potential challenge is to formulate

models that can be appreciated by as diverse an audience

as possible. Ideally, the mathematical complexity that

allows theoreticians to analyze subtle aspects of treatment

should not be an obstacle for clinicians who treat GBM.
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A model that accounts for complex tumor behavior with

relative mathematical ease could be valuable.

To this end, we have developed a three-dimensional

automaton cell simulation of brain tumor treatment.

In earlier work, we reported a four-parameter model that

describes volumetric tumor proliferation (Kansal et al.,

2000b). We will henceforth refer to this investigation as

paper I. A second study (paper II) utilizes the simulation

procedure of paper I to analyze heterogeneous tumors, in

which sub-populations possess different growth-rates

(Kansal et al., 2000a). In our present work, we take the

four-parameter proliferation routine of papers I and II, and

extend it with three additional parameters to simulate the

effects of treatment, resistance and induced mutations.

It has been some time since an automaton model of tumor

treatment has been proposed. Düchting and Vogelsaenger

(1985) touched upon chemotherapy as part of their

automaton study of tumor growth. However, their cubic

model only investigated small-scale tumors, and their

focus on chemotherapy within the paper was brief. To the

best of our knowledge, this is the first automaton

investigation that focuses solely upon brain tumor

treatment. Although the data here should not be

extrapolated quantitatively to the behavior of real-life

GBM, this work does suggest several qualitative trends in

the dynamics of these tumors under the effects of

treatments.

This paper is organized in the following manner. In the

Methods section, we outline the simulation and its

important features. The Results section then presents the

computational data. Three separate case studies are

considered here, each of which investigates the effects of

treatment on a different post-surgical tumor-system:

monoclonal tumors, two-strain tumors with resistant

sub-populations and multi-strain tumors with induced

mutations. The broader significance of the data is

described in the Discussion and Conclusions. This section

also describes intriguing avenues for future research in

tumor modeling. We discuss both potential extensions of

our current algorithm, as well as more general ways in

which automaton simulations could advance in the future.

Finally, a brief Appendix describes several computational

issues of the current investigation.

METHODS

The algorithm employed in this investigation includes

both a proliferation routine, as well as a newly-developed

treatment routine. The proliferation routine was initially

proposed in paper I; the current treatment model is an

extension of it. In the following section, the entire

simulation is described. We should emphasize, however,

that the discussion of the proliferation routine is intended

only to be a brief summary. For additional and more

specific details, the reader is referred to paper I.

To begin, polyhedral automaton cells are generated

through the three-dimensional Delaunay triangulation of

space (Okabe et al., 1992; Torquato, 2002). Each isotropic

automaton cell represents a cluster of several thousand

biological cells. The simulation classifies the automaton

cells into one of four types. Non-tumorous cells are

designated as healthy and are inert. The outermost layer of

the tumor consists of actively-dividing malignant cells,

referred to as proliferative. Within the proliferative cells

resides a layer of quiescent, non-proliferative cells. These

cells can be viewed as existing in the G0/G1 arrested state

of the cell cycle. Finally, at the center of the tumor, there

exists of core of necrotic cells. Transitions from

proliferative and non-proliferative to necrotic are

governed by the nutritional requirements of the cell types.

Figure 1 depicts a cross sectional view of an idealized

monoclonal tumor, with the proliferative, non-prolifera-

tive and necrotic zones highlighted. The tumor is nearly

spherical in shape, and each of the three regions is

concentric. The distances dn and dp are explained in the

proceeding discussion of the algorithm. The overall tumor

radius, Rt, is depicted in Fig. 1; the reader is referred

to the Appendix, part A for a description of how Rt

is calculated, as there has been a slight change since

papers I and II.

Our simulation depends upon seven parameters.

Originally described in paper I, the four growth

parameters ( p0, a, b and Rmax) reflect, respectively, the

rate at which the proliferative cells divide, the nutritional

needs of the non-proliferative and proliferative cells, and

the response of the tumor to mechanical pressure within

the skull. In addition to these terms, we now introduce

three additional parameters for the treatment routine: g, e

and f. The value of g reflects the proliferative cells’

sensitivity at each instance of treatment. A high value of g

corresponds to a sensitive tumor strain, while a low value

corresponds to a resistant strain. Together, the values of g

and e determine the non-proliferative cells’ treatment

sensitivity. The parameter e allows a different fraction of

non-proliferative cells to die with every round of treatment

compared to the proliferative cells. It reflects the differing

susceptibility of cells in the arrested state (versus those in

the proliferative state). Finally, f governs the mutational

response of the tumor to treatment—specifically it

determines what fraction of cells undergo treatment-

sensitivity mutations (i.e. changes in g) with each round of

treatment. All of the parameters and mathematical terms

involved in the simulations are summarized in Table I.

At the onset of each simulation, a spherical tumor is

initialized at a radius of 4 mm.† In GBM treatment,

†Actually, the tumor is initialized as a mass of proliferative cells at a radius slightly less than 4 mm. The algorithm is prerun for several days, so that
the proper fraction of proliferative, non-proliferative, and necrotic cells can form. Day #1 of the post-surgery simulation is denoted as the time at which
the tumor’s radius is 4 mm.
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surgery typically precedes chemotherapy and radiation.

This size tumor is intended to represent a GBM tumor

after successful surgical resection. Following paper I, we

define the typical radius of a glial tumor at diagnosis as

18.5 mm. An initial radius of 4 mm corresponds to

approximately 1% of this diagnostic volume (99%

resection).

We must note that, by initializing these tumors as

spheres, we are making a simplifying assumption as to

the actual geometry of post-surgical tumors. In real-life

conditions, resection would not leave behind a perfect

sphere of cancerous tissue. Surgery could instead leave

behind an alternate geometry, or a thin margin of

cancerous cells surrounding the original tumor-site.

Nevertheless, we feel for several reasons that our

method of spherical initialization is suitable for the

purposes of the investigation. For instance, one must

consider the effects of a post-surgical collapse of the

tissue that surrounded the tumor. Surgery does not

leave behind a permanent hollow cavity in the brain; a

thin margin of tumor cells would not remain a margin.

Overall, post-surgical tumor modeling is restricted in

that there is no ubiquitous geometry for brain tumors

following resection. Due to this limitation, we focus

here on studying more general principles of

tumor growth and treatment, principles that are

relevant regardless of initial cellular configurations

(see “Discussion and Conclusions” section for specific

examples).

Following tumor initialization, the proliferation/

treatment algorithm is discretized into time units that

represent one day of real time. At each day, the simulation

executes the following steps:

. Non-proliferative cells that are too far removed from

the tumor’s surface undergo cell death, converting to

necrotic cells. The distance at which this transition

occurs (dn) is defined as:

dn ¼ aR
2=3
t ; ð5Þ

where Rt is the tumor radius and a is the non-

proliferative nutritional parameter. The two-

thirds power law reflects a surface-to-volume

ratio due to nutrients diffusing through the tumor

surface.

. Next, each proliferative cell will attempt to divide with

a probability pd, defined as:

pd ¼ p0 1 2
Rt

Rmax

� �
; ð6Þ

where p0 is the base probability of division and Rmax is

the pressure response parameter.

FIGURE 1 An idealized tumor. The inner gray region is composed of necrotic tissue. The cross-hatched layer is composed of living, quiescent cells
(non-proliferative). It has a thickness dn. The outer shell, with thickness dp, is composed of proliferative cells.
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. If a proliferative cell attempts to divide, it will search a

radius dp (the proliferative thickness) for a healthy cell,

in which

dp ¼ bR
2=3
t : ð7Þ

Here, b is the proliferative nutritional parameter. Those

cells that find space divide, taking care to ensure that

division is continuous (i.e. into a neighbor cell). Cells

that cannot divide become non-proliferative.

In the current investigation, the values of the four

growth parameters are held constant. Following papers I

and II, p0 ¼ 0:192; a ¼ 0:42 mm1=3; b ¼ 0:11 mm1=3 and

Rmax ¼ 38 mm: The simulation proceeds through the

above proliferative steps until every four week time-point,

at which time the treatment routine is introduced:

. After the last round of cellular division, each

proliferative cell is checked to see if it is killed by

the treatment. The probability that a given proliferative

cell dies, Dpro, is given by the relation

Dpro ¼ g; ð8Þ

where g is the proliferative treatment parameter.

Its value can range from 0 to 1. Since the proliferative

rim adjoins non-tumorous tissue, dead proliferative

cells are removed from the tumor: if a proliferative

automaton cell is selected to die, it is converted to a

healthy cell.

. Next, each non-proliferative cell is checked to see if it

is killed. The probability of death for a given non-

proliferative cell, Dnon, is given by

Dnon ¼ ge ; ð9Þ

in which e is the non-proliferative treatment parameter.

The value of e can also range between 0 and 1, such that

Dnon is a fraction of Dpro. As during the proliferation

algorithm, a non-proliferative cell is converted to a

necrotic cell upon death.

. Each surviving non-proliferative cell is now checked to

see if it is has moved back within the proliferative

thickness of a healthy cell (i.e. the tumor surface).

If a healthy cell exists within this distance, the non-

proliferative cell is converted back to a proliferative

cell.

. Finally, all proliferative cells (including newly-

designated ones) are checked for mutations. For

each automaton cell, there exists a probability, f,

that its treatment resistance will change. When a cell

is selected for mutation, a random number generator

assigns it a new g value from 0 to 1. The value of e

remains constant.

In real life, GBM treatment consists of both radiation

therapy and chemotherapy. In this model, though, we do

not distinguish between the separate effects of these two

methods. The tumors’ response to all treatment is captured

by the treatment algorithm. Moreover, this response is

assumed to be instantaneous at each four-week time point.

Several previous models have likewise viewed treatment

in this manner (Düchting and Vogelsaenger, 1985;

Birkhead et al., 1987; Panetta, 1998). Panetta refers to

this procedure as pulsed treatment. Although it simplifies

the kinetics of drug diffusion, pulsed treatment corre-

sponds to the manner in which clinical information is

collected. Just as medical data is collected in a discrete

fashion, it is natural for treatment to be modeled by a

discrete method.

As indicated above, g and e can assume a continuum of

values from 0 to 1. The simulation does not view

resistance in an on/off sense. In a more realistic manner,

cells can undergo varying degrees of death at each

instance of treatment. We should discuss briefly the

constraint Dnon # Dpro: Since they exist in a growth-

arrested state of the cell cycle, non-proliferative cells

should be less susceptible to treatment than their

proliferative counterparts. In a condition known as phase

resistance, quiescent cells can avoid the lethal effects of

chemotherapy (Shah and Schwartz, 2001). Birkhead et al.,

(1987) viewed phase resistance in an extreme sense, as

the model only considered the consequences of treatment

TABLE I Parameters and terms

Functions within the model (time dependent)
Rt Average overall tumor radius (see Appendix)
dp Proliferative rim thickness (determines growth fraction)
dn Non-proliferative thickness (determines necrotic fraction)
pd Probability of division (varies with time and position)

Growth parameters
P0 Base probability of division, linked to cell-doubling

time (0.192)
a Base necrotic thickness, controlled by nutritional

needs (0.42 mm1/3)
b Base proliferative thickness, controlled by nutritional

needs (0.11 mm1/3)
Rmax Maximum tumor extent, controlled by pressure

response (38 mm)

Treatment parameters
g Governs the proliferative cells’ response at each instance

of treatment (0.55–0.95)
e Allows for different treatment responses between proliferative

and non-proliferative cells (0–0.4)
f Fraction of surviving proliferative cells that mutate in

response to treatment (1025–1022)

Other terms
Dpro Fraction of proliferative cells that die upon treatment;

equivalent to g
Dnon Fraction of non-proliferative cells that die upon treatment;

equivalent to ge
b Volumetric fraction of living cells (proliferative and

non-proliferative) belonging to secondary strain

Summarized here are definitions for the growth parameters, the treatment
parameters, and all other mathematical terms of the investigation. For each
parameter, the number(s) listed in parentheses indicates the value or range of values
that the parameter is assigned during the simulations. For all growth parameters, the
values employed are based upon results from paper I.
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on actively-dividing cells. We instead choose to include

the term e so that our simulation can incorporate non-

proliferative cell death, albeit reduced. The tumor

behavior in Birkhead et al.’s model corresponds to the

special case in our simulation where e ¼ 0:
The reader should note that the parameter f does not

represent the probability of single real cell mutating upon

treatment. The automaton cells in this simulation

represent clusters of real cells, not individual ones.

Rather, the value of f is the expected fraction of

proliferative cells, existing after treatment, whose

resistance changes due to treatment. By varying this

parameter, we can compare—within the limits of cellular

resolution—the growth dynamics of a tumor to its

mutational response to treatment. The term mutation is

used here in a general sense, as it refers both to changes

in gene sequences (genetic changes) and gene expression

(epigenetic changes). The new g-value is assigned

randomly so that new strains can assume varying degrees

of resistance, which may be quite different from those

of parent strains. Also, the simulation does allow for

back-mutations; if a treatment-resistant automaton cell

is selected for a mutation, it may convert to a sensitive

cell.

Overall, there are several important aspects of this

treatment model. With the current set of growth

parameters, the proliferation routine can simulate tumors

that demonstrate realistic Gompertzian growth, while

maintaining accurate ratios among growth and necrotic

fractions (see paper I). The use of the Delaunay

triangulation and the nutrient-dependent transitions

among the cell types are likewise unique. By building

our chemotherapy model upon this proliferation routine,

we incorporate these considerations and study brain

tumors from a global perspective of both growth dynamics

and clinical response.

The automaton nature of our model is itself

advantageous. Foremost, automaton simulations do not

ignore a tumor’s microscopic composition while studying

macroscopic behavior. Moreover, since it relies upon

automaton cells, our model is well suited to investigate

tumors with multiple sub-populations. The competitive

interactions among strains are accounted for implicitly

within the algorithm. As a result, while the equations

that govern the simulations are quite simple, we can

nonetheless account for numerous types of heterogene-

ities. The three-dimensional, isotropic nature of the cells

also reflects the importance of connectivity and topology

in a competitively-interacting milieu. It is our hope that

this mathematically straightforward, yet thorough, model

can be appreciated by theoreticians and clinicians alike.

Before discussing the data, it is important to describe a

method of data analysis employed throughout this

investigation. As previously mentioned, the simulations

rely upon pulsed therapy in which the effects of treatment

are assumed to be instantaneous. This method produces

discrete (discontinuous) drops in tumor volume at the

moments of treatment. Throughout this work, however,

time is commonly analyzed as a function of tumor volume

(as depicted in the survival time data of Figs. 4, 6 and 8).

Consequently, the discontinuous data are converted to

continuous growth curves. The discontinuous plot in Fig. 2

depicts tumor volume versus time for a simulated tumor.

The reader should note the volumetric increases that occur

during proliferation and volumetric drops that occur at

each four-week instance of treatment. At each of these

times, we calculate the average of the pre- and post-

treatment tumor volumes; splines fits are performed on

FIGURE 2 The data-fitting method. The discontinuous volume-versus-time plots of tumor growth produced by the simulation are converted to
continuous curves. The procedure is described in the body of the text.
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these data points to generate smooth, continuous curves.

The final, fitted data is overlaid on the raw plot in Fig. 2.

The programming for this investigation was written in

the Cþþ programming language on a UNIX operating

platform. Each simulation was run in parallel on nine

nodes of an IBM SP-2 processor. The work here

encompassed approximately six weeks of computational

processing time.

RESULTS

Our investigation consists of three individual case studies,

each of which is presented in this section. In Case 1, the

growth dynamics of monoclonal tumors are studied to

determine how tumor behavior is affected by the treatment

parameters g and e. Case 2 builds upon this information,

analyzing the behavior of two-strain tumors. Here, a

secondary treatment-resistant strain exists alongside a

primary treatment-sensitive strain. We introduce the

secondary sub-population at the onset of each simulation,

initializing it in different spatial arrangements and at

several (small) relative volumes. In both Cases 1 and 2, no

additional sub-populations arise in the tumors once the

simulation has begun (i.e. f ¼ 0). In Case 3, however,

we investigate tumors that are capable of undergoing

resistance mutations in response to each round of

treatment ðf . 0Þ: In these simulations, the growth and

morphology of the tumors are analyzed in relation to the

fraction of mutating cells.

Case 1: Monoclonal Tumors

The preliminary goal of this investigation is to examine

the development of monoclonal tumors under the effects

of treatment. Although real-life GBM tumors are multi-

clonal, it is important to study these simplified systems

first to determine how tumor behavior is effected by the

values of g and e The growth behavior of these tumors

is also compared to survival time data from clinical

studies of GBM treatment. For all simulations of Case 1,

f ¼ 0:
Fixing the value of e at 0, we first investigate the growth

of monoclonal tumors as a function of their treatment

sensitivity (g-value). Figure 3 presents spline-fitted

volume-versus-time plots for tumors with e ¼ 0 and g ¼

0:55; 0.65, 0.75, 0.85 and 0.95. g ¼ 0:55 corresponds to

the most treatment-resistant tumor, while g ¼ 0:95

corresponds to the most treatment-sensitive tumor. The

scale of the vertical axis reflects biologically plausible

volumes of GBM tumors. The reader should note that the

spacing between the five growth curves grows as g

increases: the difference between the g ¼ 0:85 and 0.95

curves is greater than that between the g ¼ 0:55 and 0.65

curves. For g-values below 0.55 (not shown), there is little

significant difference among curves’ positions. These data

suggest that—for an already resistant tumor—a small

change in treatment sensitivity does not greatly affect

tumor growth. Conversely, if a tumor is treatment-

sensitive, such a change would alter more appreciably its

treatment response. At large times, the curves in Fig. 3

display asymptotic volumetric behavior; this is most

evident in the g ¼ 0:85 and 0.95 cases. In terms of gross

morphological features, these monoclonal tumors develop

with a nearly spherical geometry. They appear much like

the monoclonal tumors that have been observed

previously outside the context of treatment (see paper I).

For each tumor, a survival time is assigned based upon

its growth curve. In paper I, we defined 65.5 cm3 as a lethal

tumor volume based upon in vivo data. This standard was

used to designate a time-of-death and to compare the

simulation data to that of medical test cases. The 65.5 cm3

standard is likewise maintained here. Throughout the

remainder of this report, survival time refers to the time at

which a given tumor’s spline-fitted growth curve is at the

lethal volume.

Figure 4 indicates the survival times associated with

several monoclonal tumor-systems, in which both g and e

are varied. The vertical axis depicts survival time in

months, and the horizontal axis depicts the tumor’s

e-value. Each of the five curves (level sets) portrays a

particular g-value. The value of g varies from 0.55 to 0.95,

while that of e varies from 0 to ,0.4. Higher values of e

are not considered, reflecting the effects of phase

resistance in the non-proliferative cells. Also, the reader

should note that the data points in Fig. 4 do not contain

error bars. A tumor with particular g- and e-values will

display the same survival time from one simulation to

the next.

The data in Fig. 4 indicate that—at lower values of g—

survival time does not vary significantly with e. The level

sets for g ¼ 0:55; 0.65 and 0.75 are nearly flat. By

contrast, for the g ¼ 0:95 case, the level set is relatively

steep and only three data points are shown (e ¼ 0:0; 0.05

and 0.1). When g ¼ 0:95 and e . 0:1; the tumors do not

grow to a lethal volume, instead reaching their volumetric

asymptote at lower sizes. In a situation tantamount to

FIGURE 3 Representative tumor growth. The figure depicts five fitted
growth curves, for which g ¼ 0:55–0:95 and 1 ¼ 0:
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tumor death, they convert to a mass of necrotic cells with

subsequent rounds of treatment. In general, the tumors

represented in Fig. 4 display a complimentary relationship

between the value of g and the importance of e: as a

tumor’s g-value becomes larger, its e-value has a more

significant impact on tumor growth. As one might expect

in real life, the response of the actively-dividing cells in the

simulation is of paramount importance. If the proliferative

cells are highly resistant, the non-proliferative response

is of little consequence for patient prognosis.

In addition to these growth trends, we are also interested

in comparing the results of the treatment model to clinical

statistics on GBM survival times. Paper I demonstrated

that the proliferation routine is capable of generating

realistic growth outside the context of treatment. In that

same regard, we now wish to determine if the modified

algorithm can maintain realistic growth with treatment

added. We want to ensure that the range of observed

survival times is qualitatively reasonable. We must

emphasize, however, that our theoretical data should not

be used to analyze quantitatively real-life GBM tumors.

For example, we are not suggesting that one can cross-

reference the values in Fig. 4 to a patient’s survival time to

obtain the exact level of resistance of that patient’s tumor.

Over the past decade, several studies have described the

survival times of GBM patients undergoing aggressive

treatment. A study first published in Holland (2000)

examines treatment efficacy in 184 GBM patients who

underwent surgery (.95% resection), radiation therapy,

and chemotherapy. The median survival time among these

patients was roughly 1 year, and roughly 20% survived

over 2 years. A study of grades III (anaplastic

astrocytoma) and IV (GBM) brain tumors from Salcman

et al. (1994) divided patients into age brackets of .40

years and #40 years. The median survival time of older

patients with aggressive treatment was 16 months, while

that of the younger patients was 24 months. As Fig. 4

indicates, the wide range of survival times that the

simulation can produce is medically plausible.

We should note here that the survival time associated

with a totally resistant tumor ðg ¼ 0; e ¼ 0Þ is roughly 11

months. With its current method of surgery (99%

resection), its regiment of treatment (every four weeks),

and its definition of lethal volume (65.5 cm3), the

simulation cannot produce very low survival times on

the order of several months. A g ¼ 0; e ¼ 0 tumor

corresponds to a treatment scenario in which only surgery

occurs without subsequent chemotherapy or radiation

treatment. In a study by Jelsma and Bucy (1967), roughly

25% of surgery-only patients survived a year following

resection. The simulated survival time tumor falls within a

reasonable range, but it is on the high end. It is important

to mention, though, that most surgery-only clinical data is

relatively old, published before the advent of MRI

scanning technology.

Case 2: Heterogeneous Tumors, Two Strains

We next focus upon heterogeneous tumors, in which sub-

populations differ in terms of their response to treatment.

We look at two-strain tumors, in particular. The tumors are

initialized with a dominant sensitive strain and a

secondary resistant strain. As the simulations run, tumor

growth can be tracked as the sub-populations evolve in a

competitive context. As in Case 1, f ¼ 0 in Case 2.

Before performing any analysis, we must address the

issue of how the resistant strain is to be initialized within

the sensitive one: should the resistant cells be localized to

one specific region of the tumor, or should they be

distributed at various locations? It is important to recall

FIGURE 4 Survival times with variable g, e. Depicted here are the associated survival times for tumors with various g and e values.
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that the initial tumors in these simulations represent post-

operative tumors. Even if a resistant strain is confined to a

particular spatial location in a tumor before surgery, it may

not be after surgery.

In order to account for any surgical disruption of

tumorous tissue (e.g. the collapse/rearrangement of an

initial margin of post-operative cells), we model two

extreme possibilities for the arrangement of the secondary

strain. We investigate systems in which the resistant cells

are (1) localized to a specific spatial location in the tumor

and (2) scattered uniformly throughout the tumor. The first

scenario is referred to here as the localized resistance

scenario, and it assumes that surgery does not significantly

alter the spatial arrangement of pre-surgical strains. The

second scenario is referred to as the scattered resistance

scenario, and it assumes that the spatial arrangement of the

cells left behind is unrelated to their original positions.

The reader should note that the scattered case could also

be employed to analyze the behavior of a tumor in which

several small, resistant strains had arisen prior to surgery.

The images of Fig. 5 depict representative tumors of each

scenario at the onset of a simulation.

By investigating the different spatial arrangements, we

are probing a fundamental issue with regard to the

microscopic interactions between the two sub-popu-

lations. Inter-strain competition occurs only where

resistant and sensitive cells interface one another (i.e.

share a common automaton surface). In the localized

scenario, this interface only exists at the border between

the two strains. Conversely, in the scattered scenario, all

resistant automaton cells are surrounded (or nearly

surrounded) by sensitive cells. As a result, the total

interfacial area per number of resistant cells (IA/RC) is

much higher in scattered scenario compared to the

localized one. Overall, we will determine whether a

resistant sub-population is more strongly favored by a

higher or a lower IA/RC.

To address this issue, we determine for both scenarios

how tumor growth varies with the size and level

of resistance of the secondary population. In all

simulations in this case, the treatment parameters of the

sensitive population are fixed at g ¼ 0:95; e ¼ 0:05:

For a monoclonal tumor, these parameters would

correspond to a survival time of 27 months. The secondary

strain is initialized at a variety of g-values (all less than

0.95), and at several relative volumes. For a description of

how this process is executed for both scenarios within the

computational programming, the reader is referred to the

Appendix, part B. In these simulations, the value of e is

held constant at 0.05 for all strains. We define the term b

as the volumetric fraction of living cells (proliferative and

non-proliferative) that belong to the resistant strain.

Figure 6 shows how a tumor’s survival time varies with

the g- and initial b-values (b0) of the resistant strain.

Figure 6a presents the data for the localized resistance

scenario, and Fig. 6b does so for the scattered resistance

scenario. For both graphs, the horizontal axis specifies the

g-value of the resistant strain, while each of the level sets

indicates b0. For the values of b0 considered here, we

observed no examples of the resistant sub-population

being overwhelmed by the sensitive one and dying out.

As in the monoclonal case, there is no significant variation

in survival time from one simulation to the next for a

particular two-strain tumor.

While the overall shape of the level sets is similar in

Fig. 6a,b, the survival times associated with the scattered

tumors are lower than their localized counterparts. In the

scattered simulations, the resistant strains more signifi-

cantly decrease the survival times from the monoclonal,

sensitive level of 27 months. This reveals that scattered

resistant strains are able to compete more effectively than

localized ones. Figure 7 further exemplifies the obser-

vation, depicting b as a function of time for representative

simulations. The figure compares the localized and

scattered scenarios for two particular combinations of b0

and g (of the resistant strain): b0 ¼ 0:05; g ¼ 0:2 and

b0 ¼ 0:05; g ¼ 0:8: In both graphs, the scattered resistant

strains overwhelm the primary strains throughout the

course of treatment. By contrast, in the localized

simulations, a significant fraction of sensitive cells remain

in the tumors even once they have reached a lethal

volume. In the localized simulation where b0 ¼ 0:05;
g ¼ 0:8; the secondary strain never comprises a majority

of the tumor.

Due to this behavior, the three-dimensional develop-

ment of the tumors may differ in the localized and

scattered scenarios. The tumor image in Fig. 8a portrays

the scattered resistance tumor of Fig. 7a ðb0 ¼ 0:05; g ¼

0:2Þ at the end of the simulation. It appears much like a

tumor that had been initialized as a single, resistant strain.

Figure 8b, on the other hand, portrays the localized

resistance tumor of Fig. 7b ðb0 ¼ 0:05; g ¼ 0:8Þ: The two

sub-populations appear as distinct regions of the fully-

developed tumor. In the case that a localized resistant

strain is able to overwhelm the sensitive strain entirely (i.e.

for low g-values and high b0-values), the fully developed

tumor will appear like the spherical image in Fig. 8a.

Overall, the results from Figs. 6 and 7 indicate that

a high IA/RC more strongly favors the proliferation of

a resistant sub-population. A lower IA/RC allows

FIGURE 5 Initial images of two-strain tumors. The resistant
subpopulation is localized in (a) and scattered in (b). The blue cells of
each tumor belong to the resistant sub-population, while the red ones
belong to the sensitive sub-population.

A MODEL OF A BRAIN TUMOR 231



the sensitive population to compete more effectively.

This instance is not the first time that we have witnessed

such a phenomenon in our automaton investigations of

tumor growth. In paper II, we focused upon the dynamics

of two-strain tumors in which each strain possessed a

different growth-rate. As part of that study, we introduced

localized, mutant sub-populations at very low b0-values.

Their probability of emergence was measured as a

function of the new p0-value ( p1). We observed that—

even for mutant sub-populations at a competitive

disadvantage ð p1 , p0Þ—there existed a non-zero prob-

ability of emergence. Occasionally, a secondary strain

with a lower growth-rate was able to proliferate

significantly beyond its initial b-value. This behavior

was again attributable to localization. Since the two strains

shared a relatively low interfacial area, the automaton

FIGURE 6 Survival times associated with various two-strain tumors. Each figure demonstrates how the survival time associated with a two-strain
tumor varies with the size and severity of its resistant sub-population. (a) Depicts the data for the localized scenario, while (b) depicts the data for the
scattered scenario.
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cells at the interior of the mutant strain had no risk of

being overwhelmed.

Compared to the current investigation, the selection

pressure in paper II was different (growth-rate competition

versus treatment effects). Moreover, the roles of the

primary and secondary strains are reversed in the above

example: the primary strain possessed a competitive

advantage over the secondary strain. Nevertheless, both

paper II and the current study indicate the same principle.

The proliferative ability of a tumorous strain with a

competitive advantage varies directly with its interfacial

area per cell.

FIGURE 7 b versus time for two-strain tumors: localized versus scattered scenarios. These figures depict the b-value of a resistant strain as a function
of time for the localized and scattered resistance scenarios. For (a), b0 ¼ 0:05, while the g-value of the resistant strain equals 0.2 (g of the sensitive strain
equals 0.95). The dashed line depicts the ensuing b-values of a representative scattered-resistance tumor, while the solid line depicts those of a localized-
resistance tumor. In (b), b0 ¼ 0:05 and g ¼ 0:8:
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In addition to this observation, it is important to

discuss one other trend in the survival time data of Fig. 6.

In the scattered resistance scenario, the survival times

show a very weak dependence on b0 compared to the

localized scenario. This observation goes hand-in-hand

with the above discussion, as the survival time

differences between the two scenarios are much more

pronounced at higher b0-values. In total, the data indicate

that the total number of resistant cells in a heterogeneous

tumor is not as important an indicator of patient

prognosis when the cells are not localized to a particular

region.

One can again interpret this trend by considering the

microscopic interactions between the resistant and

sensitive populations. In a typical simulation, a tumor’s

proliferative rim maintains a thickness of roughly three

automaton cells. As a result, with the scattered b0 ¼ 0:01

case, approximately 30% of a tumor’s sensitive,

proliferative cells are in competition with a resistant cell

immediately following initialization. After the first

instance of treatment, only a few time-steps of resistant-

cell growth are needed for this fraction to reach 100%.

So for even the smallest secondary population under

consideration, all sensitive cells are rapidly in competition

with resistant ones. Therefore, additional increases in b0

are of little consequence for tumor growth. With the

localized resistant strains, the lower IA/RC precludes

these rapid interactions involving all sensitive cells.

In general, the dynamics of interacting spheres (or

polyhedra, here) is a problem of much interest to materials

science and statistical mechanics. The reader is referred to

Torquato (1984; 2002) for a description of the “cherrypit”

model of interacting/overlapping spheres, on which the

brief analysis above is based.

Case 3: Heterogeneous Tumors, Induced Mutations

In our third case study, we investigate the behavior of

tumors that are able to develop resistance throughout the

course of treatment. Unlike Case 2, the tumors in Case 3

begin the simulations as a single strain. Here, however,

treatment can induce the appearance of mutant strains

ðf . 0Þ: The goal of Case 3 is to relate the growth

dynamics of brain tumors to their mutational response to

treatment. Specifically, we are interested in the behavior of

tumors that begin the simulations as treatment-sensitive but

develop resistance over time. The tumors in Case 3 are all

initialized monoclonally with g ¼ 0:95 and e ¼ 0:05:‡

At first, the tumors in Case 3 will develop like

treatment-sensitive, monoclonal tumors; growth will then

accelerate as resistant cells begin to dominate. This

corresponds to a case of acquired resistance via induced

(genetic and epigenetic) mutations. Overall, the tumor

dynamics here are more variable than in Cases 1 and 2.

When a new strain appears, it begins as a single automaton

cell. Unlike case 2, not all new strains will be able to

proliferate to an appreciable extent. Some are over-

whelmed by the parent strain from which they arise.

In addition, we do not limit the number of distinct

subpopulations that can arise throughout the course of a

simulation (or the time at which they arise).

Again, we are interested in the survival times

associated with various tumor-systems. The mean

survival time of the tumors was determined as a function

of f. Figure 9 plots this data; at least 50 simulations were

performed for each value of f. Unlike Figs. 4 and 6,

error bars are included in Fig. 9—there is significant

variability in tumor growth at a single value of f. From

f ¼ 1025 to f ¼ 1022; the survival times vary nearly

logarithmically with f. When f ¼ 1025; the mean time

is near 27 months, as most tumors remain monoclonal

(or nearly monoclonal) with g ¼ 0:95; e ¼ 0:05: As f

increases, resistant strains appear more commonly and

survival times fall (see the discussion on tumor

morphologies to follow).

The survival times in Fig. 9 must show asymptotic

behavior, though, at either extreme of the horizontal axis.

Independent of the value of f, survival time cannot exceed

27 months, nor can it fall lower than 11 months. The latter

time corresponds to that of a totally resistant ðg ¼ 0; e ¼

0:05Þ tumor. These two times are indicated in Fig. 9 with

dashed lines. The reader should note that a f-value as low

1024 can decrease survival time by more than six months.

These times should not be interpreted as quantitative

measures of the behavior of actual GBM tumors, as the

treatment sensitivity of the parental strain is predefined.

The data in Fig. 9 are again intended only to be a more

qualitative picture that links a particular tumor’s growth

behavior to its mutational response.

FIGURE 8 Final images of two-strain tumors. In (a), a scattered
resistant strain has completely overwhelmed a sensitive strain. The tumor
appears monoclonal and maintains a nearly spherical geometry. In (b), by
contrast, a localized resistant strain has not completely overwhelmed a
sensitive strain. The two sub-populations of the fully-developed tumor
appear as distinct regions.

‡With this initial g-value, nearly every mutant strain that arises from the initial population will posses a lower g-value. We are not suggesting that all
induced mutations must possess increased resistance. This fact here merely stems from the initial sensitive tumor under consideration.
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One of the more intriguing observations in Case 3

involves the gross morphology of the mutating tumors.

Their three-dimensional geometries exhibit an interesting

dependence on the value of f. Figure 10 presents

representative images of the fully-developed tumors for

f ¼ 1025; 1024, 1023 and 1022. For f ¼ 1025 (Fig. 10a),

some tumors develop a secondary strain while others do

not. The tumors that remain monoclonal maintain their

spherical geometry. When a resistant sub-population does

develop, it appears as a lobe on the parental tumor. As f

increases above 1025, resistant sub-populations consist-

ently arise from the parental strain. The images in

Fig. 10b,c depict these tumors, whose geometries

consistently deviate from an ideal sphere. These tumors

are multi-lobed in appearance, and the original strain is

commonly over-whelmed. However, when f grows even

greater, the geometric trend reverses. The f ¼ 1022

tumors in Fig. 10d again appear more spherical, despite

the fact that they experience the greatest fraction of

mutations per treatment event. These images suggest that

extreme mutational responses can lead to similar

macroscopic geometries. Non-spherical geometries result

from intermediate f-values. Although Fig. 10 only depicts

several representative images for each f-value, the

geometric trend holds true for all simulations. The f ¼

1022:5 and 1022 tumors were markedly more spherical in

appearance than the f ¼ 1023 to 1024 tumors.

This behavior may be appreciated in light of the

observations of tumor behavior in the first two case

studies. When f is high, a large number of automaton

mutations occur with each round of treatment. Similar to

the scattered resistance scenario of Case 2, the mutant

cells are distributed uniformly over the tumor’s surface.

As resistant strains begin to develop, they do so

throughout the tumor. Moreover, for a large range of

g-values, the mutant strains will develop similarly: as was

observed in Case 1, a strain’s volumetric growth does not

vary as significantly with g when g is lower (g ¼ 0 to

,0.5). Ultimately, it is these resistant strains that come to

dominate throughout the course of a simulation. So even

though these fully-developed tumors will possess a

number of sub-populations, they can maintain a spherical

geometry. For intermediate f-values, by contrast, fewer

resistant cells appear per treatment instance and their

spatial distribution is not as uniform. Rather, the induced

sub-populations will exist at a few specific points on the

tumor surface. This behavior is similar to the localized

resistance scenario of Case 2, except in this case new

strain begins at a very low b-value (i.e. a single automaton

cell). Consequently, the resistant cells develop as lobes on

the parental strain.

DISCUSSION AND CONCLUSIONS

In this work, we describe an automaton model of brain

tumor treatment extended from a previously-designed

proliferation model. The simulation treats automaton

FIGURE 9 Survival times associated with continuously mutating tumors. This figure depicts mean survival time as a function of the log of f, the
expected fraction of tumor cells that mutate at each instance of treatment ðn ¼ 50Þ:
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events such as cellular divisions, mutations, and

treatment-induced deaths probabilistically. We investigate

three different tumor-systems under the effects of

treatment: monoclonal tumors, two-strain tumors with

resistant sub-populations, and multi-strain tumors with

induced mutations. We present survival time data from

each of these case studies, as well as important

observations of tumor morphology.

Several of our findings are of particular significance, as

they suggest trends in tumor behavior that may extend

beyond a treatment/resistance context. The results from

Case 2 regarding interfacial area are one such example.

The data indicate that a resistant sub-population is able to

dominate a tumor more rapidly and completely when it is

not confined to a single location. In conjunction with

previous results from paper II, this finding implies that a

tumorous sub-population with a competitive advantage is

most highly favored when the interfacial area among

strains is maximized. In addition, the data from Case 2

suggest that the total volumetric fraction of non-localized

strains is not as important a factor in tumor development.

Although here we study only strains that differ in terms of

treatment response, these principles of competition for

scattered strains could extend to other scenarios. In real-

life tumors, the behaviors might apply to clonal strains that

differ in terms of other properties, such as nutritional

requirements, toxicity responses, cellular adhesion, and

angiogenic capacity. While our simulation does not

investigate the mechanisms by which a single strain might

come to exist in several locations, the effects of surgery

may raise such behavior as a possibility.

The trends in tumor geometry observed in Case 3 could

likewise be applicable outside the context of treatment.

Both the highly mutating and the highly stable tumors

develop with a more spherical geometry; tumors with an

intermediate mutational response have a multi-lobed

appearance. This morphological behavior might apply to

mutations that occur continuously throughout tumor

development, even without the mutagenic effects of

treatment. GBM tumors are indeed characterized by their

high genetic instability. For instance, one could consider

random growth-rate mutations that occur throughout

tumor growth. To examine this scenario, we have

considered augmenting the proliferation routine to allow

growth-rate ( po) mutations to occur with every cellular

division. The geometries that these tumors adopt could be

compared to the probability and severity of the mutations.

Granted, additional factors would have to be addressed

to simulate the full complexity of dynamic mutations.

These factors include the heterogeneous nature of

surrounding brain tissue, as well as the possibility of a

mutation affecting multiple cellular properties simulta-

neously. As mentioned above, strains may differ in a

variety of ways, and a single genetic mutation might

impact several traits. To investigate this issue in future

treatment simulations, our model could allow induced

mutations to alter both treatment parameters and growth

parameters at once. In this initial investigation of tumor

treatment-in which growth parameters are held constant—

a strain’s relative resistance (i.e. its ability to survive and

proliferate compared to other strains) depends solely on its

g- and e-values. However, if growth parameters could also

FIGURE 10 Images of continuously mutating tumors. We present representative images of tumors with the following f-values: (a) f ¼ 1025,
(b) f ¼ 1024, (c) f ¼ 1023 and (d) f ¼ 1022. The distinct clonal sub-populations in each tumor are represented with a different color, ranging from red
(highest g-values) to violet (lowest g-values). All tumors here are fully-developed.
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mutate, treatment-resistance would become a more

complex phenomenon. Both a strain’s response at

instances of treatment and its growth-rate between

treatments would impact its development. It would thus

be intriguing to compare the fully-developed geometries

of these tumors to the images of Fig. 10. Likewise, we

could analyze whether mutations of a particular parameter

are most strongly selected for throughout the course

treatment.

Moreover, just as we could expand our model to

account for more complex mutations, we could also

augment it to simulate more complex treatment regiments.

We do not currently consider the effects of cross-

resistance and multidrug resistance. Here, we analyze

implicitly the effects of a single method of treatment

prescribed at a time interval of one month. Modern

treatment methods for GBM, however, can involve an

array of drugs, specifically intended to counter the effects

of cross-resistance. Future modeling work could, thus,

focus on the effectiveness of various treatment regiments.

In the simulation, this could be accomplished by sets of

treatment parameters with correlation coefficients.

Overall, the research-extensions described in the

preceding paragraphs could be accomplished through

relatively straightforward modifications of the current

algorithm. At the same time, there are a number of broader

ways in which automaton models could advance in the

future. For instance, a notable feature of GBM tumors is

their ability to develop both through proliferative growth

of a principle tumorous mass, as well as through invasive

growth of migratory cells. While our model focuses on

proliferative growth, future models could incorporate both

modes of growth under a single automaton simulation.

In particular, such a model could address the role of cell–

cell adhesion and its impact on invasion and treatment.

Previously, automaton models have been utilized to

investigate such invasive processes as vessel morphogene-

sis (Markus et al., 1999) and river network formation

(Kim and Kim, 2001).

Another worthwhile goal of future brain tumor

modeling would be to simulate directly the removal of a

tumor and its effect on surrounding tissue. The simplified

post-surgical tumors that begin each simulation do not

consider the actual mechanics of tumor resection, nor do

they allow for the effects of pre-surgical growth (e.g.

previous angiogenesis). Granted, as discussed previously,

we believe that our spherical method of initialization is

suitable for the purposes of this study. Many of the

observed growth trends deal with issues independent of

the tumors’ initial geometry. These trends include the low

dependence of survival times on g when g is small, as well

as the importance of interfacial area for inter-strain

competition. Even the observations of tumor morphology

in Case 3 can be appreciated in a generalized sense.

Although these tumors are described in terms of their

spherical appearance, this description fundamentally

relates to the tendency of a tumor to shift its mass away

from an initial location. This tendency may apply to

tumors with initial geometries other than spheres.

Nevertheless, it would be beneficial to model explicitly

the process of resection and post-surgical tissue collapse

within an automaton lattice.

Similarly, future models could calculate the continuous

chemical gradients that chemotherapeutic agents form

throughout the brain. A recent study by Patel et al. (2001)

proposes a hybrid model that combines automaton cells

with sets of differential equation to govern chemical

diffusion. Their investigation does not consider tumor

treatment, but it does provide valuable insights on how

drug diffusion could be treated within an automaton

lattice. The cells in their two-dimensional model are

governed by a state vector that accounts for cell type and

the local concentrations of nutrients and metabolic waste

products. The behavior of a particular cell depends upon

its neighbor cells and the chemical components of its state

vector. A study of tumor metastasis from Anderson et al.

(2000) also combines discrete cells with continuous

concentrations. In a hybrid automaton model of tumor

treatment, drug concentrations may be incorporated in a

similar fashion; cellular responses to treatment could vary

continuously with the local amount of drug.

In order to analyze macroscopic tumor treatment in this

fashion, however, issues of computational processing

speed must also be addressed. Since they consider

chemical diffusion on length-scales of single biological

cells, Patel et al. only analyze tumors of very small sizes.

In fact, one of the greatest shortcomings of previous

automaton models is their inability to investigate fully-

developed tumors. Macroscopic brain tumors consist of

too many individual cells for each one to be accounted for

explicitly within a computational algorithm. We side step

this issue in part by formulating automaton cells that

represent clusters of real cells. Moreover—as described in

paper I—automaton size increases at greater radial

distances. These methods allow us to study brain tumors

over their entire growth history, while maintaining high

microscopic resolution at early times. Nevertheless, in an

ideal situation, every automaton cell would be equal in

volume and equivalent to one biological cell. This

scenario would more readily allow for the explicit

consideration of drug gradients. Similarly, the parameters

that govern automaton behavior would map directly onto

the behaviors of single tumor cells (not clusters).

However, the resolution of simulations in the near term

will continue to be limited by computational power.

In conclusion, this work represents a preliminary

attempt to simulate the effects of tumor treatment with a

novel automaton simulation. Our model indicates several

behavioral trends for monoclonal, two-strain and dyna-

mically mutating tumors. In general, we wish to

demonstrate the ability of automaton models to address

treatment issues. In the past, such simulations have not

been highly utilized in this regard. As medical knowledge

and computational power grow in the future, however,

automaton models may be useful as part of an integrated

approach to tumor treatment.

A MODEL OF A BRAIN TUMOR 237



Acknowledgements

This work has been supported in part by grants CA84509

and CA69246 from the National Institutes of Health.

Calculations were carried out an IMB SP2, which was

kindly donated by the IBM corporation (equipment grant

to Princeton University for the Harvard–Princeton Tumor

Modeling Project). We also thank Dr Thomas S. Deisboeck

of Harvard Medical School for his insights on this project.

References

Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C. and
Thompson, A.M. (2000) “Mathematical modeling of tumor
invasion and metastasis”, Journal of Theoretical Medicine 2,
129–154.

Berkman, R.A., Clark, W.C., Saxena, A., Robertson, J.T., Oldfield, E.H.
and Ali, I.U. (1992) “Clonal composition of glioblastoma multi-
forme”, Journal of Neurosurgery 77, 432–437.

Birkhead, B.G., Rankin, E.M., Gallivan, S., Dones, L. and Rubens, R.D.
(1987) “A mathematical model of the development of drug resistance
to cancer chemotherapy”, European Journal of Cancer and Clinical
Oncology 23, 1421–1427.

Boldrini, J.L. (2000) “Therapy burden, drug resistance, and optimal
treatment regimen for cancer chemotherapy”, IMA Journal of
Mathematics Applied in Medicine and Biology 17, 33–51.

Bredel, M. (2001) “Anticancer drug resistance in primary human brain
tumors”, Brain Research Reviews 35, 161–204.

Chadhary, P.M. and Roninson, I.B. (1993) “Induction of multidrug
resistance in human cells by transient exposure to different
chemotherapeutic drugs”, Journal of the National Cancer Institute
85, 632–639.

Coldman, A.J. and Goldie, J.H. (1979) “A mathematical model for
relating the drug sensitivity of tumors to their spontaneous mutation
rate”, Cancer Treatment Reports 63, 1727–1731.

Coldman, A.J. and Goldie, J.H. (1985) “Role of mathematical modeling
in protocol formulation in cancer chemotherapy”, Cancer Treatment
Reports 69, 1041–1045.

Coldman, A.J. and Goldie, J.H. (1986) “A stochastic model for the origin
and treatment of tumors containing drug-resistant cell”, Bulletin of
Mathematical Biology 48, 279–292.

Coons, S.W. and Johnson, P.C. (1993) “Regional heterogeneity in the
DNA content of human gliomas”, Cancer 72, 3052–3060.

Costa, M.I.S., Boldrini, J.L. and Bassanezi, R.C. (1995) “Drug kinetics
and drug resistance in optimal chemotherapy”, Mathematical
Biosciences 125, 191–209.

Deisboeck, T.S., Berens, M.E., Kansal, A.R., Torquato, S.,
Stemmer-Rachamimov, A.O. and Chiocca, E.A. (2001) “Pattern of
self-organization in tumor systems: complex growth dynamics
in a novel brain tumor spheroid model”, Cell Proliferation 34,
115–134.
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APPENDIX

Determination of Rt

In the proliferation routine of our simulation, the

automaton behavior at several steps depends on the

overall radius of the tumor, Rt. In the present investigation,

however, there has been a change in the manner by which
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Rt is determined, as compared to papers I and II. In the

previous studies, it was defined as the average radial

distance of the proliferative cells at the tumor’s outer

surface. This method sufficed at the time, as all tumors

remained nearly spherical throughout development. In our

current work, however, we study certain tumors that

deviate from this ideal geometry (see “Results” section,

Case 3). Consequently, we choose to define Rt differently.

At each step of the simulation, the total tumor volume

(Vtot) is calculated by summing the volumes of every

tumor cell (proliferative, non-proliferative and necrotic).

The value of Rt is then defined as:

Rt ¼
3V tot

4p

� �1=3

: ð10Þ

Thus, Rt corresponds to the radius that a tumor would

adopt if it were distorted to a perfect sphere. With this

method of calculation, a tumor’s pressure response will

depend only upon its volume, not its geometry.

Designation of Localized and Scattered Strains

For the two-strain tumors of Case 2, scattered and

localized resistant strains are designated at the onset of

each simulation. The secondary strains are introduced

after monoclonal ðg ¼ 0:95Þ tumor initialization, but

before the onset of the proliferation/treatment algorithm.

Computationally, this process occurs in the following

manner. For the scattered resistance scenario, every

proliferative and non-proliferative cell is checked; for

each cell, there exists a probability, b0, of being converted

to the resistant strain. By varying this b0-term on the

microscopic level, we can expect that the same fraction,

b0, of cells will be converted to the resistant strain overall.

The process is similar to the mutations of Case 3.

For the localized resistance scenario, by contrast, each

cell is assigned spherical coordinates (f, u). This f is not

to be confused with the treatment parameter. The program

converts each proliferative and non-proliferative cell

whose coordinates exist within a contiguous region to the

resistant strain. Specifically, all cells such that 0 # f # X

and 0 # u # X are made resistant; the value of X is varied

to yield a particular value of b0. Finally, following

the designation of the secondary strain but prior to the

beginning of the proliferation/treatment algorithm,

the simulation calculates the explicit value of b0 to

confirm that it is as desired. This confirmation step is

executed for both the localized and scattered scenarios.
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