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We develop a description of HIV mutations based upon a continuum representation of the fitness of the
virus, including the interaction of the virus with both specific Th1 lymphocytes as well as cross-reactive
cells. This deterministic model allows a straightforward measure of the diversity of viral population and
reproduces the observed increase in diversity as the disease progresses in an untreated patient. We use
the diversity threshold theory, extending the modelling to track mutations on a continuum. When the
diversity threshold is exceeded, the host immune system collapses.
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INTRODUCTION

The development of AIDS is associated with the depletion

of the most crucial cell type of the immune system, the

CD4þ helper T lymphocyte. This occurs after a period of

clinical latency varying in length from 1–2 years to more

than 15 years. The human immunodeficiency virus (HIV)

and the immune system interact dynamically over the

entire course of infection. HIV replicates in large numbers

each day and also contributes to the destruction of cells of

the immune system. This growth is usually balanced by a

strong defensive response which keeps the virus in check.

However, eventually the balance of power is transferred so

that HIV gains the upper hand and causes this severe

damage to the immune system. This defines the period of

disease known as AIDS.

As with all viruses, HIV cannot reproduce by itself.

It relies on a host to assist reproduction. HIV targets CD4þ

T cells which are the most abundant white blood cells of

the immune system. Since CD4þ T cells play a key role in

orchestrating both the humoral and the cellular immune

response, the infection and destruction of this cell type by

HIV has a devastating impact on the immune response.

When HIV enters the body, it targets cells with CD4þ

receptors. The gp120 protein on the viral particle binds to

the CD4þ T cell receptors and the HIV particle injects its

core. HIV, being a retrovirus carries a copy of its RNA,

which is first transcribed into DNA. After the processes of

reverse transcription, integration of viral DNA into

cellular DNA, translation forming polypeptides and

protease, and cleaving of polypeptides by protease into

functional HIV proteins, the infected cell is stimulated to

produce copies of the virus, releasing hundreds, or even

thousands, of free virus particles that can infect other

CD4þ T-cells. We assume that peripheral blood CD4

counts (generally 1000 per ml in healthy persons) are a

good indicator of CD4 densities in the body. Since the

CD4þ cells are depleted over time, strengthening

cytotoxic responses cannot occur. The loss of immune

competence enables normally controllable diseases to

cause opportunistic infections. In addition to a reduced

CD4 count, one of the reasons for the specific immune

response dysfunction is that viral epitopes also change

resulting in escape from immunological response.

Initially, the transformation of immune-sensitive to

resistant genotypes occurs by the generation of mutations

primarily due to reverse transcriptase errors. HIV’s RNA

genome is reverse transcribed into DNA when the virus

replicates. Amplification of mutant genotypes by selec-

tion, and then fixation of the resistant population aids in

the problem of resistance. These mutations are changes in

DNA structure, and, therefore, changes in protein and

phenotype. The mutations we consider are caused by

spontaneous errors during DNA replication (base substi-

tutions), or frame shift mutation (addition or deletion of a

base). They are heritable and may be beneficial, neutral or

detrimental to an organism. In contrast to most other

infectious agents, HIV combines a very high mutation rate
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with a very large production of virions. The extreme

heterogeneity and diversity of HIV makes the design

of effective vaccines extremely difficult (Domingo et al.,

1997). A virus’ biological fitness determines its survival.

It is this phenomenon, of viral mutation, causing

escape from immunological attack, that we address in

this paper.

The understanding of the dynamics of antigenic escape

from immunological response has been that a mutation

may enable the virus to have a selective advantage.

Mansky and Temin (1995) found that the level of genetic

variation of HIV is high relative to similar retroviruses,

although not as high as earlier predicted. They were able

to estimate the mutation rate for HIV (see below).

There is measurable variation among the replication

rates of HIV strains in CD4þ cells (Nowak et al., 1991).

Mathematical models for the interaction of HIV and

CD4þ suggest that evolutionary forces may drive

selection for more virulent strains (May et al., 1990;

DeBoer and Boerlijst, 1994; Maree et al., 2000). The

observations that the apparent diversity of viral strains

increases with time (Balfe et al., 1990; Holmes et al.,

1992) has eventually lead to the conclusion that

evolutionary dynamics of HIV quasispecies is not a

consequence but a cause of immunodeficiency (Nowak

and McMichael, 1995). In this paper, we suggest a novel

approach to considering viral diversity and the progression

of mutation towards diversity threshold at which time

AIDS results.

The number of immunologically different mutants

appears to be very large. Genetic variation is not uniform

throughout the HIV genome. There is more variability in

the env gene than in the gag or pol genes. Within the env

gene there are five hypervariable regions. Much attention

has been paid to the third hypervariable region, the V3

loop because it has immunodominant properties. The

combinatorial possibilities of the 19 variable amino acids

in the V3 loop of the env protein is 1920, and furthermore

the shape of the loop can also be altered by mutations in

other parts of the envelope protein (Nowak et al., 1991).

For information on genetic and antigenic variation of the

V3 loop refer to (Simmonds et al., 1990; Moore and Nara,

1991; Wolfs et al., 1991).

The complexity of the retroviral lifecycle results in

difficulty in estimating the rate of mutation. However,

Mansky and Temin (1995) state that the error rate has been

estimated as 3.4 £ 1025 per base per replication cycle.

Since the average HIV genome has approximately 104

bases, the average changes per genome is approximately

0.34 per replication cycle (Colgrove and Japour, 1991).

In addition to the occurrence of large antigenic variation

that occurs due to this probability, a very large number of

virions are produced each day during the asymptomatic

period of HIV progression before AIDS (Perelson and

Nelson, 1999).

During early stages of infection the viral strains that are

most prevalent in initial infection dominate the dynamics.

As the immune response to HIV is initiated virus

diversification results. This antigenic diversity makes it

difficult for the immune system to control the different

mutants simultaneously and the virus runs ahead of the

immune response. This is also because there is an

asymmetric interaction between immunological specificity

and viral diversity. Martin Nowak was the first to point out

this asymmetry with the diversity threshold model (See

Nowak, 1990; 1992; Nowak et al., 1991; Nowak and May,

1992; 1993). That is, each viral strain can infect all immune

cells with CD4þ protein, but individual strain-specific

immune cells can only attack specific virus strains. The

outcome of mutation is that each viral genome must be

viewed as being different from any other but at the same

time viral strains may be thought of as populations of

closely related genomes. The immune system is then

persistently confronted with new antigen targets before it

has built up a defence to antigen already present.

It has also been suggested that viral genetic diversity is

caused by the host immune response. Findings by

Lukashov et al. (1995) and Wolinsky et al. (1996)

indicate that HIV undergoes adaptive evolution in vivo,

in response to selective pressure exerted by the host

immune system. Evidence for immune-response depen-

dence of virus mutation can be observed by noting that

viral genetic diversity is greatest in clinically healthy

individuals and much less in persons with AIDS, where

the immune response has become severely impaired.

Many have mathematically modelled virus mutation in

a discrete form in an attempt to understand this

phenomenon (see, for example, Colgrove and Japour,

1991; DeBoer and Boerlijst, 1994; Kirschner and Webb,

1997). But since there are a large number of mutations and

each is considered to be very closely related to its parent

strain, it seems that a reasonable proposal is to model

mutation in a continuous form. This gives rise to this novel

continuous model. The model of Nowak et al. (1991)

involving the tracking of many viral variants is extended

here whereby antigenic diversity and immune response

are considered as a continuum. In our model, we assume

that all possible mutants will exist at all times, even if at

minute concentrations, and the viral distribution will

change form or shift as mutation occurs.

MODELLING VIRAL MUTATION

In this section, we present the essential mutation concepts

for our mathematical model that explores antigenic drift of

HIV. Mutations are assumed to involve small changes in

the gene sequence of a viral strain. These small sequence

changes may alter the viral properties considerably.

However, we consider viruses associated with a

neighbourhood of sequences in sequence space around a

given sequence to have very closely related properties.

Here, we are assuming the existence of criteria for

defining a neighbourhood of gene sequences in sequence

space such that all viruses containing sequences in this

space have quantitative properties in a measurable
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neighbourhood. The properties of a virus are influenced by

many aspects associated with the complicated sequence.

We suggest that all viral strains, influenced multi-

dimensionally, can be ordered and mapped onto a one-

dimensional continuum. In reality amino acids are discrete

and mutations are obviously not continuous. But for

reasons of elegance, we develop a continuous mutation

model. In our model, we let V(t) be the total virus

population, and v(r,t) be the population of virus identified

by parameter r at time t. The identifier for a viral strain, r,

is an attribute measuring the strain’s fitness. We regard the

non-negative parameter r as a continuous variable. We

refer to fitness as an ordered measure of competitive

advantage. One way to define fitness is in terms of the

basic reproduction ratio of the population (Anderson and

May 1979a,b; 1991; Bonhoeffer et al. 1997; 2002). For

mathematical convergence and to reduce our assump-

tions, we define the domain of r to be finite, such that

0 # r # M: Thus defining fitness in terms of the standard

reproduction ratio would not be appropriate in our model

due to the consequent complexity.

The total virus load at time t is given by

VðtÞ ¼

ðM

0

vðr; tÞ dr: ð1Þ

The time rate of change of viral strain r is given by

›v

›t
¼ l

ðM

0

kðr; r0Þvðr0; tÞ dr0 2 l

ðM

0

kðr0; rÞvðr; tÞ dr0

þ mðr; tÞ: ð2Þ

Here, l is the replication rate per unit time and k(r,r 0) is

the probability that viral strain r 0 mutates to viral strain r.

We consider mutations to and away from viral strain r.

The function, m(r,t), describes the net growth rate of the

viral strain with fitness r. This function is described later.

Since a virion’s genome changes only slightly as it

mutates, we assume that this affects the fitness parameter,

r, incrementally. Here, we assume that small genome

mutations influence small changes in the corresponding

viral fitness properties although it is possible that this

results in a large change in viral fitness. Then for r 0 – r

we assume the form, ae 2b(r 2 r 0)2

, for the probability of

mutation from strain r to strain r 0, where a and b are to be

determined.

However, for r ¼ r 0; there is no mutation. Thus we

include an atom P0(r), for k(r,r), obtaining a quasi-

continuous distribution. We have already resolved that the

probability that a genome will change in a replication

cycle is 0.34. Then P0 ¼ 0:66; independent of r. We

obtain a probability distribution of the form

kðr; r 0Þ ¼
P0; r ¼ r 0

ae2bðr2r 0Þ2 ; r – r 0:

(

Equation (2) becomes

›vðr; tÞ

›t
¼ l

ðM

0

kðr; r 0Þvðr 0; tÞ dr 0 2 lð1 2 P0Þvðr; tÞ

þ mðr; tÞ: ð3Þ

To determine a, we consider lim r!r0kðr; r0Þ ¼ a; and

suggest a parameter u, 0 # u # 1 such that a ¼ uP0:
If there is no mutation, v is independent of r, u ¼ 0 and we

set P0 ¼ 1: Then ›v=›t ¼ mðr; tÞ: If u ¼ 1, the probability

density function is continuous suggesting that the

mutations occur readily from strain r, however, the

mutations will be closely related to the parent strain in

fitness properties. The smaller the parameter u takes, the

more likely it is that a mutant will have properties away

from the parent strain. Mutation occurs during the reverse

transcription process in an infected immune cell and then

mutant virion will be released from the infected cell. Thus,

we indirectly model mutation amongst released virions by

modelling species shifts in the viral population

distribution.

Since k is a probability density function, we requireðM

0

kðr; r 0Þ dr 0 þ kðr; rÞ ¼ 1:

Thus, b ¼ bðrÞ and

uP0

2

ffiffiffiffiffiffiffiffiffi
p

bðrÞ

r
erf

�
r

ffiffiffiffiffiffiffiffiffi
bðrÞ

p �
2 erf

�
ðr2MÞ

ffiffiffiffiffiffiffiffiffi
bðrÞ

p �� 	

þP0 2 1 ¼ 0:

This equation allows the determination of the value of

b, given a value of r. The function, b(r) will be symmetric

about r ¼ M=2: A plot of b versus r is shown in Fig. 1.

It should be intuitive that b is a function of r as illustrated

by plots of k(r,r 0) for fixed r in Fig. 2. We choose values

FIGURE 1 Plot of the function b(r) determining spread of virus
mutation. Here, M ¼ 1: (a) u ¼ 0:9, (b) u ¼ 0:2:
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for the parameter u so that b . 0 for realism. If u is

too low, b will become negative indicating higher

likelihood of mutation to a fitness farther away from the

parent strain.

MODELLING IMMUNE INTERACTION WITH
ANTIGEN

The immune system is capable of generating vast diversity

in its recognition of foreign antigens and distinguishing

subtle differences between them. Lymphocytes adapt to

recognize a particular molecular configuration on cells to

be attacked. Lymphocytes are generated with random

receptors for antigen. A T-lymphocyte has of the order of

105 receptors each with an identical specificity for a

particular antigen. Goldsby et al. (2000) state there are of

the order of 109 antigenic specificities in the immune

system although this is later diminished through a

selection process in the thymus ensuring that there are

only non-self receptors. Once an antigen with particular

specificity is recognized by a T-lymphocyte, the

lymphocytes become activated causing clonal expansion,

so that a much higher proportion of T-lymphocytes will be

able to recognize any further infection, providing the basis

of immunological memory. Since there is great diversity

in the immune specificity, we consider s(r,t) to be the total

number of T lymphocytes with specificity for viral antigen

with fitness between r and r þ dr at time t.

Null cells, a type of lymphocyte that generally makes

up about 5–10% of all lymphocytes in human blood

(Goldsby et al., 2000), do not express the membrane

molecules and receptors that distinguish T and B

lymphocytes. They lack immunological memory and

specificity but have shown cytotoxic behaviour against

a variety of antigens. In addition, when a mutation

occurs, the viral epitope may be conserved so that a

lymphocyte species with committed specificity may

respond against multiple strains. Phagocytes, activated

macrophages and other CD4þ cells that can mount

immunological attack against different antigenic strains

are known as cross-reactive cells. Here, we assume

cross-reactive cells have negligible influence on our

investigation of the evolution of mutation (see Nowak

and May (2000) for modelling with cross-reactive

cells). In our model, the population of immune cells

(majority T lymphocytes), T, at time t is given by

TðtÞ ¼

ðM

0

sðr; tÞ dr: ð4Þ

Many models distinguish between effector cells and

target cells, generally CD8 and CD4 cells, respectively.

Since the population of effector cells are directly influenced

by and signalled by target cells we combine the two

immune cell types into the one population. Time rate

parameters will incorporate the proportion of cells that are

of each type. We assume that the strain specific population

is given by the equation

›sðr; tÞ

›t
¼ s1 þ Psðr; tÞ2 dSsðr; tÞ2 k1VðtÞsðr; tÞ; ð5Þ

where s1, dS and k1 are constants. The parameter s1

represent the source of immune cells originating in the

thymus for the strain specific immune population.

Although there are various algebraic expressions that

may be used for the source of immune cells, for simpli-

fication we take the source, s1, as constant. The parameter,

dS, represents the rates of natural death for immune cells.

The constant, k1, represents the rate that the immune cells

are infected with virus. The term Ps (r,t) represents the

immune response of clonal expansion from existing cells

(mainly memory cells), once activated. We assume acti-

vation occurs by interaction with virion. When an antigen

binds to an antigenically committed T (or B) lymphocyte,

the cell is stimulated to divide repeatedly into a clone of

cells with the same antigenic specificity as the original

parent cell. Specificity and immunological memory are

consequences of clonal expansion. We assume that HIV-

induced clonal expansion is limited by an immune cell-

dependent reaction and consequently is governed by a mass

action term. We describe the proliferation as mass action

saturated by the concentration of antigen presenting sites.

Thus, we take Psðr; tÞ ¼ p1vðr; tÞsðr; tÞ=½c1 þ vðr; tÞ�: A

similar form has been used by Kirschner (1996). Here, p1 is

constant and c1 is a saturation constant giving the

concentration of antigenic sites at which the rate of

proliferation is half-maximal.

We denote the total population of immune cells that

have become infected at time t by I(t) where

IðtÞ ¼

ðM

0

iðr; tÞ dr; ð6Þ

with i(r, t) representing the population at time t of cells

infected with virus of fitness r. We assume that these

FIGURE 2 Plot of the probability density function k(r,r 0) for fixed
values of r. Here, M ¼ 1 and u ¼ 0:9: (a) r 0 ¼ 0:2, (b) r 0 ¼ 0:5 and
(c) r 0 ¼ 0:9:
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species populations are governed by

›iðr; tÞ

›t
¼ SiðtÞvðr; tÞ2 dI iðr; tÞ2 p2iðr; tÞ

2 Imðr; tÞiðr; tÞ: ð7Þ

Here, Si(t) is a source rate denoting infection of a

healthy immune cell and dI is a natural death rate. As

infected cells are activated we assume they die, releasing

infectious virion. This occurs at rate p2, incorporating

activation of the infected cell by a large range of cell

types to release its virion. N virions are released and will

become a source for the viral population of type “r”.

The function, Im(r, t), represents the rate of cytotoxic

effect the immune system generates against virus-

infected cells.

Strains with greater fitness parameter values have a

competitive advantage. We could consider many

combinations of factors to influence the selective

advantage of a viral strain. However, here we regard

the immune response against an antigenic variant to be

the influencing factor determining strain fitness in an

attempt to model immune evasion by means of

evolutionary drift. We assume that the cytotoxic immune

response function is given by Imðr; tÞ ¼ hðrÞsðr; tÞ: Here,

we consider the immune response to be of the form given

by the decreasing function hðrÞ ¼ h0rn
0=ðr

n
0 þ r nÞ; where

h0, n and r0 are constants. The parameter h0 is the

maximum immune response against the strains of

lowest fitness and r0 is the fitness value in which the

immune response is half maximal. The parameter n is a

shape factor.

The total source rate of infected cells is given by

SiðtÞ ¼ VðtÞ

ðM

0

k1sðr; tÞ dr ¼ k1TðtÞVðtÞ

¼ k1TðtÞ

ðM

0

vðr; tÞ dr;

where k1 has been described above. Then, we take the

source of cells that are infected with viral strain r to be

k1T(t)v(r, t).

MODEL TERMS FOR CHANGE IN VIRAL

POPULATION

We have seen that our model presents the total change in

viral load by the term
ÐM

0
mðr; tÞ dr: We now specify the

components of m(r, t) to describe the aspects of the HIV

lifecycle that effect its change in population.

We consider that the rate of change of virus

concentration is influenced by a source of new virions

released from activated infected cells and loss due to

natural death. We assume the rate of change of viral strain

“r” to be given by

›v

›t
¼ l

ðM

0

kðr; r 0Þvðr 0; tÞ dr 0 2 lð1 2 P0Þvðr; tÞ

þ Np3iðr; tÞ2 dV vðr; tÞ: ð8Þ

Here the parameter dV is the rate of natural death and N

is the average number of virions that are released from an

infected cell. Although variant strains are released at this

stage of the viral lifecycle, since mutation occurs inside

the host cell when reverse transcription errors arise, for

simplicity we model mutation exterior to the host cell

amongst the viral dynamics.

INITIAL CONDITIONS

We assume that the initial inoculum of virus consists of

one strain of V0 per ml and that the initial strain has the

weakest fitness, which for convenience we have taken to

be r ¼ 0. Then,

vðr; 0Þ ¼
V0; 0 # r # dr

0; r . dr:

(

Since we model on a continuum, immediately after

inoculation all strains will exist, sourced from the initial

strain, even if at minute concentrations. We assume that

initially there are no infected immune cells so iðr; 0Þ ¼ 0:
Typically, a healthy person will have an average of 1000

CD4þ cells per ml of blood and so we take Tð0Þ ¼ 1000:
In the maturation process for lymphocytes the random

gene rearrangements generate an enormous diversity of

antigenic specificities before its contact with antigen.

Since generation of specificity is random, before

inoculation we assume a uniform distribution of strain

specific cells and so sðr; 0Þ ¼ Tð0Þ=M.

MEASURING DIVERSITY OF MODEL HIV

STRAINS

To measure how genetic variation within the HIV

quasispecies changes with time we consider the ecologist’s

Simpson Index (Goldberg and Estabrook, 1998). A

diversity index is a measure of species diversity in a

community. Diversity indices provide more information

about community composition than simply species

richness (i.e. the number of species present). They also

take the relative abundances of different species into

account. Simpson’s Diversity Index, D, is a simple measure

that characterizes species diversity in a community. In our

case of continuous HIV strains, we take

Dv ¼ DvðtÞ ¼
½VðtÞ�2ÐM

0
½vðr; tÞ�2 dr

;
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so that initially Dvð0Þ ¼ dr ! 0 for infinitesimal dr. We

also track a diversity index for immune strain specific cells

to indicate how the immune response is adapting to the

presented antigen. Then, we let

Ds ¼ DsðtÞ ¼
½TðtÞ�2ÐM

0
½sðr; tÞ�2 dr

;

so that initially Dsð0Þ ¼ M: Using our adapted Simpson’s

diversity index for the continuous case, we see that

0 # D # M where a small value of D corresponds to little

diversity.

Antigenic change is important to the success of the

virus. We would expect to see antigenic change in our

model and, therefore, see the value of Dv increase to

resemble the high mutation rate. Over time, antigenic

drift will occur whereby, in a practical sense, gradual

mutation of the gene sequences for the glycoproteins

will occur at a constantly slow rate and there will be a

shift in the distribution of viral dominance. The value of

Dv will reflect this shift. Accordingly, the strain specific

immune cells will adapt to confront the presenting

challenge of HIV strains. In effect, since most CD4

immune cells do not contribute to the destruction of the

virus but are merely targets for the virus, because of the

asymmetric dynamics, they, in fact, make a negative

impact on the system as a whole. The distribution of

strain specific cells will attempt to reflect the distribution

of viral strains and the adapted Simpson’s diversity

index for immune diversity, Ds, will track the immune

system’s evolution.

RESULTS

Prior to infection we expect initial conditions to be the

constant population levels for all species and, therefore,

from Eq. (5), 0 ¼ s1 2 dsT0: Thus, ds ¼ s1=T0: The

parameter values are shown in Table I. Some parameter

values may vary from individual to individual. The values

of parameters are taken from other models (Kirschner,

1996; Perelson et al., 1996; Kirschner and Webb, 1997).

Numerical simulations can now be carried out and the

output is presented in Figs. 3–7.

In our simulations in which immune cells are depleted

we see an increasing antigenic diversity until a threshold

level, a competitive reduction and then approximately

constant diversity thereafter (Fig. 3). The rapid change in

the dynamics of the virus diversity occurs prior to immune

collapse. The immune distribution is not specifically

targeted enough to handle the relatively peaked viral

distribution. Towards the end of our simulation we observe

a decrease in immune specificity to combat the virus but it

TABLE I Parameter values for HIV mathematical model

Parameters and Constants Values

M = Upper range of domain of
all measured fitness’s

1

V0 = Initial inoculation concentration of virus 1023

P0 = Probability that HIV genome will
not mutate in a replication
cycle

0.66

u= Measure of amount of mutation 0 # u # 1
a= Coefficient of mutation function a ¼ uP0

l = Rate of mutation/replication cycle 0.38
N = Average number of virions released

upon bursting of infected cell
1000

dV = Rate of natural death of HIV 3.33
dS = Rate of natural death of

strain specific immune cells
0.01

dI = Rate of natural death of
HIV-infected immune cells

0.5

h0 = Maximal rate of infected cell
death due to cytotoxic immune cells

0.001

r0 = Fitness value for which the
immune response is half maximal

M
2

n = Shape factor for the immune
response function

4

s1 = Total source of strain specific
immune cells from the thymus

10

p1 = Maximal proliferation rate constant (Strain-specific cells) 0.01
p2 = Release of virion from infected

cells rate constant
0.001

c1 = Viral half-maximal saturation constant for
proliferation

100

k1 = Rate of HIV-infection of immune cells 0.001

FIGURE 3 Simulation showing change in adapted Simpson’s Diversity
Index for viral population and specific immune cell population with time.
Ds (long dashed line), Dv (shorter dashed line).

FIGURE 4 Simulation of model equations accounting for
immunological memory. Resembles the typical course of infection in
an untreated patient. (a) Total viral load with time. (b) Total immune cell
population with time.
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is too little-too late. We suggest that to control the viral

load, the immune diversity would need to be as small as

the viral diversity (obviously evolved to specificity around

the peak viral distribution). Then, extraneous immune

cells are not purely target cells for HIV but effector cells

against the virus.

DISCUSSION

A key cause for HIV’s devastating impact is the generation

of mutants primarily due to reverse transcription errors

enabling the virus to escape from immunological response.

The level of genetic variation of HIV is high and the

number of immunological mutants is very large. Immune

resistance is thought to be induced by mutation and so has

been the topic of much study. The mathematically

modelling of a finite number of mutants in a discrete

form has been carried out by other researchers (for

example, May and Nowak). However, we consider

mutations on a continuum to more accurately represent

the antigenic diversity.

Our model adequately represents the natural course of

HIV in a typical untreated patient (See Fig. 4). We have

varied parameters to identify key aspects leading to AIDS.

Our model suggests a number of conclusions about the

dynamics of HIV as it interacts with the immune system

and the evolutionary drift of the virus frequency to evade

the immune response, eventually resulting in AIDS.

Nowak and colleagues have proposed the existence of

an antigenic diversity threshold, in which the genetic

diversity of HIV is ever-expanding and eventually

exhausts the immune system’s capacity to respond,

resulting in immune collapse (Nowak and May 1990;

Nowak et al. 1991, 1995). Although a well-presented

theory, direct support for this theory has been elusive. Our

model incorporates the assumptions of the diversity

threshold theory and consequently our numerical solutions

show this. We suggest that if mutation is rapid, which we

assume it is in vivo, then the virus will run ahead of the

immune system’s capacity to withhold the virus’ impact.

We measure diversity with an adapted Simpson’s index.

We suggest that to control the viral load, the immune

diversity would need to be as small as the viral diversity.

Without mutation the immune system can control the

impact of HIV infection and the level of immune cells

remains at a steady value, although at a compromised level

in comparison with the pre-infection level, as shown in

Fig. 5. Thus, our model leads us to conclude that mutation

is important to the pathogenesis of disease. If mutation

occurs readily and there is a high probability that mutant

strains are closely related to the parent strain in regards to

fitness, then evolutionary drift to escape immune response

will occur but it will occur quite slowly. In fact, in this case

large antigenic drift will not occur because there are high

levels of strains in a local area, which actually forces

immune evolutionary drift through proliferation. Prolife-

ration, regardless of its extent, will not be adequate to

prevent immune collapse. However, if mutation from a

strain has a high likelihood of obtaining a significantly

FIGURE 5 Simulation of the dynamics without mutation. (a) Total viral
load with time. (b) Total immune cell population with time.

FIGURE 6 Simulation of the dynamics with low effector immune
response. (a) Total viral load with time. (b) Total immune cell population
with time. (c) Adapted Simpson’s diversity index with time.

FIGURE 7 Simulation of the dynamics with low rate of infection of
immune cells. (a) Total viral load with time. (b) Total immune cell
population with time. (c) Adapted Simpson’s Diversity Index with time
(see text for description).
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different fitness, then evolutionary drift will occur rapidly.

It will occur at a rate, which is too rapid for the immune

system to adapt and the virus will eventually dominate the

system, resulting in AIDS. Here, the rate of immune

depletion is noticeable immediately and immune cell

levels continue decreasing steadily, as opposed to most

situations in which there is a slower decrease in immune

cells during the majority of the dynamics before a rapid

decrease.

Proliferation of naive cells to stimulate memory cells is

crucial in the immune defence. Our model suggests that if

the proliferation of immune cells is high, then, despite the

increased proliferation enabling immune control over the

antigenic drift in fitness of antigens for a prolonged time,

the immune response will never be strong enough to

contain the virus and AIDS will result. Here we observe

immune specificity frequencies drift with the antigenic

drift yet it is still not adequate to withhold the virus. If the

proliferation of immune cells is low then viral dominance

occurs early in infection and immune cell depletion will

occur quickly.

If the effector immune response is low then there is not

a strong drive in the evolutionary drift of HIV frequencies.

However, the killing of infected cells is reduced enabling

the virus to replicate quite freely. Because the cytotoxic

effect of the immune system is low the virus maintains

control and depletes immune levels. It does this despite

only a small drift in diversity (see Fig. 6). In contrast, if the

effector immune response is high then there is a greater

evolutionary drive to evade the response but less virus

replication due to killing of infection. For a very large

effector response our model suggests it is theoretically

possible to eliminate the virus. Here there is a strong drive

for drift of HIV frequencies to higher fitness but the high

fitness values are still able to be controlled by the high

effector response. In practice, we suggest that immune

cytotoxic levels can not be driven this high, but we suggest

that it is possible to eliminate disease with a high rate of

clearance of infected cells.

Our model also suggests that if infection of target cells

occurs rapidly then immune cell levels are depleted early

and the virus soon dominates the dynamics, and does so

without full antigenic drift. However, if the rate of

infection is small then large antigenic diversity will result,

with viral frequencies drifting to high fitness values, but

the virus levels may be contained and, in fact, cleared by

the immune system (shown in Fig. 7). If infection of target

cells can be reduced, the virus will not have its devastating

impact. In practice, drugs such as protease inhibitors have

shown these effects. However, over an extended period of

time, protease inhibitors will not completely eliminate

the virus.

We suggest that under normal circumstances all of the

factors we have presented that hinder immune control of

HIV will exist in a typically infected individual. Our

model suggests that building immune defence to remove

HIV by strengthening T cell proliferation is not a viable

strategy for preventing the onset of AIDS. However,

diminishing the rate of infection of target cells by HIV, or

highly increasing clearance of infected cells can lead to

HIV eradication theoretically. Our model suggests that

mutation of HIV is a crucial aspect of its dominance over

the immune system. We support the antigenic diversity

threshold theory. Our continuous model for antigenic

drift gives rise to this threshold, leading to the onset of

AIDS.
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