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Tissue microarrays (TMAs) make possible the screening of hundreds of different tumour samples for
the expression of a specific protein. Automatic features extraction procedures lead to a series of
covariates corresponding to the averaged stained scores. In this article, we model the random geometry
of TMA cores using voronoi tesselations. This formalism enables the computation of indices of spatial
correlation of stained scores using both classical and novel approaches. The potential of these spatial
statistics to correctly discriminate between diseased and non-diseased cases is evaluated through the
analysis of a TMA containing samples of breast carcinoma data. The results indicate a significant
improvement in the breast cancer prognosis.
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1. Introduction

Tissue microarrays (TMAs) consist of high-throughput

tissue-based tools that allow for the immunohistological

analysis of a large sample of tumour tissues [1,2]. TMAs

enable the screening of hundreds of different tumour

samples for the expression of a specific protein. They are

used in in situ gene marker validation and discovery in

cancer research projects thanks to their ability to rapidly

evaluate the role of normal and abnormal genes and gene

products from numerous tissues at once, and ultimately

correlate genotypes with phenotypes. A typical example

of a tissue array application is in searching for oncogenes

amplifications in vast tumour tissue panels, encompassing

differing stages and grades of disease.

Many automated treatments of TMAs are available,

allowing measurements of fluorescence intensity, probe

colocalization and other measures of protein expression.

Although efficient software tools for counting cells and

objects and estimating morphometric parameters exist,

solutions for the statistical analysis of staining results are

still lacking. A major difficulty is that TMAs core image

information cannot be summarized easily and the

relationships between genetic expression and tissue

structure are still poorly understood.

In providing supervised classifiers that can assist

pathologists in the prognosis of a disease, a crucial question

is to know which covariates and indices provide the most

information. In this paper, we evaluate the potential of spatial

statistical quantities within the mathematical formalism of

marked point processes [3] to correctly discriminate between

diseased and non-diseased cases. Our approach to the

statistical description of TMAs’ cores assumes pre-analysed

images where cell parameters have been segmented. Given

these data, two types of statistical indices can be computed

using the Voronoi tesselation associated with the stained

cells. The first indices correspond to the classical spatial

correlation indices of Moran [4] and Geary [5] (see also [6]).

The second indices are modified versions which attempt to

account for the correlation of levels of expression in the

highly expressed genes.

This article is organized as follows: In section 2, we

give a short account of TMA technology, and the existing

automatic treatments of such data; in section 3, we

describe statistical summaries of the tissues based on

random geometry concepts; in section 4, the approach is

illustrated by the analysis of a TMA containing samples of

breast carcinoma data and tests based on the spatial

statistics are assessed from this dataset.
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2. TMAs

2.1 Overview

TMAs are a method of re-locating tissue from

conventional histologic paraffin blocks in order to see

tissues from multiple patients or blocks on the same slide.

Hundreds of tiny cylindrical tissue cores (typically 0.6 mm

diameter) are densely and precisely arrayed into a single

histologic paraffin block. The block may be divided into

serial 4–8mm thick sections, which we refer to as tissue

array slides. Typically, cores contain small histologic

sections from unique tissues or tumours. These tissue

array slides serve as targets for immunohistochemical

staining reactions.

Several biomarkers can be embedded in TMAs. For

example, the cell proliferation biomarker Ki-67, has been

shown to be significantly associated with survival in

prostate cancer [7], nuclear phospho-beta-catenin in

colorectal cancer is associated with a better prognosis

[8], maspin is associated with breast cancer [9] and

has a reverse correlation with mutant p53 [10], estrogen

receptor and progesterone are utilized as well [11], etc.

Each tissue array slide yields information about protein

staining pattern, distribution, intensity, background and

target tissue. In many cases, each spot on a TMA is

scored by a skilled pathologist and recorded manually.

High-resolution digital images are automatically

assembled into montages and usually saved as a TIFF

format. Platforms that help organize TMA datasets and

provide elementary analysis tools are available on the

internet at University of California, Los Angeles

(TMATRIX, http://www.genetics.ucla.edu/tissuearray),

Johns Hopkins University (TMAJ Software, http://www.

tmaj.com) or Stanford University (http://genome-www.

stanford.edu/TMA/).

Several computer platforms (most of them commercial)

enable the analysis of raw TMA images. These digital

images are used for analysis of both anatomical features

and fine tissue structures. Machine learning algorithms

combined with data mining allow the extraction of

essential features that classify particular tissue elements:

geometric features such as the locations of cells, area,

perimeter, compactness, elongation, and transmittance.

These parameters may describe the shape and orientation

of cells, nuclei, cytoplasms and membranes. The optical

densities of pixels within each cell are recorded as well,

and summarized from standard statistics (mean, median,

standard deviation, quartiles). Cells can be in different

states such as in differentiation, mitosis and apoptosis.

As pointed out by Liu et al. [12], the extraction of such

features usually leads to highly correlated covariates.

2.2 Data description

A clinical study was designed to identify a set of proteins

for which over-expression has diagnostic significance in

breast cancer and can be assessed by immunohistochemical

assays and quantitative bright field microscopy for routine

diagnostic of breast cancer. The study was based on a

cohort of 132 patients including good and bad outcome

patients. Good outcome are those that are disease free after

five years, bad outcome is defined as recurrence or death

within five years. The subset used in the article consists of

31 patients’ data taken from this clinical study.

TMAs were made of 60 cores each, organized following

a grid with 6 columns and 10 rows called TMA key. Good

and bad outcome patients were represented twice.

Additional cores from normal breast tissue, liver and

tonsil tissues were used as staining controls and as helpers

in the placement of the cores. For the purpose of this

methodological study the marker investigated was a 32-

kDa dopamine and cyclic adenosine 30,50-monophosate-

regulated phosphoprotein named DARPP-32. A recent

study has showed that both DARPP-32 and t-DARPP

mRNAs were frequently over-expressed in carcinomas of

the breast, prostate, colon and stomach compared with

normal tissue samples [13].

The immunohistochemical assay was optimized for

staining in a series of experiments varying the antibody

concentration and the antigen retrieval methods (data not

reported). The staining was optimized to have as low as

possible staining in the good outcome and still a high

staining in the bad outcome patients. Every TMA was

processed with both a counterstain (Hematoxylin) and an

immunochemical assay including polyclonal antibodies

targeting the DARPP-32 protein revealed by DAB

(brown). At the time of the study, these polyclonal

antibodies had not yet been sorted and purified and

therefore, the biological meaning of the staining intensity

must be considered as preliminary data.

TMAs were scanned at 20 £ by the Tripath

Imaging, Inc., proprietary slide scanning systems.

Cores images were processed with Tripath Imaging,

Inc., proprietary imaging system, using chromogen

separation techniques to best separate marker contribution

(DAB) from counterstain intensity (Hematoxylin).

Each core was automatically segmented to obtain the

position of every cell and finally extract features at cell

and core level. These features were exported to a file used

for further analysis.

3. Statistical modeling

3.1 Tissues and tesselations

Statistics in the area of TMAs have focused on the

specific point of evaluating the predictive power of

classification methods based on a set of covariates

obtained via the automated features extraction algorithms.

The package of Liu et al. [14] includes unsupervised

analysis using hierarchical clustering. Liu et al. [12]

present statistical methods for relating TMA data to

censored time-to-event data (post-operative survival or

time to first tumour recurrence). They review methods for
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evaluating the predictive power of Cox regression models

and show how to test whether biomarker data contains

predictive information above and beyond standard

pathology covariates. They also used data mining

methods for characterizing high risk patients with simple

biomarker rules (survival trees, patient rule induction

method).

The approach presented here provides a simple

mathematical representation of a TMA core based on

random tesselation. It starts from a subset of cell locations

(a list of two dimensional coordinates) and reconstructs a

statistical model of the tissues from which a number of

tests can be performed. Tissues are reconstructed using the

Voronoi tesselation. Modelling tissues with tesselations is

a rather classical idea in biology and biometrics [15].

More specifically, let us recall a definition of the Voronoi

tesselation. Consider a finite subset of locations or points

in the plane. For each location p, the Voronoi cell V( p) is

the set of all points that are closer to p than to all other

locations in the subset.

The novelty of the approach presented here resides in

the fact that stained scores are attached to the idealized

Voronoi cells. Doing so, tissues can be viewed as well-

studied abstract objects called marked point processes

[3,16]. The paradigm presented here is that the marked

point process should contain a model of interactions

between cells and markers that can be measured using the

geometric information of the tesselation.

3.2 Local correlation indices

A challenge for TMA analysis is to pick a staining

score (guided by prior biological knowledge) and find

an index that could represent information at the level of

the entire tissue. Thus our first concern is to define

biomarker expression indices in relation to the spatial

conformation of the tissues. Here the theory of marked

point process comes to play. Let Xi denote any score

value associated with the cell i. For instance, Xi can be

the optical density of the biomarker estimated locally.

Then, for a box B, let n(B) be the number of cells in

B and ni(B) the number of neighbouring cells of i in

the Voronoi tesselation. The Moran’s index can be

defined as

rMðBÞ ¼
cðBÞ

s2ðBÞ
ð1Þ

where c(B) is defined by

cðBÞ ¼
1

nðBÞ

X

i

1

niðBÞ

X

j,i

ðXi 2 �XÞðXj 2 �XÞ;

j , i means that i and j are neighbors, �X is the mean

value of X and s 2(B) the unbiased variance of X in B.

Similarly, the Geary’s index is

rGðBÞ ¼
dðBÞ

s2ðBÞ
ð2Þ

where

dðBÞ ¼
1

2nðBÞ

X

i

1

niðBÞ

X

j,i

ðXi 2 XjÞ
2

Both indices are closely related to the notion of spatial

autocorrelation of scores. In equation (1), c(B) is equal

to the local spatial covariance of scores in B, whereas

in equation (2), d(B) is equal to the local variance.

Small values of the Moran index rM(B) indicate that the

spatial autocorrelation is weak. When the Moran index

rM(B) is close to 1, the scores are strongly correlated and

the Geary’s index may be close to 0. At the other extreme,

when the Moran index rM(B) is close to 21, Geary’s

index may be high depending on the structure of the

Voronoi tesselation. Apanasovich et al. [17] have recently

applied Moran tests in order to detect the spatial

correlation of specific morphologically changed structures

that are known to be precursors of colon cancer

development.

3.3 New indices

Moran’s and Geary’s indices may sometimes miss useful

spatial information within a TMA core. For example,

consider the two cores represented in figure 1. These two

images are associated with two different outcomes of

breast carcinoma (the first is good, the second bad). The

stained scores (average local cell optical densities) are

reported on the tesselations in grey color levels. This

example reflects a weakness of the Moran’s index and the

Geary’s index in discriminating the two clinical outcomes.

In the first case, Moran’s index is equal to rM ¼ 0:68 and

Geary’s index is equal to rG ¼ 0:63: The values do not

differ significantly in the second case, where rM ¼ 0:68

and rG ¼ 0:65:
These examples emphasize the need for other indices.

Clearly, the second case displays more contrasted scores

than the first one and the presence of small clusters is not

detected by the Moran and Geary indices. This suggests

that introducing a threshold could improve the statistical

prognosis of the outcome. Let u be the threshold, and let

Bu denote the subset of cells in B for which the scores are

greater than u

Bu ¼ {i [ B;Xi . u}:

The thresholded indices are defined as follows:

ruðBÞ ¼
cuðBÞ

suðBÞsðBÞ
ð3Þ
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where

cuðBÞ ¼
1

nðBuÞ

X

i[Bu

1

niðBÞ

X

j,i

ðXi 2 MuÞðXj 2 �XÞ ð4Þ

with n(Bu) the number of cells in Bu, Mu the average score

over the neighbours of cells belonging to Bu:

Mu ¼
1

nðBuÞ

X

i[Bu

1

niðBÞ

X

j,i

Xj; ð5Þ

and su(B) the square root of

s2
uðBÞ ¼

1

nðBuÞ

X

i[Bu

1

niðBÞ

X

j,i

ðXi 2 MuÞ
2:

The indices ru are obvious generalisations of the

Moran’s index. The value Mu is of first order while ru is of

second order. Before computing the index, the value of the

threshold u must be set. Assuming large threshold values,

large values of ru should be observed if clusters of cells

with over-expressed genes are observed. Improved

classification performances over the classical indices

may therefore be expected with respect to tissues with

such properties. Negative values of ru could indicate that

high scores are isolated events in the tissue. Values close

to zero indicate weak correlations of high scores with

those of their neighbours. As an illustration, the values ru
for the two cores presented in figure 1 are equal to ru ¼

2:49 in the first case and 0.82 in the second case. In these

examples, u was taken equal to the median of scores. In

general, u can be chosen to optimize a classification

procedure into pathologic and non-pathologic cases

(see “Evaluation of the impact of geometry” section).

Here the difference between the two cores becomes

significant in comparison to the values of Moran and

Geary indices.

4. Evaluation of the impact of geometry

4.1 Classifiers

This section assesses the discriminant power of the indices

introduced in section 3.3 with the dataset presented in the

second section. Each index defines a test for relating

staining scores of biomarkers to clinical outcome

information.

The ability of a test to discriminate diseased cases from

normal cases can be evaluated using receiver operating

characteristic (ROC) curve analyses [18]. Regarding

threshold dependent methods such as ru, the threshold was

chosen in order to optimize the classification perform-

ances, i.e. the parameter associated with the maximal

sensitivity and specificity.

Linear or non-linear discriminant analysis and flexible

or logistic regression are utilized as well. In order to apply

such analyses, there is a need to pool multiple spot

measurements across each case (patient). Since TMAs

case data contain pooled estimates of spot biomarker

staining scores across each case, the simplest pooling

methods are to form the mean, median, standard deviation

of the spot measurements (standard covariates).

These standard covariates do not account for the

structure of the tissues and its random geometry.

Discriminant analysis is aimed at evaluating the impact

of the inclusion of global “morphometric” characteristics

computed at the scale of the entire tissues. Moran’s and

Geary’s indices are examples that account for the global

structure of the tissues. The new indices ru are expected to

provide finer analyses and indications about the level at

which the cell responses interact.

4.2 Results

A dataset corresponding to TMAs cores of 31 cases

(patients) fixed on a single slide has been utilized

Figure 1. Voronoi tesselation models obtained from TMA cores of two cases: good outcome (left) and bad outcome (right). The stained scores
(average local cell optical densities) are reported on the tesselations in grey color levels.
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(section 2). The stained scores extracted from digital

processing were rescaled and took values between 0 and

255. The scores considered were the cell (Cell.OD), the

nucleus (Nucleus.OD) and cytoplasm (Cyto.OD) average

optical densities of the biomarker measured locally.

Among all available scores, these scores were chosen as

the most representative for this specific dataset.

The discriminant power of tests were evaluated thanks

to the measures of sensitivity (probability for a test result

to be positive when the disease is present, i.e. true positive

rate) and specificity (probability for a test result to be

negative when the disease is not present, i.e. true negative

rate). The data set contains 25 outcomes of disease

(carcinoma recurrence) and 6 outcomes of non-disease.

First, linear discriminant analysis and logistic

regression were performed using a pool of core

measurements. The pool contained six measures corre-

sponding to the mean and standard deviation of the three

scores, Cell.OD, Nucleus.OD and Cyto.OD, computed for

each case.

Logistic regression was performed using R feedforward

neural networks library nnet. The number of hidden

units in feedforward neural networks were determined

using the jacknife method of cross-validation. The results

are displayed in table 1. These results indicate low

sensitivity and high specificity. The poor performances

may be due to the fact that the three first covariates (means

of OD) are strongly correlated (cor . 0.95).

Tables 2–4 summarize the performance of the six

measures (mean and sd of Cell.OD, Nucleus.OD and

Cyto.OD) considered separately in discriminating the

disease. The performances of Moran and Geary’s index

Mu and ru obtained from the ROC curve analysis are

displayed as well. Regarding Mu and ru, the value u ¼ 127

led to the optimal classification performances.

The sensitivities range between 0.67 and 0.83.

Because the data set contained only 6 non-disease cases,

the difference 0:16 ¼ 1=6 corresponds to the misclassi-

fication of a single case. This variation in sensitivity

should therefore be considered with caution. Specificities

range from 0.48 (12/25 for the mean of Cell.OD) to 0.76

(19/25) for spatial correlation parameter. Therefore

considering spatial correlation indices leads to a

significant gain in specificity.

5. Discussion

Scientific progress in the understanding of tissues, their

function, disease and biodynamics critically depend on the

precision and quality of information available. Tissue

specimens have been the primary source for medical

diagnosis since the origin of microscopy. Despite

fundamental progress in this area, the prevailing method

for analysing tissues today remains visual inspection, and

relevant quantification of TMAs core images is still

missing.

Many morphological parameters may be used in the

grading of malignancy of cancerous tissue. For example,

the shape of the cells in the tissue is an important feature.

In addition, the spatial conformation of cells in which

genes may be over- or under-expressed seems critical [19].

At present these parameters are usually estimated

subjectively by the pathologists or described by simple

ratios. Idealised mathematical models of tissues can

provide further understanding of tissue contents and

improve the accuracy of discrimination between samples

or experimental groups. The crucial issues addressed in

this study were the following: Are standard covariates

such as mean and variance of stained scores able to provide

discrimination between diseased and non-diseased cases?

Table 1. Sensitivities and specificities of linear discriminant analysis
(LDA) and cross-validated neural networks (Nnet).

Sensitivity Specificity

LDA 0.16 0.96
Nnet 0.0 1.0

Table 2. Score ¼ Cell average optical density (Cell.OD).

Sensitivity Specificity

M.Cell.OD 0.83 0.48
SD.Cell.OD 0.83 0.64
rM 0.67 0.72
rG 0.67 0.76
ru 0.83 0.76

Sensitivities and specificities from ROC curve analyses for mean scores
(M.Cell.OD), standard deviation of scores (SD.Cell.OD), Moran’s (rM), Geary’s
(rG), ru ðu ¼ 127Þ:

Table 3. Score ¼ Nucleus average optical density (Nucleus.OD).

Sensitivity Specificity

M.Nucleus.OD 0.83 0.44
SD.Nucleus.OD 0.83 0.64
rM 0.67 0.72
rG 0.67 0.72
ru 0.83 0.76

Sensitivities and specificities of ROC curve analyses for mean scores
(M.Nucleus.OD), standard deviation of scores (SD.Nucleus.OD), Moran’s (rM),
Geary’s (rG), ru ðu ¼ 127Þ:

Table 4. Score ¼ Cytoplasm average optical density (Cyto.OD).

Sensitivity Specificity

MSS 0.83 0.48
DSS 0.83 0.64
rM 0.67 0.72
rG 0.67 0.76
ru 0.83 0.76

Sensitivities and specificities of ROC curve analyses for mean scores (M.Cyto.OD),
standard deviation of scores (SD.Cyto.OD), Moran’s (rM), Geary’s (rG), ru; ðu ¼ 127Þ:
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Is finer level analysis necessary? Do the thresholded

indices ru provide additional insights in the disease

prognosis?

The results presented in the fourth section proved

that including specific tissue structure parameters

such as Moran and Geary or thresholded indices led

to increased classification performances. Nevertheless,

these results also raised a series of issues. A first issue

concerns the biomarker DARPP-32 itself. The strong

correlation of standard covariates computed at the levels

of cells, nuclei and cytoplasm indicates that DARPP-32

has no preferential attachment to one of these biological

entities, and further experimental evidence is obviously

necessary to assess the potential of DARPP-32 as a

therapeutical target.

A second issue concerns the choice of a threshold u or

equivalently the choice of a subset Bu for use in the

computation. In our analysis, the threshold was optimized

in order to produce the best classification performances.

The resulting parameter was found to be close to the median

score. However, choosing a subset Bu of the form Bu ¼

{i [ B; Xi . u} may not always be an optimal strategy.

Consider for instance a biomarker which has different

expressions in cytoplasm and nucleus according to the

pathologic state of the tissue. In this situation, Bu could be

taken as the subset of cells with significant differential

expression. Because the distribution of covariates (e.g.

Nucleus.OD and Cyto.OD) is hardly Gaussian, additional

normalisation steps would be necessary in order to

eliminate biases which may come from spurious sources.

MA-normalised variables [20] are plotted in figures 2 and

3. In this figure M represents the intensity log-ratio

M ¼ log Nucleus:OD=Cyto:OD and A is the arithmetic

average A ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nucleus:ODCyto:OD:

p

Statistics are often used to test null hypotheses.

However, testing hypotheses of elementary relationships

between genetic expression, and tissue structures coup-

ling spatial architecture and gene expression, would rely

on null models of interactions at the cellular level. Such

models could integrate measures of organisation or

disorder using basic ideas of statistical mechanics.

Changes in gene expression are responsible for and

correlate with changes in tissue structural feature

expression. Just as genetic expression results in unique

macroscopic differences between individuals, it is likely

that gene expression regulates unique microstructural

differences between tissues from different individuals.

Our next step in modeling tissues would rely on a Gibbs–

Boltzmann formalism. Computationally tractable Gibbs–

Boltzmann models of interactions between cells would

involve tissue geometry through simplified models of

architecture such as the Voronoi tesselation presented in

this article [21]. Because these models include measures

of organisation and disorder at the scale of the tissue,

estimating interaction parameters could provide more

direct understanding of the architecture than correlation

parameters. Thus changes in tissue histology and gene

expressions could be related to phase transitions in the

model. The strength of these different methodologies

is that their combination could enable statistically well-

founded quantification of the potential of genes

expression for correlation with phenotypical responses.

Such combined analyses can be applied to conditions

where gene expression and tissue histology are integral to

the pathophysiology of disease.
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Figure 2. Plot of correlated stained scores Nucleus.OD vs. Cyto.OD for
a typical MicroArray core before normalization (6000 cells).

Figure 3. Plot of correlated stained scores Nucleus.OD vs. Cyto.OD for
a typical MicroArray core after MA-normalization. A robust regression
curve (loess) is also displayed and suggest a systematic way of
suppressing biases.
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