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An HIV/AIDS model incorporating complacency for the adult population is formulated.
Complacency is assumed a function of number of AIDS cases in a community with an inverse
relation. A method to find the equilibrium state of the model is given by proving a stated
theorem. An example to illustrate use of the theorem is also given. Model analysis and
simulations show that complacency resulting from dependence of HIV transmission on
number of AIDS cases in a community leads to damped periodic oscillations in the number of
infectives with oscillations more marked at lower rates of progression to AIDS. The
implications of these results to public health with respect to monitoring the HIV/AIDS
epidemic and widespread use of antiretroviral (ARV) drugs is discussed.
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1. Introduction

Complacency is used to mean to “relax” or “revert” to high risk sexual behaviours such as

multiple sex partners, sex with prostitutes and non-condom use once the HIV prevalence

reduces to very low levels and hence the number of AIDS cases become rare in the

community. Complacency is used in the context of a community that has registered

significant decreases in HIV prevalence. This is the case for most Ugandan communities.

Uganda has registered decreasing HIV prevalence since the early 1990s both nationally and

based on community studies or selected high risk sub-populations [1–6]. To model

complacency, it is assumed that behaviour change depends on the number of AIDS patients

(HIV infected persons with fully blown AIDS symptoms) in the community. This

dependence has been alluded to by a number of authors such as Leaman and Bhupal [7] and

Okware et al. [8].

Recurrent behaviour is a key feature of most epidemics including nutrition related

epidemics such as kwashiorkor and pellagra. A report on an investigation on the pellagra

disease in Kulto, Angola showed annual epidemics of the disease with major outbreaks in

June–September associated with the maize harvesting season [9]. Clearly, the observed

periodicity was due to seasonal variations. A number of diseases show such seasonal
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variations for a number of reasons including school calendars, weather conditions, and

behaviours in response to such seasonal events. Infectious diseases like measles,

tuberculosis, typhus fever, influenza, chicken pox and several sexually transmitted diseases

have been documented to show recurrent outbreaks that are less dependent on seasonal

variations. It is unlikely that HIV/AIDS would exhibit seasonal variations either, though

seasons do indeed impact on sexual behaviour and hence transmission of HIV.

Velasco-Hernandez et al. [10] on the effects of treatment and prevalence-dependent

recruitment on the dynamics of fatal diseases, showed periodic solutions with a

per-suscepitable incidence rate of the form b ¼ ðcb0U þ c0b1IÞ=N, where U, I are the

untreated and treated infectives and N ¼ U þ I; b0, b1 are the per susceptible incidence

among the untreated and treated infectives, respectively and c, c0 are the respective contact

rates. Hence, treatment of AIDS patients could lead to periodicity of the HIV epidemic with a

resurgence in number of new HIV infections.

On a longer time scale, observed periodicity of epidemics has been attributed to changes in

the population sizes of constituent epidemiological classes relative to each other as discussed

by several authors [11–14]. Such periodicity is imposed by the dynamics of the disease. In

the case of HIV/AIDS, these dynamics take various forms: first, the subpopulations at various

risks for HIV infection including age structure; second, the stratification by stage of HIV

infection; and third, the spatial distribution of communities and their interconnectedness.

From the literature, it is clear that heterogeneity of the population is conducive for recurrent

epidemics at longer time scales than those caused by seasonal variations.

The HIV/AIDS dynamics are known to give an SIR model. A general feature of SIR

models, stochastic or deterministic, is that they give damped oscillations around a stable

steady-state solution. In the case of HIV/AIDS, damped oscillations have been shown by

Simwa and Pokhariyal [15] using back calculation methods to derive incidence estimates

from annual AIDS case reports for Kenya and Uganda. Their incidence curves show

recurrent behaviour with damped oscillations.

In this paper, we show that complacency could lead to periodic behaviour of the

HIV/AIDS epidemic. This should be expected since complacency leads to a return to higher

risk behaviours and hence to increased number of new HIV infections. It is assumed that

reductions in the number of AIDS cases in a community lead to complacency resulting in the

community reverting to high-risk sexual behaviors. The need to combat complacency in HIV

prevention has already been voiced in developed countries like the USA and Britain with

regard to extensive use of antiretrovirals (ARVs) [7,16,17]. Ignoring safer sex messages

when condoms are effective in preventing not only HIV but other sexually transmitted

infections and unwanted pregnancies has been described as “misplaced” and the stigma

attached to HIV/AIDS as “a great enemy” [7].

2. Model parameters and assumptions

We formulate an HIV/AIDS model with complacency by considering the adult population in

a one group, one stage model. At time t, there are S(t) adult susceptibles, I(t) infectives who

are the infected and infectious individuals that have not yet developed AIDS symptoms and

A(t) AIDS cases who are infected and with AIDS symptoms. Susceptibles have sexual

contacts at a rate c with a probability of transmission at one sexual encounter denoted by b. A

proportion of these sexual contacts are with infectives. Assume that this proportion is equal

to the prevalence of infectives in the population. The model upholds the common assumption
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of assuming no sexual contacts with AIDS cases though the role of sexual contacts with

persons with AIDS symptoms may become important with advances in medical

interventions. Sexual contacts within susceptibles do not result in any transmission and

thus do not feature in the model. Also, sexual contacts within infectives which gives rise to

issues about the role of reinfection are ignored.

Denote the probability of transmission b and the contact rate c at the onset of the epidemic

as b0 and c0, respectively. Assume that bc, at future points in time differs from b0c0 at the

beginning of the epidemic and that there is an inverse relationship between bc and the

number of AIDS cases, i.e. bc decreases with an increasing number of AIDS cases and

increases with decreasing numbers of AIDS cases. The decrease in bc with increases in

number of AIDS cases is attributed to awareness and behaviour change. The increase in bc

with decreasing numbers of AIDS cases is attributed to complacency.

Our model allows for a generalized form of bc, which as per the above assumptions is a

function of the number of AIDS cases denoted by h(A) in the rest of this chapter. The

objective is to investigate the implication of the dependence of the risk of transmission of

HIV on the number of persons with AIDS symptoms in a community. The dependence of bc

on the number of AIDS cases has been alluded to by a number of researchers [7,18].

3. Derivation of equations of the model

The equations derived are for the adult population as shown in the description of each

epidemiological class below.

3.1 Susceptibles, S(t)

Consider a variable recruitment rate L(t) to the susceptible population per unit time.

Recruited individuals consist of maturing young persons joining the sexually active age

group at a predetermined age. The recruitment term can be rewritten in terms of birth rates,

maturation rates and rates of mother-to-child transmission with time lags [19].

Susceptibles are removed through infection or by natural death. We let m be the natural

death rate for the sexually active adults. The removal rate of susceptibles through infection is

the number of new HIV infections per unit time. This rate is important in calculating HIV

incidence which by definition is the number of new infected persons in a specified time

period divided by the number of uninfected persons that were exposed for this same time

period.

3.2 Number of new HIV infections

Let each susceptible have c sexual contacts per unit time. Assume that a proportion I/N of

these contacts are with infectives and at each of these sexual contacts with infectives, a

susceptible has a probability b of getting infected. Let bc be a function of the number of

AIDS cases given by h(A), then the total probability of one susceptible getting HIV infected

from any of their sex contacts per unit time is h(A(t))I/N. This is the expression for the force

of infection. The force of infection is the probability that a susceptible will get an HIV

infection per unit time. Therefore in a population of S susceptibles, the number of new HIV

infections per unit time is given by h(A(t))IS/N.
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3.3 Infectives, I(t)

Infectives are recruited through new HIV infections described above and removed through

progression to AIDS at rate n and through natural death at rate m. Hence, 1/n is the duration

spent in the infective stage and 1/m is the life expectancy of the adult population. Both of

these rates are assumed constant in the model.

3.4 AIDS cases, A(t)

AIDS cases are recruited through progression from the infective stage to the AIDS stage

and removed through AIDS accelerated deaths at rate s þ m where 1/s is the average

duration spent in the AIDS stage if natural deaths are assumed constant in the model.

However, allowing for variability in s could be necessary given the advances in medical

interventions and in changes in medical seeking behaviours for persons living with

HIV/AIDS.

3.5 Model equations

From the descriptions and assumptions on the dynamics of the epidemic made above, the

following are the model equations.

dS
dt

¼ LðtÞ2 hðAÞ SI
N
2 mS

dI
dt

¼ hðAÞ SI
N
2 ðnþ mÞI

dA
dt

¼ nI 2 ðsþ mÞA

9>>=
>>;

ð1Þ

4. Analysis of the model

Let us focus on the equilibrium state of the system and its stability.

4.1 Equilibrium in the (I, A) plane

Suppose that at the equilibrium state in (I, A), the number of susceptibles S continue

to increase and hence both S and N vary. Setting the derivative in the third equation

in equations (1) to zero, we get (s þ m/n)A*. Similarly, from the second equation, we

get

S

N
¼

ðnþ mÞ

hðA*Þ
ð2Þ

But S/N þ I*/N ¼ 1. Hence ððnþ mÞ=hðA*ÞÞ þ ððsþ mÞ=nÞðA*=NÞ ¼ 1. We state the

following theorem.

THEOREM 4.1. Suppose for equation (1), S ! 1 as t ! 1. Further, suppose that h(A) has an

inverse, h 21 on (0, 1). Then, there exists tA . 0 and eA . 0 such that for all t . tA,

jA(t) 2 A(tA)j , eA and jI(t) 2 I(tA)j , eA. Moreover S(t) ! 1 as t ! tA.
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Proof. Suppose S ! 1 as t ! 1, then from (??) S/N ! 1 (and I/N ! 0, A/N ! 0 provided I

and A remain bounded). From equation (2), it follows that h(A(t)) ! n þ m ¼ h(A*) as

t ! 1. Hence A* ¼ h 21(n þ m) and for tA sufficiently large, there exists an e1(0 such that

for all t . tA, jA(t) 2 A(tA)j , e1. But I* ¼ (s þ m/n)A* ¼ (s þ m/n)h 21(n þ m). Hence,

for sufficiently large tA, for all t . tA, jI(t) 2 I(tA)j , (s þ m/n)e1 ¼ e2. Choosing eA ¼ e2
since e2 . e1 ends the proof for the first part.

Equation (2) gives (S/S þ I*) 2 (n þ m/h(A*)) ¼ 0 from which S ¼ (n þ m)I*/

h(A*) 2 (n þ m). But since h(A(t)) ! (n þ m) as t ! tA, then S ! 1 as t ! tA.

Hence the behaviour of S(t), for t . tA remains of little consequence to A* and I*
since S . SðtAÞ @ I* . A*. Hence end of proof for the second part of the theorem.

It follows from the above theorem that explicit expressions for the equilibrium point E 1 in

(A, I) are

A* ¼ h21ðnþ mÞ and I * ¼
sþ m

n
h21ðnþ mÞ ð3Þ

4.2 An example of linear h(A)

Let h(A) ¼ (h0 2 h1A). Then from the theorem, A* ¼ h 21(n þ m) ¼ (h0/h1) 2 (n þ m/h1)

and I* ¼ s þ m/n(h0/h1 2 n þ m/h1). This result can alternatively be derived by setting

dI/dt ¼ 0 and dA/dt ¼ 0 simultaneously with the assumption that S/N ! 1 as t ! 1 as

shown below:

From equation (1) for I and A, the A-isocline is I ¼ (s þ m)A/n and the I-isocline is

h(A)S/(S þ 1) ¼ n þ m. Hence, the I-isocline is in general a curve while the A-isocline is a

straight line through the origin. Solving the isocline equations simultaneously for

h(A) ¼ h0 2 h1A to get their point of intersection, gives

A ¼
S h02ðnþmÞ

nþm

sþm
n

þ h1S
nþm

Dividing top and bottom by S and taking the limit as S ! 1, gives

A* ¼ h0/h1 2 (n þ m)/h1 and I* ¼ (s þ m)/n[(h0/h1) 2 (n þ m/h1)] Thus, the

(A*, I*) obtained by this direct method is the same as solutions got by using

Theorem 4.1.

4.3 The stability of the equilibrium point E 1

Stability analysis done by studying the signs of dI/dt and dA/dt in the four regions formed

by the I-isocline and A-isocline shows that the resulting trajectory in the (A 2 I) plane

is a clockwise steady spiral toward the equilibrium point (A*, I*). The spiral for

h(A) ¼ 0.433 2 0.001A is shown in figure 1 for linear h(A) and its time evolution shown in

figure 2. Simulations with non-linear forms of h(A) (not shown) showed similar periodic

behaviour. The trajectories start at I(0) ¼ 1, A(0) ¼ 0 and simulations were generated using

Maple 6 software [20].
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4.4 Variability of oscillations with removal rate of AIDS cases from the community

The effect of varying the rate of removal of AIDS cases on the oscillations in number of HIV

infectives and number of AIDS cases in a community was investigated by studying the I(t)

time trends and the I(t) 2 A(t) phase portraits for varying values of the mean life time spent

in the AIDS stage at 2 years (s ¼ 0.5), 4 years (s ¼ 0.25) and 8 years (s ¼ 0.125). From

figure 3, oscillations are rare when AIDS cases stay for short time periods in the community

as seen for 2 years, (s ¼ 0.5) However when AIDS symptomatic cases stay longer in the

community, the number of infectives become lower and there is an increased tendency for

damped periodic behaviour as is shown for 4 years (s ¼ 0.25) and 8 years (s ¼ 0.125). The

simulations show that although the endemic number of infectives reduces with decreasing

rates of removal of AIDS cases from 1200 for s ¼ 0.5–330 for s ¼ 0.125, the endemic

number of AIDS cases remain insensitive to changes in rate of removal of AIDS cases at

about 280 AIDS cases.

The effect of varying the rate of progression to fully blown AIDS was also investigated

(data not shown). The mean time from infection to development of AIDS symptoms was

varied from 8 years (n ¼ 0.125) to 16 years (n ¼ 0.063). Spending longer time before

showing HIV symptoms leads to higher number of infectives as well as higher numbers of
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Figure 1. The A 2 I phase portrait for h(A) ¼ 0.433 2 0.001A and n ¼ 0.125, m ¼ 0.02.
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Figure 2. The I-time trends for h(A) ¼ 0.433 2 0.001A and n ¼ 0.125, m ¼ 0.02.

F. Baryarama et al.32



AIDS cases in the community. This also leads to an overall higher endemic number of

infectives and AIDS cases. However, rate of progression did not independently affect the

periodic behaviour of the model.

Use of exponential dependence or lower bounded dependence lowered the

number of infectives and AIDS cases as well as the equilibrium levels attained (data not

shown). However, use of these forms of h(A) did not change the periodic behaviour of the

model.

Time trends of number of infectives Phase portraits of infectives and AIDS cases 
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Figure 3. The I-time trends and A 2 I phase portraits for h(A) ¼ 0.433 2 0.001A and n ¼ 0.125, m ¼ 0.02 and
varying removal rate of AIDS cases.
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5. Discussions

The model formulated shows that complacency could lead to damped oscillations in number

of persons infected with HIV. This however may not translate into oscillations in HIV

prevalence since the susceptible population size is assumed to keep increasing at low

prevalence levels and the period of the oscillations is of the order of several years. Instead,

the HIV prevalence may exhibit a sustained decline or may become stable. Assuming that the

first decade from introduction of an HIV infected individual corresponds to very low

infection rates so that the HIV epidemic begins at the beginning of the second decade, this

complacency model suggests that the second wave of the epidemic begins 30 years from the

beginning of the epidemic. The model shows a tendency for the epidemic to stabilise at

higher numbers of infectives and AIDS cases than the minimum numbers attained during the

first decline of the epidemic.

A method for finding the equilibrium point given the transmission term h(A) was provided

through a proof to a theorem. The equilibrium point in terms of h 21 is (h 21(n þ m),

(s þ m/n)h 21(n þ m)) in the (A, I) plane. Hence, the equilibrium point is readily found for

any invertible h(A) as we showed for linear h(A). A stability analysis showed that (A*, I*) is

approached through a clockwise steady spiral. This was verified with numerical solutions.

The numerical solutions further showed that the oscillations are more marked for low rates of

progression to AIDS. This supports findings, fears and debates that extensive use of ARVs

could result in resurgent HIV epidemics. The model however shows that prolonging survival

of AIDS cases lowers the endemic equilibrium level and is hence desirable.

The main limitation to our analysis may be that we did not account for the effect of

behaviour change arising from interventions that are independent of the number of AIDS

cases in the community. Though a detailed analysis of this was not undertaken, simple

assumptions of behaviour change suggest more marked damping and less marked

oscillations may result from such an allowance. Secondary, the possible effects of extensive

use of ARVs in terms of method of distributing drugs through public or private health

institution or a combination of both could determine whether patients on ARVs revert back to

the infective class. This together with reduced infectiousness due to lower viral loads for

those on treatment was not accounted for.

Despite the limitations, there are several implications of these findings to public health.

One, the endemic equilibrium should be brought as low as possible especially during the first

wave of the epidemic. This model suggests that this can be achieved by prolonging the

lifetime of the AIDS patients for as long as possible. Two, HIV prevalence at low prevalence

levels become less sensitive to changes in the dynamics of HIV epidemic because it is

overpowered by demographic changes especially the recruitment of susceptibles. At low

prevalence levels, there is hence need to track trends in number of persons infected with HIV

than tracking HIV prevalence.
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