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In this paper, a model for the radiation treatment of cancer which includes the effects of the
cell cycle is derived from first principles. A malignant cell population is divided into two
compartments based on radiation sensitivities. The active compartment includes the four
phases of the cell cycle, while the quiescent compartment consists of the G0 state. Analysis of
this active-quiescent radiation model confirms the classical interpretation of the linear
quadratic (LQ) model, which is that a larger a /b ratio corresponds to a fast cell cycle, while a
smaller ratio corresponds to a slow cell cycle. Additionally, we find that a large a /b ratio
indicates the existence of a significant quiescent phase. The active-quiescent model is
extended as a nonlinear birth–death process in order to derive an explicit time dependent
expression for the tumour control probability (TCP). This work extends the TCP formula
from Zaider and Minerbo and it enables the TCP to be calculated for general time dependent
treatment schedules.
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1. Introduction

Cancer is a disease that affects millions of people worldwide. According to the World Health

Organization, 12.5% of total deaths every year worldwide are caused by cancer [14]. Also, in

30% of these cases, the patients could have been cured had they received early diagnosis and

effective treatment. Time and cost are two factors that limit the number of patients eligible to

receive early treatment. For these reasons, mathematical modelling is a helpful tool in not

only predicting tumour growth and cancer spread, but also in determining the effectiveness of

a specific treatment.

One of the common therapies used to treat cancer is external beam radiotherapy. This

treatment works by transferring energy to a cell, which causes structural damage that affects

cell viability. Based on the interaction of radiation with individual cells, we derive radiation

dependent death rates for tumour cells. The main objective in this work is to derive a

mathematical model for the radiation treatment of cancer, which includes cell cycle
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dynamics, that can be used explicitly to compute the tumour control probability (TCP). The

TCP can be used to predict the outcome of a given treatment schedule.

A widely used mathematical model of the radiation treatment of cancer is the linear

quadratic (LQ) model, which predicts the surviving fraction of clonogens after a treatment of

dose D is applied to a tumour. This model, in its basic form, assumes that the tumour cell

population is uniform and that the effect of the treatment is independent of the cell cycle.

This assumption leads to an oversimplification which prevents complete understanding of the

system dynamics. In this paper, we divide the cell population into two compartments: active

cells, representing cells in the G1, S, G2 and M phases and quiescent cells, representing cells

in the G0 phase. We use this simple, two compartment setup to explain the derivation of a

TCP formula. We believe that the method used can be extended to describe a system with

more compartments; however, the computations would become very tedious. In this work,

we consider only a two-compartment model and leave the inclusion of more compartments

for future studies. Let u(t) represent the active cells and q(t) the quiescent cells. The basic cell

cycle radiation model of this paper is then

du

dt
¼ 2f ðuÞ þ gq2 GuðtÞu;

dq

dt
¼ 2f ðuÞ2 gq2 GqðtÞq: ð1Þ

The reproduction kinetics of the cells are described by the term f(u). When an active cell

undergoes mitosis, two daughter cells are formed and we assume these two new cells enter

directly into the quiescent compartment. The negative reproduction term in the first equation

represents the occurrence of cell division and the 2f(u) term in the second equation represents

the two daughter cells entering into the quiescent compartment. Cells in the quiescent

compartment can re-enter the active compartment with rate g . 0.

The assumption that new daughter cells enter directly into the G0 phase is supported by

many experimental observations and has been used in Swierniak [22].

Formerly, as in Ref. [17], the G0-phase was not distinguished from the G1-phase.

Pioneering cellular biologists believed there to be only four cell cycle phases: G1, S, G2 and

M. However, the G1 phase was recognized as being highly variable in length and in cellular

activity. This phase variability was due to the fact that many cells were in a period of

inactivity, now known as the G0 phase. Our model is equally valid for a model for a

u-compartment consisting of S, G2 and M phases and a q compartment consisting of the G0

and G1 phases. The model’s ability to describe the basic biological system demonstrates one

of the strengths of mathematical modelling, which is that we can generalize and derive basic

properties that are valid for a wide range of applications. In model (1), the time dependent

parameters Gu(t) and Gq(t) denote the radiation damage to the two cell compartments,

respectively.

To derive radiation induced death rates Gu and Gq, we begin modelling on the subcellular

scale. A critical event is DNA double strand breaks (DSB) that occur by the interaction of

two radiation energy depositions, referred to as single-hit events. We make the transition to

the cellular level and derive probabilities of cell death. Based on these probabilities, we

define macroscopic death rates, Gu and Gq to make the transition to a fully macroscopic

model (1). In this procedure, we follow the scaling hierarchy from microscopic to

macroscopic that was also suggested in Bellomo and Maini [3].

To finally derive a formula for the TCP, we go back to the cellular scale and consider a

nonlinear birth–death process describing the cell kinetics, where we assume f(u) ¼ mu. The

main result of this paper is the extension of the active-quiescent model (1) to a nonlinear
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birth–death process (see equations (32) and (33)) which is explicitly solved to obtain the

dynamic equation for the TCP, which is given by

TCPðtÞ ¼ð1 2 e2FðtÞÞuð0Þð1 2 e2GðtÞÞqð0Þexp 2g e2FðtÞ

ðt
0

qðyÞ eFðyÞdy

�

þ m e22GðtÞ

ðt
0

uðyÞ e2GðyÞdy2 2m e2GðtÞ

ðt
0

uðyÞ eGðyÞdy

�
;

ð2Þ

where

FðtÞ ¼

ðt
0

ðmþ GuðzÞÞ dz; GðtÞ ¼

ðt
0

ðgþ GqðzÞÞ dz;

and u(t), q(t) are the solutions of the active-quiescent model (1) with f(u) ¼ mu. The details

of this derivation are given in section 4.

We use the remainder of the introduction to present a brief overview of the cell cycle in

section 1.1, and of radiation treatment in section 1.2. In section 1.3, we review existing TCP

models, in particular the work of Zaider and Minerbo [25]. In section 2, we give a detailed,

physically based derivation of the radiation cell cycle model (1). We use singular

perturbation arguments in section 3 to investigate the effects of the model parameters m and g

on the model dynamics. This analysis allows us to compare model (1) to the LQ-model. We

relate the standard a/b ratio to our model parameters and we find that a large a/b ratio

indicates the presence of a significant quiescent compartment. In section 4, we extend the

active-quiescent model (1) to a nonlinear birth–death process such that the mean field

equations are given by (1). We derive a system of hyperbolic partial differential equations for

the corresponding moment generating functions and we explicitly solve this hyperbolic

system. This procedure leads to the explicit TCP formula in equation (2). Lastly, in section 5,

we summarise and discuss our results. The TCP formula (2) is used in Yurtseven et al. [24] to

investigate various treatment schedules.

1.1 The cell cycle

Here, we review some basic facts about the cell cycle from Refs. [1,7,13]. The cell cycle can

be split into four phases, where the culmination occurs when the cell divides and two

daughter cells are formed. Although not considered part of the cell cycle, it is also important

to recognize that there is a resting phase G0 that cells may enter. This G0 phase is very

important when modelling radiation treatment of cancer because the cell is less sensitive to

radiation when in this phase.

The first phase is known as the gap 1 phase ðG1Þ. It occurs just after the cell has split, but

must not be mistaken for the resting phase G0. During this phase, the cell begins to

manufacture more proteins in preparation for division. It also experiences other growth:

metabolism increases, RNA synthesis is elevated, and organelles duplicate. This phase lasts

about 12 h. The second phase is known as the stationary phase, although a cell in the S phase

is biologically active. During the S phase, the DNA is copied so that when the cell divides,

both cells will have a copy of this genetic information. This phase lasts about 6–10 h. The S

phase is followed by the gap 2 phase ðG2Þ. The gap 2 phase occurs just before the cell begins

to divide into two cells and is a preparation stage for its chromosome duplication. This phase

lasts about 2–6 h. The cell can then enter theM phase where the cell division occurs and two
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new cells are formed. The chromosomes are first lined up and pulled to either end of the cell,

the membrane is pinched together and two daughter cells are formed. This phase lasts about

30 min. After cell division occurs, the cell may enter a resting state, referred to as the G0

phase. During this phase of inactivity, cells have not begun to divide. This period of

inactivity can last anywhere from a few hours to a lifetime and is the phase with the most

variable time frame. Once the cell is signalled to reproduce, it then moves into the G1 phase.

Most stem cells found in normal tissues are in the G0 phase and are not committed to

division. Also, tumor spheroids show an inner necrotic core surrounded by a ring of resting

cells due to lack of nutrients [4].

1.2 Radiation treatment of cancer

Radiation therapy works to treat cancer by attacking reproducing cancer cells, but also

inadvertently affects the normal, healthy cells that are proliferating. This damage to normal

cells is the cause of side effects. Every time radiotherapy is given there must be a balance

between attacking cancer cells and avoiding destruction of healthy cells.

Radiation can be simply described as energy that is carried by waves or streams of

particles. The key aspect in using this energy to treat cancer is that radiation has the

capability of altering genetic material in a cell. As seen in the cell cycle description, this

genetic code controls cell growth and proliferation. A cell’s sensitivity to radiation, referred

to as radiosensitivity, depends on its current position in the cell cycle. Radiation is more

effective on cells that are active and dividing quickly, while it is much less effective on cells

that are in the G0 resting phase, as well as on cells that divide slowly [15].

In radiation therapy, ionizing radiation is used to destroy or shrink tumours. Ionizing

radiation causes ionization, which is the loss of an electron in atoms or molecules. When an

electron is lost, energy is transferred and this energy disrupts chemical bonds, resulting in

ionization. These ionizations, when induced by radiation, can act directly on molecules

forming cellular components, or indirectly on water molecules. When acting on water, the

ionizations cause water-derived radicals (highly reactive molecules that can bind to and

destroy cellular components). These radicals quickly react with molecules near them and this

results in chemical bond breakage or oxidation of the affected molecules. In cells, there is a

variety of possible radiation induced lesions, although the most harmful to the cell are the

lesions which effect the DNA structure.

DNA occurs in pairs of complementary strands and radiation can induce single strand

breaks, or DSB. Single strand breaks are the more common lesion of the two and can usually

be repaired by the cell (undamaged strand serves as template for production of

complementary strand). DSB are caused by either a single event, which severs both DNA

strands, or by two independent single strand break events close in time and space. DSB are

considered more harmful than single strand breaks, as they are difficult to repair. Even when

repair is attempted, broken ends may be joined together, leading to misrepairs. These

misrepairs cause mutations, aberrations (of chromosomes), or cell death.

Deletion of DNA segments is the most common form of radiation damage in cells that

survive radiation treatment. The deletion may be caused by the misrepair of two separate

DSB in a DNA molecule by joining of the two outer ends and loss of the section between the

breaks. However, it may also be a result of the cleaning process, where enzymes digest

nucleotides (component molecules of DNA) of the broken ends prior to rejoining them to

repair a single double strand break [12].
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The LQ model is the most common cell survival formalism used when modelling radiation

treatment of tumours. The LQ expression was originally used by Sinclair in 1966 [16], who

found that an expression of this form fit the cell survival data he analysed, although he did not

biologically justify this discovery. The model determines the surviving fraction of cells after

radiation of a specified dose, where a cell survives the dose application if it is able to act as a

progenitor for significant line of offspring. (The operational definition commonly used for

cell survival is that a cell survives if it produces at least 50 offspring.) The LQ formula is

written as

SðDÞ ¼ e2ðaDþbD 2Þ; ð3Þ

where SðDÞ is the surviving fraction of cells after application of dose D and a and b are the

model parameters.

The ratio of the two adjustable parameters in the LQ model, a and b, has been found to

correlate with the cell cycle length. Tissues which have a slow cell cycle are composed of

cells which proliferate slowly. These slow cycling tissues correspond with a smaller a=b
ratio. Brain tissue and the spinal cord are examples of slow cycling tissues, both of which

have an a=b ratio of about 3Gy [5]. Tissues which have a fast cell cycle are composed of

cells that proliferate quickly and are associated with a larger a=b ratio. Most tumours are

composed of cells which cycle quickly, and have an a=b ratio of approximately 10Gy. It is

important to note that in radiotherapy, it is usually the case that the slow cycling tissues are

those which we are trying to protect.

1.3 The tumour control probability

The probability that no malignant cells are left in a specified location after irradiation is

known as the TCP. This probability is used to determine an optimal treatment strategy where

the dose to the tumour is increased without increasing the damaging effects of radiation of

healthy tissues.

1.3.1 Poisson statistics. The most common and simplest expression for the TCP is one

which relies on Poisson statistics.

If the number of cells present before treatment, n, is large, and if cell survival after treatment

is a rare event, the probability that k cells survive is given by

PrðX ¼ kÞ ¼
l ke2l

k!
;

where X denotes the random variable of the number of surviving cells. We assume that the

observed surviving cell number, nSðDÞ, is a good estimation of the expected value of X and

hence assume l ¼ nSðDÞ. The TCP denotes the probability of having no tumour cells, so

TCP ¼ PrðX ¼ 0Þ ¼ e2nSðDÞ: ð4Þ

Expression (4) is only valid when the cell survival probability is small and the number of

cells surviving irradiation is much less than the initial number of tumour cells, which are the

usual conditions in radiotherapy treatments.
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1.3.2 Binomial statistics. Let p denote the survival probability of an individual cell. If we

assume that all cells are identical and independent, then we obtain from a binomial

distribution

PrðX ¼ kÞ ¼
n

k

 !
pkð12 pÞn2k:

Again we assume that the observed surviving cell number is a good estimator of the

expectation of X, so EðXÞ ¼ np ¼ nSðDÞ which gives p ¼ SðDÞ. In this case, the TCP is

TCP ¼ PrðX ¼ 0Þ ¼ ð12 SðDÞÞn: ð5Þ

The limit of equation (5) as n!1 and SðDÞ! 0, such that 0 , lim nSðDÞ , 1, results in

the Poisson statistics expression (4).

1.3.3 Zaider and Minerbo TCP formulation. Zaider and Minerbo [25] were the first who

found a method to express the TCP as a time-dependent dynamical expression that could be

applied to all treatment protocols. In their formulation, Zaider and Minerbo apply a birth–

death model (see Kendall [9]) to the radiation treatment of cancer. This birth–death process

has been solved explicitly to obtain an expression for the TCP, which satisfies TCPðtÞ ¼ P0ðtÞ

where PiðtÞ is the probability that i clonogens are alive at time t. In their model, the cell birth

rate is denoted by b and the cell death rate is denoted by d. The death rate d is composed of

death due to radiation, hðtÞ, and radiation-independent death, d. That is, d ¼ d þ hðtÞ. The

radiation death term hðtÞ is known as the hazard rate, which for the LQ survival probability

(3), is hðDðtÞÞ ¼ ðaþ 2bDÞðdD=dtÞ.
The master equation for the birth–death process of cancer growth and radiation treatment is

given by an infinite system of ordinary differential equations (ODEs) for the PiðtÞ,

dPi

dt
ðtÞ ¼ ði2 1ÞbPi21ðtÞ2 iðbþ dÞPiðtÞ þ ðiþ 1ÞdPiþ1ðtÞ; ð6Þ

with the convention that P21ðtÞ ¼ 0. To solve equation (6), they introduce the generating

function Aðs; tÞ ¼
P1

i¼0PiðtÞs
i, implicitly assuming that the moment generating function

Aðs; tÞ exists on an interval ðs; tÞ [ ½0; S1Þ £ ½0; TÞ where S1 . 0 and T . 0. From equation

(6), they derive a hyperbolic equation for Aðs; tÞ, namely

›Aðs; tÞ

›t
¼ ðs2 1Þ½bs2 d 2 hðtÞ�

›Aðs; tÞ

›s
: ð7Þ

If initially there are n tumour cells, then the initial condition is Aðs; 0Þ ¼ sn. The TCP is given

by TCPðtÞ ¼ Aðs ¼ 0; tÞ. The expression obtained for the TCP is as follows:

TCPðtÞ ¼ 12
SðtÞ eðb2dÞt

1þ bSðtÞ eðb2dÞt
Ð t
0

dz
SðzÞ eð b2dÞz

" #n
; ð8Þ
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where

SðtÞ ¼ exp 2

ðt
0

hðzÞ dz

� �
ð9Þ

is the cell survival probability for a given hazard function hðtÞ and is defined via the

differential equation _S ¼ hðtÞS.
The mean field equation of (6) for the expectation NðtÞ U

P1
i¼0iPiðtÞ is given by

dN

dt
¼ ðb2 dÞNðtÞ: ð10Þ

Using the solution of the mean field equation, we can directly calculate the TCP as

TCPðtÞ ¼ 12
NðtÞ

nþ bn
Ð t
0
NðtÞ
NðzÞ

dz

 !n

: ð11Þ

The solution NðtÞ of the mean field equation (10) is the mean cell number of the cancer

cells. Hence SðtÞ U NðtÞ=n denotes the surviving fraction of tumour cells. Note that this

interpretation of SðtÞ is not used in the original formula (8) of Zaider and Minerbo. There the

term SðtÞ denotes the survival probability for a given hazard function hðtÞ and it should not be

mixed up with the surviving fraction of the cells SðtÞ.

Note that for no birth, b ¼ 0, we obtain the binomial model (5).

The active-quiescent model presented in this paper extends Zaider and Minerbos model by

including the effects of varying sensitivities within a tumour. The detailed derivation of

equation (2) is given in section 2. Before we do this, we give a detailed derivation of the

active-quiescent radiation model (1).

1.3.4 The normal tissue complication probability. During the radiation treatment of

cancer, healthy tissue is inadvertently irradiated. For treatment to be useful, it is important

that the damage of healthy tissue is kept to a minimum. The normal tissue complication

probability (NTCP) is used as a measure for the sensitivity of normal tissue for a given

radiation treatment schedule. NTCP models are based on the damage probability of so called

“functional subunits” (FSU) [8,18]. Of course, it is desirable to achieve a TCP close to 1,

however, at the same time the NTCP must be at an acceptably low level. Hence, for real

treatments it is important to look at both the TCP and the NTCP simultaneously. In Stavreva

et al. [20], the above mentioned Poissonian TCP formula and related NTCP formulas are

computed for various model assumptions. The model of Zaider and Minerbo [25] has been

compared to NTCP models in Weldon [19]. For the TCP formula derived in this paper, there

is no corresponding NTCP model available. We plan in future research to extend existing

NTCP models to NTCP models of comparable detail to the TCP model studied here.

2. Derivation of an active-quiescent radiation model from first principles

In this section, a model for the radiation treatment of cancer cells that includes active and

quiescent cell phases is derived. The derivation begins from first principles, at the

microscopic level, by considering target sites inside a cell that can potentially be damaged by
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radiation. A target site is damaged when an energy deposition via radiation occurs at that site.

These energy depositions are modelled as stochastic events referred to as hits. The model

includes a quiescent state, G0, and an active state, which combines the G1; S; G2 and M-

phases.

Target theories for radiation damage on living tissues have been discussed since the work

of Lea presented in 1955 in Ref. [10]. We give a complete new derivation here to include time

dependent treatment schedules, rather than considering only the total dose.

The model derivation is divided into five steps. In Step 1, a single cell is considered and the

probabilities that this cell is damaged by radiation are defined. In Step 2, a group of cells is

considered. In Step 3, using radiation physics, the expressions for the damage probabilities

are derived. In Step 4, the radiation induced death rates for active and quiescent cell

compartments are derived. Lastly, in Step 5, the death rates are used to formulate our active-

quiescent radiation model (1).

Step 1: one cell
We consider a single cell, which contains specific sites, called active sites, that are

susceptible to radiation damage. We assume that a single cell has n active sites, labelled

d1; d2; . . .; dm; . . .; dn, where di; i ¼ 1; . . .;m need two-hits to be damaged and di; i ¼
mþ 1; . . .; n need only one hit to be damaged.

We assume radiation has energy E and we define PH;i as the probability that radiation with

energy E causes the site di to experience a single-hit event in a given unit of time Dt.

Similarly, we define P2H;i as the probability that radiation with energy E causes the site di to

experience a two-hit event in a given unit of time Dt. A two-hit event consists of two separate

single-hit events, close in both time and space, so it is expected that these two probabilities

are related (see Step 3).

The probability that at least one site experiences a single-hit event can be computed. Any

of the n sites susceptible to radiation damage can experience a single-hit event:

Probðat least one of the di experiences a single–hitÞ

¼ 1 2 Probðnone of the di experiences a single–hitÞ

¼ 1 2
Yn
i¼1

ð1 2 PH;iÞ: ð12Þ

Similarly, the probability that at least one site experiences a two-hit event can be

computed, where only the sites susceptible to two-hit damage need to be considered:

Probðat least one of the di experiences a two–hit eventÞ

¼ 1 2 Probðnone of the di experiences a two–hit eventÞ

¼ 1 2
Ym
i¼1

ð1 2 P2H;iÞ: ð13Þ

Step 2: many cells
Consider a group of cells ui; i ¼ 1; . . .; p, where each cell has an associated number of active

sites susceptible to single-hit damage and two-hit damage, respectively. In this step, the

probabilities that the k-th cell dies after a single-hit, or a two-hit event are defined, where a

cell is considered dead if it produces less than 50 offspring.
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The probability that a cell uk dies after experiencing single-hit event is denoted by ak, and

the probability that a cell dies after experiencing a two-hit event is defined as bk. The

numbers of single-hit and two-hit active sites for cell uk are denoted by hk and gk,

respectively. Recall that hit events are stochastically independent and that two single-hit

events close enough in time and space comprise a two-hit event. Then the probability that a

cell uk dies is

Probðuk diesÞ ¼ ak Probðuk has at least one single2 hit eventÞ

þ bk Probðuk has at least one two–hit eventÞ

2maxðak; bkÞProbðuk has at least one single–hit event and one two–hit eventÞ:

Using expressions (12) and (13) we obtain

Probðuk diesÞ ¼ ak 12
Yhi
i¼1

ð12 PH;iÞ

 !
þ bk 12

Ygi
i¼1

ð12 P2H;iÞ

 !
2maxðak; bkÞ

� 12
Yhi
i¼1

ð12 PH;iÞ

 !
12

Ygi
i¼1

ð12 P2H;iÞ

 !
: ð14Þ

In order to simplify the above probability, it is assumed that all cells are identical. Later,

we will split cells into active and quiescent compartments and then we assume that all active

cells are identical and all quiescent cells are identical. Here we assume for all k ¼ 1; . . .; p
that

ak ¼ a; bk ¼ b; hk ¼ h; gk ¼ g:

As a result of this assumption, probability (14) reduces to

Probðuk diesÞ ¼að12 ð12 PH;iÞ
hÞ þ bð12 ð12 P2H;iÞ

gÞ

2 maxða; bÞð12 ð12 PH;iÞ
hÞð12 ð12 P2H;iÞ

gÞ: ð15Þ

Step 3: radiation physics
In this step, expressions for the single-hit and two-hit event probabilities previously defined

as PH;i and P2H;i are derived. The probability that an active site di is hit by radiation in the

time interval Dt is proportional to the energy E of the radiation beam as well as to the time

interval Dt, hence PH;i , EDt. Let DðtÞ denote the dose accumulated at time t and so

RðtÞ ¼ ðdD=dtÞ is the radiation dose rate. This dose rate is proportional to the energy E of the

radiation beam. Hence we obtain

PH;i ¼ ~dDtE ¼ dDtRðtÞ

with proportionality constants ~d and d, respectively. Here, dRðtÞ becomes the probability

density function of PH;i.

In order to compute P2H;i, the probability that two stochastically independent one-hit

events occur close in time and space must be calculated. The assumption is made that two

single-hits must occur in a time interval of length v . 0 in order to produce a two-hit event.
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Suppose that a single-hit event occurred in the time interval ½t2 Dt; t�. In order to have a

two-hit event at time t, another single-hit must have occurred in the interval ½t2 v; t�. From
above, the probability density of a single-hit event is dRðtÞ. Now define

FðvÞ ¼ Probða single–hit event in ½t2 v; t�Þ ¼

ðt
t2v

dRðtÞ dt:

Using the total dose DðtÞ, we can write

FðvÞ ¼ dðDðtÞ2 Dðt2 vÞÞ:

Then P2H;i can be computed as

P2H;i ¼ PH;iFðvÞ ¼ d2DtRðtÞðDðtÞ2 Dðt2 vÞÞ:

These results are substituted into equation (15). The expression becomes a function of Dt,

which we denote asCðDtÞ for the probability of cell death due to radiation administered in an

interval of Dt. This results in the following:

CðDtÞ U Probðuk diesÞ

¼ a 12 ð12 dDtRðtÞÞh
� �

þ b 12 ð12 d2RðtÞðDðtÞ2 Dðt2 vÞÞDtÞg
� �

2maxða; bÞ

� 12 ð12 dDtRðtÞÞh
� �

12 ð12 d2RðtÞðDðtÞ2 Dðt2 vÞÞDtÞg
� �

:

Step 4: radiation induced death rates

If P(death) denotes the probability of death in a time unit Dt, then

G U lim
Dt!0

PðdeathÞ

Dt

defines the death rate. In order to find the death rates of a cell population, we expand CðDtÞ

about Dt ¼ 0. Which gives

CðDtÞ ¼ Cð0Þ þC0ð0ÞDt þ OðDt 2Þ

¼ ðauhdRðtÞ þ bgd2RðtÞðDðtÞ2 Dðt2 vÞÞÞDt þ OðDt 2Þ:

We define A ¼ ahd, and B ¼ bgd2. Then the radiation-induced death rate becomes

GðtÞ ¼ ARðtÞ þ BRðtÞðDðtÞ2 Dðt2 vÞÞ: ð16Þ

At this point, it is necessary to discern between active and quiescent cells. The cells are

separated into these two respective compartments, where the active compartment u includes

the cell cycle phases G1, S, G2, M and the quiescent compartment q includes only the G0

phase. Hence, we obtain corresponding radiation death rates as

GuðtÞ ¼ AuRðtÞ þ BuRðtÞðDðtÞ2 Dðt2 vÞÞ;

GqðtÞ ¼ AqRðtÞ þ BqRðtÞðDðtÞ2 Dðt2 vÞÞ: ð17Þ
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In the sequel, we assume that two-hit events, that include DSB, play a minor role for the

quiescent cells and that when these cells do receive a DSB they have a good chance of

repairing this lesion. Hence, in general, we expect Bq ! Bu. In parts of the analysis and

numerical simulations, we will simply assume Bq ¼ 0.

Step 5: ODE model
In order to use the above radiation induced death rates GuðtÞ and GqðtÞ in an ODE model, first

consider a cell cycle model for active and quiescent cells without the effects of radiation. Let

uðtÞ denote the density of active cells and qðtÞ denote the density of quiescent cells. Further,

let f ðuÞ denote the reproduction of active cells, where it is assumed that the two daughter cells

enter the quiescent compartment at birth. Moreover, g . 0 denotes the rate at which

a quiescent cell becomes active. Then a simple cell cycle model is given as (see

Swierniak [22])

du

dt
¼ 2f ðuÞ þ gq;

dq

dt
¼ 2f ðuÞ2 gq: ð18Þ

If additionally we include the effect of radiation damage, as expressed through the death rates

GuðtÞ and GqðtÞ, we arrive at the active-quiescent radiation model (1).

3. Singular perturbation analysis for a time dependent dose rate

In this section, we consider a time dependent dose rate RðtÞ and study scaling limits for the

model parameters to compare the model (1) to the standard LQ model. To do this, we assume

that f ðuÞ ¼ mu is linear, that Bq ¼ 0 and that Bu ¼ B . 0. The model is then given by

du

dt
¼ 2muþ gq2 GuðtÞu;

dq

dt
¼ 2mu2 gq2 GqðtÞq: ð19Þ

Then the effects of the parameters m and g on the system (19) are examined. In section 3.1,

we study the case of a slow transition through the cell cycle (g and m both small) and we

derive a modified LQ model that takes the quiescent state into account. In section 3.2, we

introduce new variables to enable us to separate the actions of the parameters and in section

3.2.1, we study g large and m ¼ Oð1Þ. Finally in section 3.2.2, we consider g ¼ Oð1Þ and m

large.

3.1 Slow transition between active and quiescent compartments, and slow proliferation

In the first case when both g and m are small, let d ¼ e ~d and m ¼ e ~m, where e is small. These

values are substituted into the active-quiescent model (19), which yields

du

dt
¼ 2e ~muþ e ~gq2 GuðtÞu;

dq

dt
¼ 2e ~mu2 e ~gq2 GqðtÞq:

Both u and q are expanded in powers of e:

u ¼ u0 þ eu1 þ e 2u2 þ . . .;

q ¼ q0 þ eq1 þ e 2q2 þ . . .
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These expansions are then substituted into the model and the leading-order terms are

du0

dt
¼ 2GuðtÞu0;

dq0

dt
¼ 2GqðtÞq0:

This system is solved to obtain

u0ðtÞ þ q0ðtÞ ¼ u0ð0Þ exp 2

ðt
0

GuðsÞ ds

� �
þ q0ð0Þ exp 2

ðt
0

GqðsÞ ds

� �

¼ u0ð0Þ exp 2AuDðtÞ2 B

ðt
0

RðsÞðDðsÞ2 Dðs2 vÞÞ ds

� �

þ q0ð0Þ expð2AqDðtÞÞ

¼ u0ð0Þ exp 2AuDðtÞ2 B
D 2ðtÞ

2
2

ðt
0

RðsÞDðs2 vÞ ds

� �� �

þ q0ð0Þ exp ð2AqDðtÞÞ: ð20Þ

To obtain an LQ model, we make the following assumption.

(LQ-assumption): The total dose D is given in a time interval ½0; t1� that is smaller than
the mean two-hit interaction time: t1 , v.Moreover, we observe the result after treatment is

completed for some T with t1 , T , v.

Under assumption (LQ-assumption) the remaining integral term in equation (20) is zero and

we obtain an LQ-model

u0ðTÞ þ q0ðTÞ ¼ u0ð0Þ e
2AuD2ðB=2ÞD 2

þ q0ð0Þ e
2AqD:

The linear dependence for large D is dominated by the term expð2minðAu;AqÞDÞ and the

quadratic term is given by expðBD2=2Þ. Hence for the LQ model, we find qualitatively

a < minðAu;AqÞ and b ¼ B=2. In particular, if the initial condition of the resting cells is

q0ð0Þ ¼ 0, then we obtain the LQ model with a ¼ Au; b ¼ B=2.

3.2 A transformation with radiation

To investigate the behaviour of equation (19) if the parameters g and m are of different sizes,

we transform to a set of new variables Z ¼ uþ q and W ¼ 2uþ q. The new variable Z is

equal to the total number of cells and W corresponds to the total number of cells making a

transition between the compartments. This transformation is applied to the cell cycle model

(19) to obtain the transformed system:

dZ

dt
¼ ðGuðtÞ2 2GqðtÞ2 mÞZ þ ðm2 GuðtÞ þ GqðtÞÞW ;

dW

dt
¼ ð2GuðtÞ2 2GqðtÞ þ 2gÞZ þ ðGqðtÞ2 g2 2GuðtÞÞW : ð21Þ

3.2.1 The case of g large and m5 Oð1Þ. Now consider the case where the transition rate

from the quiescent to the active cell compartment is large compared to the proliferation rate.
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This assumption implies that g ¼ ~g=e and the system (21) becomes

dZ

dt
¼ ðGu 2 2Gq 2 mÞZ þ ðm2 Gu þ GqÞW ; ð22Þ

e
dW

dt
¼ ð2 ~g2 2eGq þ 2eGuÞZ þ ðeGq 2 ~g2 2eGuÞW : ð23Þ

As in the previous section, we formally expand Z and W in powers of e and we denote the

leading order terms by Z0 andW0, respectively. To leading order, we find from equation (23)

that 2 ~gZ0 þ ð2 ~gW0Þ ¼ 0; which can be rearranged to give W0 ¼ 2Z0. This result is

substituted into equation (22) to get

dZ0

dt
¼ ðm2 GuÞZ0: ð24Þ

The solution of this equation is given by

Z0ðtÞ ¼ Z0ð0Þ exp mt2 AuDðtÞ2 B
D2ðtÞ

2
2

ðt
0

RðsÞDðs2 vÞ ds

� �� �
: ð25Þ

Under assumption (LQ-assumption), we again obtain an LQ-model with a ¼ Au and

b ¼ B=2. Notice that the one-hit event damage on the resting cells, Aq, has no effect in this

case. This means that the active cells control the system dynamics when the transition rate g

is large. This agrees with the biological behaviour, since new cells would spend much less

time in the quiescent compartment before entering the active phase of the cell cycle.

3.2.2 The case of m large and g5 Oð1Þ. Now consider the case where the proliferation rate

is large relative to the transition rate. This implies that m ¼ ~m=e and so the system (21)

becomes

e
dZ

dt
¼ ðeGu 2 2eGq 2 ~mÞZ þ ð ~m2 eGu þ eGqÞW ; ð26Þ

dW

dt
¼ ð2g2 2Gq þ 2GuÞZ þ ðGq 2 g2 2GuÞW : ð27Þ

The leading order terms of equation (26) are taken to obtain

0 ¼ 2 ~mZ0 þ ~mW0;

which implies that W0 ¼ Z0. This result is used to simplify equation (27) to

dZ0

dt
¼ ðg2 GqÞZ0: ð28Þ

Solving equation (28) gives

Z0ðtÞ ¼ Z0ð0Þ e
gt2AqDðtÞ: ð29Þ
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We obtain the LQ model with a ¼ Aq and b ¼ 0. In this case, where the transition from

quiescent to active is slow relative to proliferation, the Aq-term dominates, while the effect of

the radiation on the active cells does not contribute to the leading order system behaviour.

Again, this makes sense because new cells quickly accumulate in the quiescent compartment

and therefore, although less sensitive to radiation, the higher density of cells found here causes

this compartment to control the system dynamics.

3.3 Model comparison

Using the results from the perturbation analysis and the additional assumption (LQ-

assumption), a relationship between the parameters in the active-quiescent model, m and g,

and the parameters in the LQ Model, a and b, can be established. Typically, a small a=b
ratio corresponds with a slow cell cycle, whereas a larger parameter ratio indicates a fast cell

cycle. The parameter relationships are summarized in table 1.

Case 1. In this case, both m and g are small, which corresponds with a slow cell cycle and a

significant quiescent phase. The a=b ratio is equal to the active-quiescent model ratio

2 minðAu;AqÞ=B. In the classical interpretation, a slow cell cycle corresponds with a smalla=b
ratio. The ratio 2 minðAu;AqÞ=B is relatively small, compared with the cases 2 and 3 below.

Case 2. In this case, m is large and g is small, which corresponds with a fast cell cycle. The

ratio a=b!1 is obtained for the active-quiescent model, which confirms the classical

interpretation, in which the ratio is assumed to be large.

Case 3. In this third case, m is small and g is large. This corresponds with slow reproduction

and effectively no quiescent compartment. The active-quiescent a=b ratio in this case is

2Au=B. In the classical interpretation, the a=b ratio should be relatively small.

In addition to the classical understanding of the a=b ratio, we derive the following

biologically relevant conclusion from our model:

Biotheorem: Based on our model, we conclude that a large a=b ratio indicates the presence

of a significant quiescent compartment.

4. Tumour control probability

In this section, an expression for the TCP of system (1) is derived. The TCP is the probability

that no malignant cells are left in an affected region. This is a useful tool in predetermining

the success of radiotherapy treatment over time for a cancer patient.

Table 1. Comparison between the parameters in the active-quiescent model, m and g and the parameters in the LQ
Model, a and b.

Case m g a b

1 small small minðAu;AqÞ B/2
2 large small Aq 0
3 small large Au B/2
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Here, we do not make use of the specific radiation death terms as given in equation (17).

The TCP derivation given here is valid for general, time dependent radiation death rates GuðtÞ

and GqðtÞ (that are integrable and bounded).

The active-quiescent model (19) is a deterministic ODE-model for cancer growth and

radiation treatment. As such it is valid for relatively large cell densities where stochastic

effects are negligible. When we talk about tumour control, we aim to reduce the tumour

population to a level close to extinction. Hence, we are interested in small cell levels,

where stochastic effects play an important role. To address this appropriately, we follow

the ideas of Zaider and Minerbo [25] and extend the ODE-model (19) into a nonlinear

birth–death process. A birth–death process is a Markov process, where birth and death

events are modelled as stochastic events. In this context, it makes sense to talk about

TCP as the extinction probability of cancer cells (see also [9]). To be consistent with the

ODE model (1) derived earlier, we show that the birth–death process leads to equation

(19) in a mean field approximation, i.e. the mean values of the cell numbers satisfy

equation (19).

4.1 The corresponding birth–death process

We define PiðtÞ as the probability that i active cells are alive at time t and similarly, QjðtÞ

as the probability that j resting cells are alive at time t. If i; j , 0, then we use the

convention that PiðtÞ and QjðtÞ are equal to zero. Initially, at time equal to zero, the density

of active cells is defined to be uð0Þ, which implies that Puð0Þð0Þ ¼ 1. At time zero, the

density of resting cells is defined as qð0Þ, which implies that Qqð0Þð0Þ ¼ 1. The probability

that no malignant cells are left in the affected region, i.e. the TCP, is given by

TCP ðtÞ ¼ P0ðtÞQ0ðtÞ.

In order to determine equations for both PiðtÞ and QjðtÞ, the biological process that the

system intends to describe is recalled. First, we consider a single active cell. This cell must

have entered the active compartment from the resting cell compartment. Once a cell becomes

active, it can: leave the active cell compartment by replicating; undergo cell death due to

radiation; or it can remain in the active cell compartment.

Also, consider a single quiescent cell. This cell must have entered the quiescent

compartment from the active compartment. It is important to note, however, that when a cell

leaves the active compartment, it replicates and two cells must enter the quiescent

compartment. This implies that it is never the case that the number of resting cells increases

by only one. Once a cell has become quiescent, it can: leave the quiescent cell compartment

by becoming active; undergo cell death due to radiation; or it can remain in the quiescent cell

compartment.

In order to mathematically describe the birth–death process, we consider events that can

occur in a very small time interval, ½t; t þ Dt�.

For i $ 1,

Piðt þ DtÞ ¼ ðmþ GuÞðiþ 1ÞPiþ1ðtÞDt þ g
X1
j¼1

jQjðtÞPi21ðtÞDt

þ 12 Dt miþ Guiþ g
X1
j¼1

jQjðtÞ

 ! !
PiðtÞ: ð30Þ
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For j $ 0,

Qjðt þ DtÞ ¼ ðgþ GqÞð jþ 1ÞQjþ1ðtÞDt þ m
X1
i¼1

iPiðtÞQj22ðtÞDt

þ 12 Dt gjþ Gqjþ m
X1
i¼1

iPiðtÞ

 ! !
QjðtÞ:

ð31Þ

For Dt! 0, equations (30) and (31) are rewritten in differential form to obtain:

dPi

dt
¼ ðmþ GuÞðiþ 1ÞPiþ1ðtÞ þ g

X1
j¼1

jQjðtÞPi21ðtÞ

2 ðmþ GuÞiPiðtÞ2 g
X1
j¼1

jQjðtÞPiðtÞ; ð32Þ

and

dQj

dt
¼ ðgþ GqÞð jþ 1ÞQjþ1ðtÞ þ m

X1
i¼1

iPiðtÞQj22ðtÞ

2 ðgþ GqÞjQjðtÞ2 m
X1
i¼1

iPiðtÞQjðtÞ: ð33Þ

Equations (32) and (33) describe the birth–death process of the active-quiescent radiation

model.

The expected values of PiðtÞ and QjðtÞ are given by the respective densities of the active

and quiescent cells, earlier defined as uðtÞ and qðtÞ, so

uðtÞ ¼
X1
i¼1

iPiðtÞ and qðtÞ ¼
X1
j¼1

jQjðtÞ:

Also, it is straightforward to show that the active-quiescent radiation model (1) derived

earlier is the mean field approximation of the birth–death process described by equations

(32) and (33).

In order to solve the birth–death process given by the system of equations (32) and (33),

define the moment generating functions Vðs; tÞ and Wðs; tÞ as:

Vðs; tÞ ¼
X1
i¼0

PiðtÞs
i and Wðs; tÞ ¼

X1
j¼0

QjðtÞs
j:

We assume that the moment generating functions and their first order derivatives exist. First,

we consider Vðs; tÞ. We use that

›V

›t
¼
X1
i¼0

dPi

dt
s i;

›V

›s
¼
X1
i¼0

PiðtÞis
i21 and Vðs; tÞ ¼

X1
i¼0

PiðtÞs
i:
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We multiply equation (32) by s i and sum over all indices from i ¼ 0; . . . ;1 to obtain a

hyperbolic partial differential equation for Vðs; tÞ:

›V

›t
þ

›V

›s
ðmþ GuðtÞÞðs2 1Þ2 VgqðtÞðs2 1Þ ¼ 0; ð34Þ

with initial condition Vðs; 0Þ ¼ suð0Þ. Similarly, for Wðs; tÞ, we find

›W

›t
þ

›W

›s
ðgþ GqðtÞÞðs2 1Þ2WmuðtÞðs2 2 1Þ ¼ 0; ð35Þ

with initial condition Wðs; 0Þ ¼ sqð0Þ.

Using the method of characteristics for 0 # s # 1, we find the solutions as

Vðs; tÞ ¼ e
2
Ð t

0
ðmþGuðzÞÞ dzðs2 1Þ þ 1

� �
uð0Þ

£ exp g e
2
Ð t

0
ðmþGuðzÞÞ dzðs2 1Þ

ðt
0

qðyÞ e

Ð y

0
ðmþGuðzÞÞ dzdy

� �
;

and

Wðs; tÞ ¼ e
2
Ð t

0
ðgþGqðzÞÞ dzðs2 1Þ þ 1

� �
qð0Þ

£ exp mðs2 1Þ2 e
22
Ð t

0
ðgþGqðzÞÞ dz

ðt
0

uðyÞ e
2
Ð y

0
ðgþGqðzÞÞ dzdy

�

þ2mðs2 1Þ e
2
Ð t

0
ðgþGqðzÞÞ dz

ðt
0

uðyÞ e

Ð y
0
ðgþGqðzÞÞ dzdy

�
:

Finally, using the solutions for Vðs; tÞ and Wðs; tÞ, we obtain an explicit expression for the

TCP from

TCPðtÞ ¼ P0ðtÞQ0ðtÞ ¼ Vð0; tÞWð0; tÞ;

given by equation (2).

Note that in order to compute the TCP from equation (19), the solutions uðtÞ and qðtÞ of the

mean field equation (19) are needed. For this reason, in numerical studies we first solve the

ODE-model (19) and then substitute these solutions into the TCP.

4.2 An example of constant irradiation

In Yurtseven et al. [24], a detailed sensitivity analysis of the parameters of the TCP model is

given and various treatment schedules are simulated and compared. Here, we only show the

TCP curve for constant radiation RðtÞ ¼ R and we assume that the two-hit interaction interval

length v . 0 is small compared to the observation period. Then the radiation death rates (17)
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take the form

GuðtÞ ¼ AuRðtÞ þ BvRðtÞ2; and GqðtÞ ¼ AqRðtÞ:

In order to do this, realistic parameter values must be determined. For an initial number of

tumour cells, an estimate given in Wyatt et al. [23] is used, which is 108 cells at diagnosis.

This estimate for the initial number of tumour cells must be divided into two compartments:

active and quiescent. Since there is no readily available data on the states of tumour cells, it is

assumed that half of the cells are in the active state and half are in the quiescent state. The

parameter that is the most difficult to determine is g, the transition rate from the quiescent to

the active cell compartment. Prior to the recognition of this resting state, G0 was included in

the G1 phase, which accounted for a highly variable length in the cell cycle. For the

parameter g, an estimate for the transition rate from the G1 phase to the S phase is used.

For the parameters Au and Aq, estimates for the a parameter in the LQ model are used,

since in both cases the parameters represent damage due to single-hit events. For Au, the

parameter for the active cell single-hit damage, a value of a for radiosensitive prostate

tumour cells is used. For Aq, the single-hit damage parameter for the resting cell

compartment, an a estimate for radioresistant prostate tumour cells is used. Similarly, for B,

the term which represents damage due to two-hit events, an estimate for the b parameter in

the LQ model for radiosensitive prostate tumour cells is used. These a and b estimates were

taken from Leith et al. [11]. Lastly, the estimate for the length of time in which two single-

hits must occur to cause a two-hit event, defined as v, is obtained from Carlson et al. [6].

The values of the parameters used are given in table 2.

Assume the dose rate is a constant value of 2.75 Gy day21. Figure 1 depicts a plot of the

TCP as a function of time for this treatment schedule. The plot shows that at approximately

750 h, or 1 month, the TCP begins to increase, which suggests this is when the treatment

begins to have a positive effect. By 1200 h, or 50 days, the TCP has reached its maximum

value, which indicates a high probability of tumour eradication. The TCP for specific

treatment schedules that are used to treat cancer is considered in the paper by Yurtseven et al.

[24].

5. Discussion

In this paper, the radiation treatment of cancer cells, beginning at the cellular level, is

mathematically described. Using this mathematical description, which consists of a system

Table 2. Parameter estimates for the active-quiescent TCP.

Parameter Value used Units Reference

u0 108/2 Cells [23]
q0 108/2 Cells [23]
m 0.0655 1/day [21]
g 0.0476 1/day [2]
Au 0.487 Gy21 [11]
Aq 0.155 Gy21 [11]
B 0.055 Gy22 [11]
v 570.4 Minutes [6]
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of two ODEs (1), an expression for the TCP (2), which is useful in determining the outcome

of a specific treatment schedule, is subsequently derived.

The effects of radiotherapy on cancer cells have been studied extensively for many years.

The first widely recognized mathematical model of this process came in 1966, when the LQ

model was first developed. Many later mathematical models of the radiation treatment of

cancer have considered an inhomogeneous cell population of varying radiosensitivities,

without classifying the mechanism behind these variations. It is only recently that the

quiescent, or G0, phase was recognized as a cellular state which the cell can enter from the

classical four phase cell cycle. It has been shown that cells in this quiescent state are less

sensitive to radiation than cells which are proliferating. For this reason, it is important to

consider this resting state when developing a model of this process. In the active-quiescent

model presented here, the cell population is divided into two compartments: a quiescent

compartment G0 and an active compartment, which includes the G1, S, G2 and M phases of

the cell cycle. The derivation of the active-quiescent radiation model began from first

principles, by considering how radiation affects a single cell. Once cell specific target sites

that could be damaged via energy deposits were established, the model was extended to

groups of cells in the two respective compartments. The result of this derivation was a system

of two ODEs, which includes the effects of a time-dependent radiation dose rate and

incorporates the dynamics of the active-quiescent cell cycle (see equation (1)).

Once the active-quiescent radiation model was established, the effects of the two

parameters which governed a cell’s transition through the quiescent and active phases were

considered. The first parameter, m, describes the proliferation rate and the second parameter,

g, describes the transition rate from the quiescent to the active cell compartment.

Perturbation analysis showed that the relative sizes of these parameters have a significant

effect on the solutions of the active-quiescent system. When m and g are both small, a

modified linear-quadratic model is obtained. When g is large and m is small, the one-hit event

damage on resting cells has no effect, while when m is large and g is small, the effect of

radiation on the active cells does not contribute to the leading order system behaviour. The

comparison to the LQ-model leads to the confirmation that a large a=b ratio corresponds to a
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Figure 1. Plot of TCP vs. time with constant dose rate.
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fast cell cycle and a smaller a=b ratio corresponds with a slow cell cycle. Also, this

comparison led to the hypothesis that a large a=b ratio indicates a significant quiescent

compartment.

Following the model analysis, the results of Zaider and Minerbo [25] were extended by

deriving an expression for the active-quiescent TCP. To do this, a method similar to that used

in Ref. [25] was employed. The first step was to extend the active-quiescent model to a

nonlinear birth–death process (see equations (32) and (33)). The resulting system of

infinitely many differential equations was then solved using generating functions. Once the

solution was obtained, an explicit expression for the active-quiescent TCP, or the probability

that there are zero tumour cells at time t, could be calculated. This expression can be used to

analyze a variety of treatment plans of varying dose rates, number of fractions, and overall

treatment time (see [24]).
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