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This paper deals with the application of the mathematical kinetic theory for active particles,
with discrete activity states, to the modelling of the immune competition between immune
and cancer cells. The first part of the paper deals with the assessment of the mathematical
framework suitable for the derivation of the models. Two specific models are derived in the
second part, while some simulations visualize the applicability of the model to the description
of biological events characterizing the immune competition. A final critical outlines some
research perspectives.
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1. Introduction

A mathematical framework to model large systems of active particles with discrete activities

was proposed in a recent paper [1], which develops the approach by Bertotti and Delitala [2]

to discretize equations of the generalized mathematical kinetic theory [3]. The mathematical

structures developed in Ref. [1] have been proposed in view of modelling large systems of

interacting entities, called active particles, such that their microscopic state is characterized

not only by mechanical variables, but also by an additional variable called activity, suitable to

describe specific functions of the particles. The modelling dealt with in Refs. [1, 2] considers

the activity as a discrete variable.

This paper deals with a specific application, with reference to the immune competition

between tumor and immune cells. The application of methods of the mathematical kinetic

theory to the above competition was initiated in Ref. [4] and developed by various authors as

documented in the review papers [5, 6], as well as in various recent applications [7–11].

Additional contributions from the view point of biological sciences are offered in Refs.

[12–15].

The contents of the paper are developed through four more sections, which follow the

above introduction. In details:
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. Section 2 deals with a phenomenological description of the system analyzed in this paper,

and defines the mathematical structure, referring from Ref. [1], which will be used for the

modelling.

. Section 3 deals with the derivation of the mathematical model describing the immune

competition process involving cells which are carrier of a pathological state and

contrasted by immune cells activated by cytokine signals.

. Section 4 develops a qualitative and computational analysis of the models proposed in

section 3 with the aim of visualizing the predictive ability of the model with special

attention to the asymptotic behavior of the solution.

. Section 5 deals with a critical analysis on the contents of this paper, also focused on the

problem of parameters identification and suggests some experiments to achieve the above

objective.

2. Phenomenological description and mathematical framework

We refer to biological systems involving the competition of cells carrier of pathology and

immune cells activated by cytokine signals, with some reasoning specifically related to the

case of tumor modelling.

The immune system, in a multicellular organism, is the organization of cells and

molecules with specific roles to defend organism against foreign pathogens (viruses,

bacteria, parasites) as well as against internal cellular disorder. Its defensive action is evident

through the recognition of non-self substances, revealing particular molecular patterns, the

antigens, which are linked to the foreign pathogen agents. The process is complicated: the

immune system needs to evolve and change in time, recognizing some non-self substances as

non-offending elements (cellular feeding substances, growing embryos in the mother) and

learning to identify new pathogen agents not previously encountered. The task is performed

by distinct populations of specialized substances (proteins, enzymes, etc.).

The reaction of the immune system to pathogen agents is of two different kinds: innate

response and acquired response. The innate response is quickly activated every time the

infectious agent is encountered, while the acquired one is activated after repeated exposures to

a given infection. They work together against the infection, but in both cases the defense starts

from the recognition of the pathogen agents. It is an intricate process in which several

components of the immune system cooperate in order to reach the objective, from the detection

of the infection to the proliferation of the leukocytes specialized against the pathology.

On the other hand, abnormal cells, e.g. cells that are carriers of a particular pathology,

virally infected or neoplastic cells, may proliferate, rapidly increasing the number of infected

individuals or inhibiting in some way the functionality of the immune system. From this

point of view, tumor cells may be regarded as an aggressive host, at least at an early stage of

the tumor.

We may generally define a tumor as a disease originating in some kind of cellular disorder,

which allows certain cellular populations to manifest deviant characteristics. When tumor

cells are recognized by immune cells, a competition starts and may end up either with the

destruction of tumor cells, or with the inhibition and depression of the immune system.

Indeed tumor cells, if not recognized and depleted, start to condense into a solid form: this is

the passage from the microscopic (cellular) scale to the macroscopic scale. As a matter of fact

the defense ability of the immune system and the progress ability of the tumor are common

features of the competition.
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In this sophisticated competition, cellular and subcellular phenomena play a

relevant role in the evolution of the process. It may be described through

the interactions of several cellular populations, related to immune system cells as

well as to abnormal cells. In this paper the complexity of the system is reduced by

identifying only three different cell populations: endothelial cells; immune cells whose

many species are gathered; and specific proteins, called cytokines, which are a kind of

messenger whose function consists in their ability to participate in the activation of the

immune cells.

Endothelial cells are the thin cells, which are the line of the interior face of blood vessels

and can be found in the circulating blood. They are characterized by a natural trend to modify

their biological state from normal to progressing (abnormal) which is the initial stage of the

clonal expansion: abnormal cells may lose their programmed death ability (apoptosis) to start

progressing towards metastatic states. Therefore, the biological state of these cells can be

defined as a normal or abnormal state.

Immune cells, if active, have the ability to contrast the presence of

tumor cells (abnormal endothelial cells) by reducing their progression; if inhibited, they

lose this ability. As already mentioned, active cytokines are a kind of messenger able

to active immune inhibited cells, but may lose this ability after having interacted with the

last ones.

The biological state of each element of these interacting populations (cells or cytokines)

may thus be described by two discrete values denoted uh, for h ¼ 1; 2; of the activity

variable, taken as a scalar variable in our model.

In the very early stage of the immune competition, proliferating and destructive

phenomena may not play a relevant role. Therefore, at this stage, the mathematical

modelling of the immune competition between tumor and immune cells, considering the

action of cytokines, simply deals with the variation, due to interactions, of the biological

state of each cell’s population. Taking into account only conservative encounters, the

aim of this particular model is the ability to describe the onset of progressing cells as a

transition from the normal state of endothelial cells. At a later stage, encounters

generating proliferation or destruction processes occur. This perturbation of the cellular

dynamics presented above is then modelled by non-conservative encounters able to

describe this new phenomenology.

We provide the mathematical structure, which will be used in the modelling of the

complex immune competition detailed above. Consider the general case of proliferating–

destructive interactions, which generate death or birth of the various cells playing the game.

Then we assume that the three populations are homogeneously distributed in space, so that

the distribution function corresponding to the i-th population depends on time and discrete

activity only, and we note

f hi ðtÞ ¼ f iðt; u
hÞ; ð1Þ

for i ¼ 1; 2; 3 and h ¼ 1; 2:
The subscript i ¼ 1 corresponds to endothelial cells whose biological state may shift from

normal ðu1Þ to abnormal ðu2Þ: The subscript i ¼ 2 corresponds to immune cells whose

biological state may shift from inhibited ðu2Þ to active ðu1Þ. Finally the immune-activating

cells (cytokines), whose state also may shift from active ðu1Þ to inhibited ðu2Þ; are labelled

with the subscript i ¼ 3. Using the mathematical structure developed in Ref. [1] to model the
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evolution of the system leads to the following system of ordinary differential equations:

df hi
dt

¼
X3

j¼1

X2

p;q¼1

hijBpq
ij ðhÞf

p
i f

q
j 2 f hi

X3

j¼1

X2

q¼1

hijð1 2 m
hq
ij Þf

q
j ; ð2Þ

in which the coefficients are:

. the encounter rate hij; which gives the number of encounters per unit of time between two

interacting cells of respective populations i and j.

. the discrete transition density Bpq
ij ðhÞ; which is the probability that a cell of the i-th

population with biological state up; falls into the state uh; after an interaction with a cell of

the j-th population with state uq: This term has the structure of a probability density with

respect to the outgoing variable. This leads to the following property:

;i; j; ;p; q : Bpq
ij ð1Þ þ Bpq

ij ð2Þ ¼ 1; ð3Þ

which gives Bpq
ij ð1Þ when Bpq

ij ð2Þ is known, and vice versa.

. the source/sink rate m
hq
ij ; which is, for each encounter between a cell of the i-th population

in the biological state uh and a cell of the j-th population with biological state uq; the

number of cells generated (in the case of proliferating interactions) or destroyed (in the

case of destructive ones) with state uh in the same population. This term is negative in

case of destructive interactions and positive for proliferating ones. Note that proliferation

and/or destruction occur with the above defined encounter rate.

The knowledge of f hi leads to the computation of macroscopic quantities, as moments

weighted by the above distribution function. Referring to the biological application we are

dealing with, the interesting quantities for the understanding of the results are the number

densities and the activations.

nhi is the number density of cells of the i-th population with activity uh at time t. It provides

information on the size of the i-th population and is defined by the zero-th order moment of

the function f hi ; which means simply in the homogeneous case

nhi ðtÞ ¼ f hi ðtÞ: ð4Þ

The sum over the activities gives the number density ni corresponding to the i-th

population:

niðtÞ ¼ f 1
i ðtÞ þ f 2

i ðtÞ; i ¼ 1; . . .; 3; ð5Þ

while the total number density n is the sum of the number densities ni: When proliferating–

destructive events play a role, the density number ni changes in time. On the contrary, in the

conservative case, this number remains constant in time for each population that yields

f 1
i ðtÞ þ f 2

i ðtÞ ¼ ni0; ð6Þ

for all time t, where ni0 is the cells number of the i-th population at time t ¼ 0.
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The h-th activation, denoted Ah
i ; provides information on the biological activity state of

the i-th population at time t. It is defined by

Ah
i ðtÞ ¼ uhnhi ðtÞ; ð7Þ

as the first order moment of the activity uh related to the i-th population, while the overall

activation of the i-th population is thus given by

AiðtÞ ¼ u1n1
i ðtÞ þ u2n2

i ðtÞ: ð8Þ

It has a specific and different meaning for each cell population. Indeed it denotes,

respectively, the tendency of the endothelial cells to reach the pathologic state, the ability of

immune cells to reduce the progression of the tumor cells and the capacity of cytokines to

activate the immune system.

3. The mathematical model

This section deals with the derivation of a mathematical model of the immune competition

between cancer and immune cells with the mediation of cytokines. The model refers to the

mathematical structure reported in equation (2), while the derivation of specific models is

developed by identification of the various terms hij; Bpq
ij ðhÞ; and m

hq
ij which appear in this

equation.

The analysis is developed through three sub-sections, which follow the above brief

introduction. The first one deals with the modelling of conservative microscopic interactions,

the second one develops the same analysis for proliferating–destructive encounters, while

the mathematical model is derived in the last subsection.

3.1 Modelling microscopic conservative interactions

Consider interactions between pairs of cells of the three populations, which play the game,

and focus our analysis to encounters, which modify only the biological state. Moreover, we

assume that the encounter rate is constant for all encounters:

hij ¼ h ¼ 1; ;i; j ¼ 1; 2; 3: ð9Þ

In order to build up the model, we have now to compute the transition coefficients Bpq
ij ðhÞ

according to the following phenomenology:

. Interactions between cells of the first population, both normal and progressing

endothelial cells, present an inner tendency to degenerate and progress to the abnormal

state u2:
. Referring to interactions between cells of the first population with cells of the second

population, we assume that the biological state of a non-progressing endothelial cell

remains unchanged after interactions with immune cells, while cell progression can be

reduced by the action of the active immune cells.

. Interactions between cells of the second population with cells of the first population

present ability of tumor cells to inhibit immune cells.

. Interactions between cells of the second population do not involve cell modification.
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. Referring to interactions with cells of the third population, the only non-trivial one is related

to encounters with immune cells. Active cytokines may activate inhibited immune cells, but

may lose this ability after an encounter with immune cells (either inhibited or not).

The above assumptions lead to the following expressions of the transition probability

density terms:

. B11
11ð2Þ ¼ B12

11ð2Þ ¼ 111; where 111 is the probability that endothelial normal cells

become abnormal after having interacted with other endothelial cells (normal or

abnormal);

. B22
12ð1Þ ¼ 112; where 112 is the probability that endothelial abnormal cells become

normal after having interacted with active immune cells;

. B22
21ð1Þ ¼ 121; where 121 is the probability that active immune cells are inhibited after

having interacted with abnormal cells;

. B12
23ð2Þ ¼ 123; where 123 is the probability that inhibited immune cells are activated

after having interacted with active cytokines;

. B21
32ð1Þ ¼ B22

32ð1Þ ¼ 132; where 132 is the probability that cytokines are inhibited after

having interacted with immune cells (active or not).

When one of the above transition term is known, for a fixed biological state, the one related

to the complementary biological state is given by the relation (3). The other terms model

trivial interactions that let unchanged the biological state of the cells involved in an

encounter, and are given by:

Bpq
ij ðhÞ ¼ 1 if p ¼ h;

Bpq
ij ðhÞ ¼ 0 if p – h:

8<
: ð10Þ

The phenomenological parameters 1ij describe the probability that a cell may change its

biological state during an encounter; thus they belong to the interval ½0; 1�:

3.2 Modelling microscopic proliferating/destructive interactions

We develop in this section the modelling of proliferation/destruction processes, which appear

at the later stage of the competition.

Microscopic proliferating/destructive interactions involving the three populations appear

with a source/sink rate m
hq
ij which depends on the microscopic state of the pair of the

interacting cells. The modelling of these interactions describes the following

phenomenology:

. Interactions between normal endothelial cells with cells of the first population, both

normal and abnormal, do not lead to proliferation or destruction. On the other hand,

abnormal cells undergo uncontrolled mitosis stimulated by encounters with non-

progressing cells, which show a feeding ability. Encounters between tumor cells do not

lead to any proliferation or destruction.

. Referring to interactions between cells of the first population with cells of the second

population, the proliferating rate of non-progressing cells, due to encounters with

immune cells, is equal to zero. On the other hand, tumor cells are partially destroyed

during encounters with active immune cells.
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. Interactions between inhibited immune cells of the second population with cells of the

first population do not involve proliferation or destruction. On the other hand, active

immune cells proliferate due to encounters with progressing cells, while showing a self-

destruction to the sentinel level f 1
20 ¼ f 1

2ðt ¼ 0Þ when interacting with normal

endothelial cells.

. Interactions between cells of the second population and interactions involving cytokines

always have a trivial output.

Bearing in mind the above phenomenological considerations, the proliferating/destructive

phenomena are modelled by the following source/sink terms:

. m21
11 ¼ b11; where b11 is a parameter which characterizes the proliferating ability of tumor

cells due to their encounters with normal endothelial cells;

. m22
12 ¼ 2b12; where b12 is a parameter which characterizes the ability of active immune

cells to destroy tumor cells;

. m21
21 ¼ 2b*

21; where b*
21 is the parameter corresponding to the self-destruction of active

immune cells due to their interaction with normal endothelial cells;

. m22
21 ¼ b21; where b21 is the parameter corresponding to the proliferation rate of active

immune cells due to their interaction with progressing cells.

The parameters bij are positive constants, as underlined in the definition of the source/sink

rate reported in the first section. The other values of the terms m
hq
ij are equal to zero.

3.3 Derivation of the evolution equation

The evolution equation, e.g. the mathematical model, is obtained considering the elementary

volume of the space of the microscopic state and equating, for each population, the variation

rate of the cells in the volume to the net flux (inlet minus outlet) due to microscopic

interactions. Technical calculations analogous to those developed in Ref. [2] lead to the

following models.

3.3.1 Model Ia–general case

dg1

dt
¼ 2111g1ðg1 þ g2Þ þ 112g2g3;

dg2

dt
¼ 111g1ðg1 þ g2Þ2 112g2g3 þ b11g2g1 2 b12g2g3;

dg3

dt
¼ 123g4g5 2 121g3g2 þ b21g3g2 2 b*

21ðg3 2 g30Þg1;

dg4

dt
¼ 2123g4g5 þ 121g3g2;

dg5

dt
¼ 2132g5ðg3 þ g4Þ;

dg6

dt
¼ 132g5ðg3 þ g4Þ;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð11Þ

where all above number densities are normalized with respect to the density f 1
1ðt ¼ 0Þ ¼ n10

of the normal endothelial cells at t ¼ 0. The normalization is applied using the following
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notations:

f 1
1

n10

¼ g1;
f 2

1

n10

¼ g2;
f 1

2

n10

¼ g3;
f 2

2

n10

¼ g4;
f 1

3

n10

¼ g5 and
f 2

3

n10

¼ g6: ð12Þ

The above model is characterized by five 1-type parameters corresponding to conservative

encounters and four b-type parameters corresponding to proliferating/destructive

encounters. It is worth characterizing, before developing simulations addressed to visualize

the predictive ability of the model, some specific particularizations of the general model.

Specifically consider, among various conceivable cases, the following particularizations:

3.3.2 Model Ib–absence of cytokine action. This model, which corresponds to absence of

interaction between the immune system and the cytokine proteins, is obtained by putting

132 ¼ 123 ¼ 0: Then the model writes:

dg1

dt
¼ 2111g1ðg1 þ g2Þ þ 112g2g3;

dg2

dt
¼ 111g1ðg1 þ g2Þ2 112g2g3 þ b11g2g1 2 b12g2g3;

dg3

dt
¼ 2121g3g2 þ b21g3g2 2 b*

21ðg3 2 g30Þg1;

dg4

dt
¼ 121g3g2:

8>>>>>>>>><
>>>>>>>>>:

ð13Þ

3.3.3 Model II–constant number of normal cells. This particularization corresponds to a

physical situation where the number of normal cells is kept constant by the outer

environment, which replaces cells, which degenerate or are used towards the proliferation of

degenerated cells. The model is obtained putting g1 ¼ g1ðt ¼ 0Þ ¼ 1. In this case the model

writes:

dg2

dt
¼ 111ð1 þ g2Þ2 112g2g3 þ b11g2 2 b12g2g3;

dg3

dt
¼ 123g4g5 2 121g3g2 þ b21g3g2 2 b*

21ðg3 2 g30Þ;

dg4

dt
¼ 2123g4g5 þ 121g3g2;

dg5

dt
¼ 2132g5ðg3 þ g4Þ;

dg6

dt
¼ 132g5ðg3 þ g4Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð14Þ

4. On the initial value problem

Two classes of models have been proposed in Section 3 corresponding, respectively, to

biological in vitro and in vivo situations. Moreover, the first model has been particularized to

the case of absence of cytokine signals, while the second one includes the above action and is

derived assuming that the number of endothelial normal cells is kept constant by feeding

from the outer environment. Therefore an additional difference between Models I and II

corresponds to closed (in vitro) and open (in vivo) systems.
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The application of the above models to the analysis of phenomena of interest in biological

sciences means solving the related initial value problem, which can be formally written as

follows:

dg
dt

¼ Gðg; 1;bÞ;

gðt ¼ 0Þ ¼ g0;

8<
: ð15Þ

where g denotes the set {gi} of the normalized number densities, G is the set of the right hand

side terms {Gi}; while 1 and b denote the set of parameters {1i} and {bi}; respectively, and

g0 is the set of initial conditions chosen with the assumption that they model a sane organism

in which both immune cells and cytokines are all active.

4.1 Well-posedness of the model

The analysis developed, in what follows, is limited to the proof that problem (15) is well

posed locally in time. Consider the Banach space of the functions continuous with respect to

the time endowed with maximum modulus norm. The RHS in system (15) is defined for g

belonging to the above space. Note that g [ R6 and is on R6 of class C1 (actually, C1). Hence

g is locally Lipschitz. This guarantees the local existence and the uniqueness of the Cauchy

problem (15).

Remark. The occurrence of the global existence of a solution g would be violated only in the

case jgj!1 as t! t * for some t * , 1: However, for the solutions under consideration, this

eventuality is ruled out by the following properties of the gi:

(i)

gi $ 0 ;i ¼ 1; . . .; 6;

(ii)

X6

i¼1

giðtÞ ¼
½n1ðtÞ þ n2ðtÞ þ n3ðtÞ�

n10

is bounded:

The proof of the property (i) is reported in what follows, while (ii) depends on the choice of

the parameters. Let us consider the notation adopted in Section 2 for the number densities,

before applying the normalization with respect to n10. We want to prove that the solution

fðtÞ ¼ {f hi ðtÞ} of the system (2) with non negative initial data f hi ðt ¼ 0Þ ¼ f hi0; satisfies the

following condition:

;t $ 0 : f hi ðtÞ $ 0; ð16Þ

for any i ¼ 1; 2; 3 and h ¼ 1; 2: To this aim, call for simplicity, for any i ¼ 1; 2; 3 and

h ¼ 1; 2;

Qh
i ðf; fÞðtÞ ¼

X3

j¼1

X2

p;q¼1

hijBpq
ij ðhÞf

p
i ðtÞf

q
j ðtÞ; ð17Þ
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and

Lhi ðfÞðtÞ ¼
X3

j¼1

X2

q¼1

hij 1 2 m
hq
ij

� �
f
q
j ðtÞ: ð18Þ

We have assumed that hij is constant, while m
hq
ij are quantities of a small order with respect to

one. Equation (2) can be rewritten as

df hi
dt

ðtÞ þ f hi ðtÞL
h
i ðfÞðtÞ ¼ Qh

i ðf; fÞðtÞ: ð19Þ

Put now

lhi ðtÞ ¼

ðt
0

Lhi ðfÞðsÞdðsÞ:

If f hi ðtÞ is a solution of above equation, then

d

dt
exp lhi ðtÞ

� �
f hi ðtÞ

� �
¼ exp lhi ðtÞ

� �
Qh

i ðf; fÞðtÞ; ð20Þ

which in turn yields

f hi ðtÞ ¼ exp 2lhi ðtÞ
� �

f hi0 þ

ðt
0

exp lhi ðsÞ2 lhi ðtÞ
� �

Qh
i ðf; fÞðsÞ

� �
ds: ð21Þ

From equation (21), the validity of the thesis (16) follows in view of the positivity of the

exponential and of the fact that f hi0 $ 0 for any i ¼ 1; 2; 3 and h ¼ 1; 2:

4.2 Simulations of immune competition

In this subsection we show how the models derived in section 3 are able to describe some

interesting phenomena of immune competition.

The above local and global existence theorems enable the application of standard

integration techniques for systems of ordinary differential equations. In what follows in more

detail, we present some simulations, which aim to focus on the following aspects:

. The model, under suitable selection of the parameters 1 and b; is able to show, after an

initial situation of growth, the progressive destruction of tumor cells, due to the action of

active immune cells;

. The activation of immune cells may modify the output of the competition.

Consider Model Ib, which corresponds to an absence of an action of the immune

activators. We can observe a situation where, in the initial stage of the competition, tumor

cells increase (figure 1(a)). The development of the tumor is then limited by the immune

response, this last one reaching a threshold value after a first decrease (figure 1(b)).

The introduction of the effect of cytokines (model Ia) modifies the outcome of the

competition. Indeed the situation shown in figure 1(a),(b) is replaced by the one presented in

figure 2(a),(b), where the parameters non-related to the cytokines are the same selected in
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figure 1(a),(b). Now the immune response allows the tumor cells to decrease more quickly,

while the progressive inhibition of active immune cells towards the threshold value is slower.

Consider Model II in which we have assumed that the number of normal cells is kept

constant by feeding from the outer environment. In this particular case, we can note a blow up
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Figure 1. (a) Evolution in time of tumor cells for the Model Ib. (b) Evolution in time of active immune cells for the
Model Ib.
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of tumor (figure 3(a)) and a total inhibition of the immune defense (figure 3(b)).

The parameters are those chosen in figure 2(a),(b).

In the two last figures we present some interesting phenomena resulting from

the immune competition described by Model II for a particular selection of the parameters

(b)

20 40 60 80 100

0.2

0.4

0.6

0.8

1

t

g 3
 (t

)

Figure 2. (a) Evolution in time of tumor cells for 123 ¼ 0:7 and 132 ¼ 0:5 in the Model Ia. (b) Evolution in time of
active immune cells for 123 ¼ 0:7 and 132 ¼ 0:5 in the Model Ia.
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Figure 3. (a) Evolution in time of tumor cells for the Model II. (b) Evolution in time of active immune cells for the
Model II.
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1 and b. The figure 4 describes a competition in which tumor cells first present an increase.

Then we cannot observe a complete depletion but they are controlled by a threshold level.

Figure 5 shows how tumor cells are able to compete with immune active cells, before reaching

this level.

5. Critical analysis

A mathematical model of the competition between tumor and cells of the immune system has

been proposed in this paper with reference to the mathematical kinetic theory for active

particles with discrete states developed in Ref. [1], starting from the approach proposed in

Ref. [2].

The model attempts to reduce the overall complexity of the system considering that:

(i) it deals with a spatially homogeneous case;

(ii) only a small number of cell populations are involved in the game.

g 2
 (

t)

20 40 60 80 100

2

4

6

8

t

Figure 4. Evolution in time of tumor cells for 123 ¼ 1 and 132 ¼ 0:7 in the Model II.
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Figure 5. Evolution in time of tumor cells for 123 ¼ 0:4 and 132 ¼ 0:3 in the Model II.
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On the other hand, despite the above simplicity, it has shown to be able to describe various

phenomena of interest in biological sciences. This encourages the development of additional

analysis towards its application to a deeper understanding of biological phenomena.

The first step towards an effective application of the model is the identification of its

parameters. It is not an easy task, considering the stochastic nature of the biological system

we are dealing with, as documented in Ref. [16]. Some reasoning can be developed following

Chapter 7 in Ref. [17], referring to Model II in absence of the immune activators.

In details, Model II in absence of cytokine action writes:

dg2

dt
¼ 111ð1 þ g2Þ2 112g2g3 þ b11g2 2 b12g2g3;

dg3

dt
¼ 2121g3g2 þ b21g3g2 2 b*

21ðg3 2 g30Þ;

dg4

dt
¼ 121g3g2;

8>>>>><
>>>>>:

ð22Þ

while the stage corresponding to the proliferation phase only writes:

dg2

dt
¼ b11g2 2 b12g2g3;

dg3

dt
¼ 2b21g3g2 2 b*

21ðg3 2 g30Þ:

8><
>: ð23Þ

An exponential growth is described by the model in the case of absence of contrast from

the immune system. Comparisons with empirical data corresponding to the above

different biological stages leads to the identification, in cascade, of the various parameters

of the model. Nevertheless, the reasoning proposed in Ref. [16] points out that the

identification of the parameters does not lead to a universal result as it may be related to

the specific system under consideration, which is characterized by non negligible

stochastic features.

Moreover, it is worth mentioning that although the computational experiments of section 4

have visualized some phenomena of interest in biological sciences, additional ones can be

developed possibly linked to a qualitative analysis of the initial value problem as in Refs. [7]

or [8]. The analysis should be related to specific aspects of the immune competition [18],

while more generally the mathematical approach may refer to modelling population

dynamics with internal structures [19–22].

Finally, it is worth remarking that cancer phenomena appear at three scales: the

subcellular, cellular and macroscopic as described in Ref. [14]. This paper develops the

modelling at the cellular scales by equations whose parameters should be delivered by an

analysis at the subcellular scale [23, 24]. At present this challenging objective does not

seem yet effectively available despite valuable contributions such as those reported in

Ref. [23, 24]. On the other hand, macroscopic equations can be obtained by asymptotic

analysis as documented in Ref. [25], where it is shown how the mathematical structure of

macroscopic equations depends on the entity of the rates of variation of the three biological

events dealt with in this paper: modification of the biological functions, and

proliferating/destructive interactions.
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