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There exists evidence that in early stages tumors progress along linear, tubular, or irregular
surface structures. This seems to be the case for atypical adenomatous hyperplasia (AAH), a
precursor of adenocarcinoma of the lung. We previously published a simplified model, which
showed that early structures had a potential towards spontaneous invasive growth following a
latency phase. The transition was facilitated by diffusion of a growth factor and nonlinear cell
cycle regulation in cancer cells. The mechanism is analogous to that in Turing pattern
formation, although the patterns are irregular and unstable. We introduce more biologically
justifiable signaling, in which only the free growth factor molecules diffuse. Flexible
nonlinearities in the model accommodate several growth patterns of cells as well as internal
versus external production of the growth factor. We show that the reaction-diffusion setup
results in complicated spike-like solutions. We discuss these results in the light of published
data on the AAH.
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1. Introduction

The earliest stages of cancer development are still a great unknown. The most common view

involves the initial single malignant cell, which then produces a clone of genetically identical

cells, which first grow as a primary tumor and continuously evolve, and then the most

malignant of them, following a series of genetic changes, settle in lymph nodes and distant

organs and form metastasis. This is a simplified view, which does not take into account the

details of early invasion nor the importance of communication between malignant cells.

Recently, new experimental evidence was obtained concerning early spatial organisation of

various tumors, including lung cancers. Also, for the first time, it became possible to obtain

radiographic images (CT scans) of tumors in patient’s lungs, which can be directly compared

to pathological specimens from surgically excised tumors (figure 1). In this paper, we will

follow up on our previous work and try to explain the pattern of early invasion of precursors
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peripheral lung tumors. We will use models, which attempt in simplified geometry to

reproduce the irregular spikes of invasion in the early lesions (figure 2, panels C and D).

1.1 Early peripheral lung tumors

The best-known theory of carcinogenesis has been developed by Moolgavkar [19]. It is

known as the Two-Stage Clonal Proliferation Model. According to Moolgavkar’s theory,

normal cells require two transformations, before they form tumors: Stage 1, called Initiation,

confers the ability to proliferate. In Stage 2, one of the proliferating initiated cells undergoes

a Promotion event, which makes it malignant. Among many specific consequences of this

model, there is one, which stands out: population of cells constituting the tumor is clonal, i.e.

it is part of the progeny of the single promoted cell. It is an interesting question whether this

theory stands the test of more recent observations. The answer might be provided by

observation and analysis of very early cancerous or pre-cancerous lesions and their patterns

of progression.

In lung cancer, there has been a constant progress in visualisation of early stages of the

disease, for example using computed tomography [12,23], and correlating these findings with

structures observed in biopsy or surgery specimens. Among the most interesting recent

findings are those of the apparent progression from the atypical adenomatous hyperplasia

(AAH) to bronchoalveolar carcinoma (BAC) to adenocarcinoma of the lung, [13].

Adenocarcinoma is one of the major subtypes of lung cancer, which is usually located

peripherally with respect to the bronchial tree in the lung. The relative incidence of

adenocarcinoma compared to other lung cancer cell types seems to be increasing, due to an

Figure 1. Bronchioloalveolar carcinoma in a 69-year-old man. (A) A faint localised increase in density was
identified in segment 1 of the right upper lobe of the lung on a CT screening image obtained in February 1999. (B) In
retrospect, the opacity was also visible on a CT screening image obtained in February 1998. (C) Thin-section CT
revealed a pGGO in segment 1 of the right upper lobe of the lung in March 1999. (D) Thin-section CT image
obtained in February 2000 showing a pGGO with a small solid component. (E) Thin-section CT image obtained in
February 2001 showing a decrease in the size of the pGGO and a slight increase in the size of the solid component.
(F) Thin-section CT image obtained in February 2002 showing a larger decrease in the size of the pGGO and an
increase in the size of the solid component. (G) Low-magnification image of the pathologic specimen. The foci of
alveolar collapse (asterisks) are shown. A right upper lobectomy was performed in May 2002. The lesion was
diagnosed as a bronchioloalveolar carcinoma, 15 mm in diameter (Noguchi type B) (reproduced from [12] by
permission from Lippincott, Williams and Wilkins).
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increase in consumption of filter cigarettes [6]. A 20-year old study of unresected Stage I so-

called BAC showed progression of all 48 tumors in 2 years and a frequently fatal outcome in 3

years, about 10% of cases progressing more slowly but with the same eventual outcome [11]

It has been observed that incidence of AAH as a histological entity can be correlated with

the so-called ground-glass opacities observed in CT images [12,23]. These lesions have the

form of diffuse systems of thin lines and shades, sometimes with solid nodules inside, and are

frequently observed to grow and progress to adenocarcinoma during the period of months or

years (see figure 1 reproduced from [12]). On the other hand, AAH seems to initially have the

form of branches of tubular sheets of cells lining the surfaces of the fine branchings of

the bronchial tree [13]. Subsequently, these cells seem to invade the adjacent tissue matrix.

The analogy with the natural history of the GGOs seems justified. Figure 2 reproduced from

[13] presents histological specimens of AAH. Low-grade lesions show (A) intermittent or

(B) complete runs of cuboidal cells lining slightly thickened alveolar walls. More cellular

lesions (C) may be larger and have columnar Clara-like cells. Less often, lesions are very

cellular, more atypical (D), and very difficult to distinguish from BAC. The objective of our

model is to elucidate the possible mechanism of transition from structures of type (A) or (B)

to structures (C) and (D). We propose that the causal mechanism may be diffusion of growth

factor particles over the cell sheets forming the AAH combined with cell cycle regulation.

What is interesting about AAH lesions is that they first take the highly structured form and

then, apparently after a time delay, penetrate in an irregular way the adjacent tissue. Also,

they seem to be clonal, in the sense of identical genetic makeup [21]. As a response to cell

crowding, they seem to increase expression of metalloproteases, which allow them to

penetrate the tissue matrix. Therefore, although the AAHs could be candidates for the

initiated cells of the Moolgavkar’s model, the question as to whether the BACs are the

promoted cells is quite open. In particular, the local progression of BACs seems to take place

Figure 2. AAH. Low grade lesions show (A) intermittent or (B) complete runs of cuboidal cells lining slightly
thickened alveolar walls. More cellular lesions (C) may be larger and have columnar Clara-like cells. Less often,
lesions are very cellular, more atypical (D), and very difficult to distinguish from bronchioloalveolar cell carcinoma
(reproduced from [13], by permission from BMJ Journals).
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in a contiguous stretch of tissue, and not be initiated by a single promoted cell. This makes it

seem more like a dynamic phenomenon having to do with cooperation or competition of

cells. In this sense, the AAH to BAC transition seems to transcend the simplest Moolgavkar’s

model.

On the other hand, genetic modifications are observed in the process of AAH and BAC

progression. The Fragile Histidine Triad (Fhit) gene at 3p14.2 is a potential tumor

suppressor gene and is lost in a number of cancers, including those in lung. The Fhit gene

product is a nucleotide binding protein, which may have a role in cell proliferation and

apoptotic pathways. Frequent loss of Fhit protein expression and loss of heterozygosity

(LOH) at 3p14.2 have been reported in high-grade dysplasia and squamous carcinoma.

LOH of Fhit reached 43% in BAC, while Fhit loss is more apparent in more poorly

differentiated adenocarcinoma [14]. In view of the definite geometry of the early lesion, it

seems doubtful that these changes occur in single precursor cells, which take over the

tumor population. So, even a multi-stage carcinogenesis model does not seem applicable

here.

In this paper, we aim to understand how cellular dynamics of tumor cells can generate

patterns analogous to those phenomenologically observed at the macroscopic scale. We

investigate the macroscopic, spatio-temporal effects of the cell cycle with division-rate

depending on the concentration of growth factor bound to the cells. Free growth factor

particles are transported between cells via diffusion. More sophisticated models of cellular

dynamics were developed by Bellomo et al. (see [3,5] and references therein). To obtain

model equations they applied the so-called generalised kinetic theory, which provides a

statistical description of large cells populations governed by kinetic type interactions. The

survey of different models and methods dealing with multiscale modelling of tumor

evolution is presented in [4]. The derivation of the macroscopic reaction-diffusion models

describing the interplay between the cellular dynamics and the signaling molecules

diffusing in the intercellular space has been recently shown in [18] using homogenisation

methods of functional analysis. The asymptotic theory proposed by Bellomo and

Bellouquid also shows how macroscopic evolution equations can be obtained from the

micro-scale description [2].

On the technical level, the objective of this work is to understand the pattern of

destabilisation of a population of proliferating cells, assuming a model of cell cycle and a

model of binding and surface diffusion of a growth factor. In our analysis, we proceed using

diffusion-driven instability (Turing) paradigm. This consists of finding necessary conditions

of destabilisation based on the linearised equations and then exploring emerging patterns

with the aid of numerical computations.

2. Model

In this paper, we explore the version of AAH to BAC transition, which is based on the

assumption that initiated (AAH) cells have the ability to proliferate indefinitely, but they still

retain dependence on growth factors, which are either externally supplied or may be

produced by the cells themselves. The molecules of growth factor, diffuse along the structure

formed by the initiated cells and have to bind to cells to stimulate proliferation. We are

interested in the response of cells to growth factor under cell cycle regulation, which may

lead to fluctuation of cell density and penetration into the surrounding tissue. As evident from

the review in the Introduction, the evidence regarding the mechanism of AAH growth and
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AAH to BAC transition is incomplete. Let us summarise our ideas, with emphasis on which

elements are supported by observations and which are more speculative in nature:

. We attempt to model growth and invasion process, which leads from a uniform layer of

proliferating cells in equilibrium or near-equilibrium (early AAH) to a structure with

variable thickness and proliferation rate, which penetrates into the surrounding tissue (late

AAH, or BAC).

. In the main body of the paper, we represent the thickness of the cell layer by the

surface (or line) cell density; regions of increased density correspond to penetration. In

Discussion, we refer to a simple model with explicit thickness geometry and explore

its predictions. As mentioned in the review above, increased cell density leads to

increased expression of metalloproteases and other factors degrading surrounding

tissue.

. Cell proliferation rate is reduced by cell crowding but enhanced in a paracrine manner

by a hypothetical growth factor, which may be secreted by the AAH/BAC cells

themselves or supplied from the environment and which then diffuses among cells and

binds to cell membrane receptors. The main hypothesis of this paper is that the action

of this hypothetical growth factor is an explanation for the early invasion patterns

observed in AAH and BAC.

2.1 Modelling of cell proliferation

The model of cell proliferation we use assumes that cells stay in the cell cycle for time, which

is a random variable with distribution, the hazard rate of which varies with time and equal to

a(t) for cell present in the cycle at time t. In addition to this, cells are subject of competing

risk dc of dying while in the cycle. Also, following cell division, each of the progeny cells

survives only with probability p. Regulation of proliferation is accomplished by modulation

of the time variable a(t). This model is by definition stochastic, but the expected values of

cell counts may be computed by treating the cell cycle as a well-mixed tank.

The philosophy of building a model of the cell cycle is explained in figure 3: cell cycle is

treated as a well-mixed tank, from which cells may either enter division at rate a(t) or die at

rate dc assumed constant in time. The flux to mitosis is equal to a(t)c(t), while the flux to

death is equal to dcc(t). Cells divide with efficiency p [ [0,1], the flux of just divided cells

from mitosis back to the cell cycle is equal to 2pa(t)c(t). As a result, the rate of change of c(t)

is equal to

dc

dt
¼ 2paðtÞcðtÞ2 aðtÞcðtÞ2 dccðtÞ ; Fðc; bÞ: ð1Þ

2.1.1 How to model growth regulation? We study two different cases: Model 1. We

assume that cell proliferation is regulated by the bound growth factor molecules and depends

on the density of the bound growth factor molecules per cell, i.e. (b(x,t))/(c(x,t)) and that this

dependence is an increasing function with saturation,

aðc; bÞ ¼
a0ðb=cÞ

m

1 þ ðb=cÞm
: ð2Þ
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Model 2. We model the proliferation process using a logistic growth function,

aðc; bÞ ¼ a0ðb2 KcÞ: ð3Þ

Combining equations for a and equation (1) results in the following expression for the

kinetics term F(c,b),

Fðc; bÞ ¼ ð2p2 1Þ
a0ðb=cÞ

m

1 þ ðb=cÞm
2 dc

� �
c; ð4Þ

and

Fðc; bÞ ¼ ð2p2 1Þa0cðb2 KcÞ2 dcc; ð5Þ

for Models 1 and 2, respectively.

2.2 Growth factor regulation

We assume that free growth factor molecules diffuse in the intercellular space. They may be

supplied by a hormonal mechanism extraneous with respect to the sheet of tumor cells, or

produced by cells. We model it using a function k(c), which is equal to a constant, k0, in the

case when it is produced by the external medium or is a Menton–Michaelis function of cell

density, k0c(1 þ c), in the case when it is produced by the cells. Molecules of the growth

factor bind to receptors on cell’s membrane. The number of bound growth factor molecules

is denoted by b. The rate of the binding depends on the density of the cells and is given by

a(c). The function a(c) expresses the density of the sites on the cells to which growth factor

molecules can bind (free receptors located on the cell membrane and binding the free growth

factor molecules). We assume that the density of such free receptors is a function of cells

density. In addition, bound growth factor molecules can dissociate at a rate d, and both free

and bound growth factor molecules can be eliminated at rates dg and db respectively.

Figure 3. Model of the cell cycle of proliferating cells. A newborn cell enters the cell cycle at point A. Cell cycle is
treated as a well-mixed tank, from which cells may either enter division at rate aðx; y; tÞ, or death at rate d considered
constant in time. As a result, if the number of cells present in the cycle at time t is equal to cðtÞ, the flux to mitosis (M)
is equal to aðx; y; tÞcðx; y; tÞ, while the flux to death is equal to dcðx; y; tÞ. Cells divide with efficiency p [ ½0; 1�
constant in time. Therefore, the flux of just divided cells from mitosis (point K) is equal to 2paðx; y; tÞcðx; y; tÞ. These
cells constitute the influx at point A of one of progeny cells. Resulting rate of change of cðx; y; tÞ is equal to
›c=›t ¼ 2pac2 ac2 dc.
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2.2.1 Transitions in the growth factor molecule space. We assume that cells are embedded

in a “field” of growth factor molecules and consider probabilities,

PijðtÞ ¼ Pr ½gðtÞ ¼ i; bðtÞ ¼ j�; ð6Þ

where g(t) is a number of free growth factor molecules and b(t) is a number of bound growth

factor molecules. Pair (i, j) is the state of the process. Again, all functions of time are also

functions of the spatial coordinates (x, y). In a short time interval (t, t þ Dt) a transition from

state (i, j) to state (k, l) occurs with probability q(i, j)!(k,l)Dt þ o(Dt). For our model, we

specify the following non-zero transition intensities:

q(i, j)!(i 2 1, j þ 1) ¼ a(c)i—binding of free growth factor molecules,

q(i, j)!(i þ 1, j) ¼ k(c)—influx of free growth factor molecules,

q(i, j)!(i 2 1, j) ¼ dgi—loss of free growth factor molecules,

q(i, j)!(i, j 2 1) ¼ db j—loss of bound growth factor molecules,

q(i, j)!(i þ 1, j 2 1) ¼ dj—dissociation of bound growth factor molecules.

A model specified in this way is a time-continuous Markov chain [1]. The chain dynamics

are described by the following infinite system of Chapman-Kolmogorov ordinary differential

equations for probabilities Pij:

›Pi; j=›t ¼ aðcÞðiþ 1Þ{j $ 1}Piþ1; j21 þ kðcÞ{i $ 1}Pi21; j

þ dgðiþ 1ÞPiþ1; j þ dbð jþ 1ÞPi; jþ1 þ dðjþ 1Þ{i $ 1}Pi21; jþ1

2 ðaðcÞiþ kðcÞ þ dgiþ db jþ djÞPij; ð7Þ

where {s} [ {0,1} is the logical value of statement s.

2.2.2 Mean-value equations. Let us define expected counts of free and bound receptor

molecules as,

E½gðtÞ� ¼
X
i; j$0

iPijðtÞ; E½bðtÞ� ¼
X
i; j$0

jPijðtÞ: ð8Þ

Combining equations in (7), we obtain

_bðtÞ ¼ aðcÞg2 dbb2 db; _gðtÞ ¼ 2aðcÞg2 dggþ kðcÞ þ db;

where, by an abuse of notations, g(t) and b(t) denote expectations E[g(t)] and E[b(t)],

respectively.

2.3 Final system of equations and hypotheses

Reasonable hypotheses for functions a, a and k seem to be that

(1) a is an increasing function of the bound growth factor density and a decreasing function

of the cell density,

(2) a is an increasing function of cell density, and
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(3) k is either a constant or increasing function of cell density, depending on whether the

free growth factor is supplied from outside or is produced by our system’s cells,

respectively.

In mathematical notation,

0 # aðb; cÞ "#; að0; cÞ ¼ 0; að1; cÞ ¼ a1ðcÞ #;

aðb; 0Þ ¼ a0ðbÞ "; aðb;1Þ ¼ 0;

0 # aðcÞ "; að0Þ ¼ 0;

0 # kðcÞ ";

where, in addition, it is assumed that cells do not proliferate in the absence of the growth

factor and when they are crowded to the extreme, as well as that no growth factor binding is

possible in the absence of cells. These assumptions are satisfied by Models 1 and 2.

We consider two geometries:

Geometry 1. Line of cells, occupying the interval x [ [0, L ], There are three substances

distributed over the line’s length: cells, free and bound growth factor molecules, with

densities c(x, t), g(x, t) and b(x, t), respectively.

Geometry 2. Thin sheet of cells, occupying the square (x, y) [ [0, L1] £ [0, L2], is rolled to

form a cylindrical tube such that the intervals {(x, 0), x [ [0, L1]}, and {(x,

L2), x [ [0, L1]} coincide. There are three substances distributed over the cylinder’s

surface: cells, and free and bound growth factor molecules, with densities c(x, y, t), g(x, y,

t) and b(x, y, t), respectively.

Diffusion. It is assumed that free growth factor molecules can diffuse over the surface of

the tube or length of the line, with diffusion coefficient Dg.

For both geometries, model equations have the form,

›c

›t
¼ ðð2p2 1Þaðb; cÞ2 dcÞc;

›b

›t
¼ aðcÞg2 dbb2 db;

›g

›t
¼ DgDg2 aðcÞg2 dggþ kðcÞ þ db; ð9Þ

with homogeneous Neumann (zero-flux) boundary conditions for g in case of Geometry 1,

›xgð0; tÞ ¼ ›xgð1; tÞ ¼ 0; x [ ½0; L�;

and mixed zero-flux and periodic boundary conditions in case of Geometry 2,

›xgð0;y; tÞ ¼ ›xgðL1;y; tÞ ¼ 0; y[ ½0;L2�; gðx;0; tÞ ¼ gðx;L2; tÞ; x[ ½0;L1�; t$ 0:

Some of the analysis carried out in this work is equally valid for both geometries. As a rule,

we consider the simpler Geometry 1, and then discuss extension to Geometry 2.
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Accordingly, consider now Geometry 1. After rescalling of the variable x, we obtain,

›c

›t
¼ ðð2p2 1Þ a ðb; cÞ2 dcÞc;

›b

›t
¼ aðcÞg2 dbb2 db;

›g

›t
¼

1

g
Dg2 aðcÞg2 dggþ kðcÞ þ db; ð10Þ

with homogeneous Neumann (zero flux) boundary conditions for g,

›xgð0; tÞ ¼ ›xgð1; tÞ ¼ 0; x [ ½0; 1�;

Coefficient 1/g is a composite parameter including the diffusion constant and scalling

parameters, g ¼ L 2/d.

3. Existence and number of space-homogeneous steady states

Equations for the space-homogeneous steady states are obtained by setting all the derivatives

equal to 0 in the model equations,

c½ð2p2 1Þ a ðb; cÞ2 dc� ¼ 0; ð11Þ

aðcÞg2 dbb2 db ¼ 0; ð12Þ

2aðcÞg2 dggþ dbþ kðcÞ ¼ 0: ð13Þ

From equation (13) we obtain,

�g ¼
kð�cÞ þ d �b

að�cÞ þ dg

;

which, after substitution into equation (12), yields

�b ¼
að�cÞkð�cÞ

ddg þ db½að�cÞ þ dg�
:

The trivial steady state with c ¼ 0 can be analysed separately. If we exclude it, we obtain that

�c has to satisfy the following equation

a
að�cÞkð�cÞ

ddg þ db½að�cÞ þ dg�
; �c

� �
2

dc

2p2 1
¼ 0:

Let us note that function a is increasing in the first argument and decreasing in the second,

while both arguments themselves are increasing in �c. This implies that existence and number

of solutions may be difficult to determine and depends on the particular form of functions a,

a and k.
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In numerical computations, we will consider the following parametric forms of functions a

and k,

aðcÞ ¼ a0c
s; a0; s $ 1;

kðcÞ ¼ k0

c

cþ 1
or

kðcÞ ¼ k0; k0 $ 0:

In next section, we derive restrictions on the kinetics of equation (10), which allow the

diffusion-driven destablisation of the spatially homogeneous stationary solutions and pattern

formation. Then, for the particular forms of the functions a, a and k we find the space of

parameters, for which such positive steady states exist.

3.1 Existence, positivity and boundedness

Using the framework of invariant rectangles (see [22] for V , R1, [7] for V , Rn) we can

show that solutions of system (10) remain uniformly bounded and positive for positive initial

conditions. The existence of global solutions results from a standard argument based on the

theory of bounded invariant rectangles and a priori estimates [22]. Methods outlined in [22,

Chapter 14], can be used without major modifications.

4. Transient dynamics of the models

4.1 Diffusion driven instabilities in the three equations model with one diffusion operator

In this section, we look for the diffusion-driven mechanism for pattern formation. Diffusion-

driven instability (Turing-type instability) arises in a reaction-diffusion system and uses

special features of diffusion, which results in destabilisation of the spatially homogeneous

steady state. It occurs when there exists a spatially homogeneous solution, which is

asymptotically stable in the sense of linearised stability in the space of constant functions, but

is unstable with respect to spatially inhomogeneous perturbations. In models with such

property patterns can arise spontaneously.

For the study of coupled system of reaction-diffusion equations and ordinary differential

equations it is convenient to consider stationary solutions �c [ L1ðVÞ, �g; �b [ H 2ðVÞ. It

means that first two equations (ODEs) hold almost everywhere in V while the third equation

(a reaction-diffusion equation) holds in the usual weak sense.

We consider bifurcation from the steady state by examining the response of the system to

an initially small perturbation from the steady value ð�c; �b; �gÞ. Stability of smooth stationary

solutions of reaction-diffusion equations may be analysed by considering the eigenvalues of

the linearised system. We carry out a linear stability analysis to derive the conditions under

which instability can arise (for details see, for example, [9,20]). We apply the spectral

criterion of linearised stability. A spectral criterion for reaction-diffusion equations coupled

with ODEs was developed in [16]. It is a modified version of the theorem of Henry ([10],

Theorem 5.1.1).

Linear stability analysis of system (10) around a spatially homogenous steady state allows

us to formulate necessary and sufficient conditions for the diffusion-driven patterns in the

three-variable model with one diffusion operator in the third equation.
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Lemma 4.1. Let A be the Jacobian matrix computed at a positive spatially homogeneous

steady state. There is a diffusion-driven instability for system (10) if and only if the following

conditions are fulfilled:

2trðAÞ . 0; ð14Þ

2trðAÞ
X
i,j

jAijj þ jAj . 0; ð15Þ

2jAj . 0; ð16Þ

jA12j , 0; ð17Þ

where Aij is a submatrix of A consisting of the i-th and j-th column and i-th and j-th row, and

jAj and jAijj denote the determinants of matrices A and Aij, respectively.

Details of the linear stability analysis are presented in the Appendix.

4.2 Destabilisation conditions for Models 1 and 2

Now we have to verify whether model (10) fulfills the conditions for diffusion-driven

destabilisation. We calculate the Jacobian matrix A at a positive steady state,

að�b; �cÞ ¼ dc; �g ¼
kð�cÞ2 db

�b

dg

; að�cÞ�g ¼ ðdb þ dÞ�b; ð18Þ

and obtain,

A ¼

›
›c
að�b; cÞ�c ›

›b
að�b; cÞ�c 0

a0ð�cÞ�g 2ðdb þ dÞ að�cÞ

2a0ð�cÞ�gþ k0ð�cÞ d 2að�cÞ2 dg

0
BB@

1
CCA:

Calculating jA12j ¼ a11a22 2 a12a21 using the steady states conditions, (18), we conclude

that jA12j , 0 if and only if

2
›a

›c

����
ð�b;�cÞ

�c

 !
að�cÞ ,

›a

›b

����
ð�b;�cÞ

�b

 !
a0ðcÞj�c �c: ð19Þ

First of all, if function of proliferation rate, a, is a function increasing in c, then a11 . 0

and condition (19) is automatically fulfilled. However, in this paper, we do not consider the

case of such self-enhancement in proliferation, which leads to the unbounded growth of cell

density. We notice only that, in case of the model of one ODE coupled with a reaction-

diffusion equation, the requirement that a11 . 0 is a necessary condition for the diffusion-

driven pattern formation mechanism [17]. In case of the higher dimension of the ODEs
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subsystem, self-enhancement in the proliferation rate is not any more demanded. Here, we

study two examples of the different type of the function describing the proliferation rate.

Model 1. Assuming that a ¼ aðb=cÞ we obtain that

2
›

›c
a

����
ð�b;�cÞ

�c ¼
›

›b
a

����
ð�b;�cÞ

�b:

We conclude that

Lemma 4.2. There is a diffusion-driven instability for the system (10) with a ¼ aðb=cÞ if and

only if

að�cÞ , �c
›

›c
að�cÞ

in a steady state �c.

Therefore, diffusion-driven pattern formation can occur if

aðcÞ ¼ a1c
sþ1; s . 0; ð20Þ

i.e. process of binding free growth factor particles to cells is very fast. Further, we assume

that a is an increasing function with saturation,

a ¼
a0ðb=cÞ

m

1 þ ðb=cÞm
: ð21Þ

Using equation (18) we calculate that a homogeneous positive steady state ð�c; �b; �gÞ must

fulfill the following implicit relationship,

�b

�c
¼

dc

a1 2 dc

� �1=m

V X; ð22Þ

�g ¼ ðd þ dbÞ
�b

að�cÞ
ð23Þ

and

kð�cÞ ¼ dbXcþ dgðd þ dbÞX
�c

að�cÞ
: ð24Þ

From equation (24) we immediately conclude that the model has positive steady states only if

a1 . dc. Furthermore, since, for a given by equation (20), the right-hand side of equation

(24) is a convex function, for both choices of a function k (kðcÞ ¼ k and

kðcÞ ¼ kðc=ð1 þ cÞÞ) we can choose parameter value k in such way that equation (24) has
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two positive solutions. For constant k we calculate that for

k . 2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dbdgðd þ dbÞ

a

r

we always have two positive solutions of equation (24).

Model 2. Now, we consider the case when aðcÞ is a linear function of c and binding of free

growth factor particles to cells is described bya0cg. In this case, requirement (19) is fulfilled if

2
›

›c
a

����
ð�b;�cÞ

�c ,
›

›b
a

����
ð�b;�cÞ

�b:

The above condition is satisfied by a logistic type of proliferation function, namely aðc; bÞ ¼
a1ðb2 KcÞ (which means that the proliferation kinetics is given by a1ðb2 KcÞc). Here, the

proliferation rate is limited by availability of bound growth factor particles.

For Model 2, using equation (18) we find the requirements for the homogeneous positive

steady state ð�c; �b; �gÞ,

�b2 K �c ¼
dc

a1

; �g ¼ ðd þ dbÞ
�b

a0 �c
: ð25Þ

and

kð�cÞ ¼ dbK �cþ
dbdc

a1

þ
dgðd þ dbÞK

a0

þ
dgdcðd þ dbÞ

a1a0 �c
: ð26Þ

We conclude that there exists a region of values of k such that (26) has two positive solutions

and, therefore, there exist two positive steady states for Model 2.

4.3 Dispersion relation

Let us have a closer look at the dispersion relation, which we obtain for the model (10). From

the proof of Lemma 8.1 we observe that the destabilisation of the homogeneous steady state

is possible if and only if

j ~Aj ¼ jAj2 jA12j
m2
m

g
. 0: ð27Þ

Condition (27) is verified if m2
m=g is large enough. As a consequence, for every g, there exist

infinitely many different integer mm for which the above inequality is fulfilled. It means that

there is an infinite range of unstable modes. The dispersion relation, l ¼ lðm2
m=gÞ, which is

an algebraic equation for the growth rate, is shown in figure 4. Asymptotic analysis of

systems with such dispersion relation seems to be an open problem. It is fundamentally

different from the typical dispersion relation, obtained for example in models of two

diffusive chemicals [20]. Such best-known dispersion relation determines the bounded range

of unstable modes, the size of which depends on the bifurcation parameter g. Then a certain

range of g can be determined for which there exists only one unstable mode. It allows to

select, by changing the scalling parameter g, the mode, which grows to the long-term
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heterogeneous pattern. If the range of unstable modes is finite but includes more values then

there is a competition between these patterning modes.

In our model, similar to the 2-equation model of reference [17], it is impossible to select a

single unstable mode. In other words, from the dispersion relation we cannot decide which

eigenfunctions, that is, which spatial patterns, are linearly unstable and grow with time.

There does not exist a wavenumber with maximum ReðlÞ. ReðlÞ grows monotonously with

m2
m=g. However, we can show that ReðlÞ is bounded from above.

Simulations show that the index of the growing mode depends on initial conditions and on

the scalling parameter g but in rather different manner than in the model consisting only of

one ODE and one reaction-diffusion equations as studied in [17] (see figures 6 and 7 and

discussion in section 5.1.2).

5. Numerical results

We performed simulations for the models with one- and two-dimensional structures. Since

the results look qualitatively the same, for clarity we present the results for the one-

dimensional model. We consider particular forms of Models 1 and 2. For Model 1 we assume

that

aðcÞ ¼ ac2; aðb; cÞ ¼ ð2p2 1Þ
a0ðb=cÞ

m

1 þ ðb=cÞm
:

For Model 2 we assume,

aðcÞ ¼ ac; aðb; cÞ ¼ ð2p2 1Þa0ðb2 KcÞ:

For both models we perform numerical simulations for constant k, which corresponds to the

extraneous source of new growth factor particles, as well as for kðcÞ ¼ k0ðc=ð1 þ cÞÞ, which

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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µm
2/γ

R
e(
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Figure 4. Dispersion relation l ¼ lðm2
m=gÞ for the model (10) It shows that for a given g there exists an infinite

range of unstable modes, i.e. ReðlÞ . 0 for infinitely many m2
m. A single unstable mode cannot be selected.
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corresponds to the synthesis of growth factor by cells. This particular choice of function k

does not change the qualitative results of the simulations.

As discussed in section 4.2, in both models, Models 1 and 2, we can choose the parameter

k, for which the system has two positive spatially homogeneous steady states, one of which

fulfills diffusion-driven instability conditions (14)–(17). In the simulations, such steady state

is perturbed using small random or cosine additive terms with different frequencies (see

figure 5). Simulations show that spatially uniform initial data evolve into a spatially

inhomogeneous pattern of spikes. The qualitative behavior of solutions for different variants

of the model is similar in the whole set of admissible parameters.

5.1 Data

Cell kinetics. For computations, we assume that the expected interdivision time of cells is

equal to 1=a0 ¼ 12 h similar to the estimates in [15]. Further, we assume a perfect efficiency

of divisions p ¼ 1, and a low death rate dc. We performed simulations for different values of

dc adjusting the value of k accordingly.

Growth factors kinetics. We assume the expected turnover time equal to

1=db ¼ 1=dg ¼ 10 h. Also, we use arbitrary values of a0 ¼ 0:1 or a0 ¼ 1 and d ¼ 0:1.

Coefficient k is adjusted to ensure existence of two positive steady states. Therefore,

parameters used in simulations satisfy necessary conditions for diffusion driven instability.

We performed a series of simulations of Model 1 with different a0 and different values of the

constant function k (k ¼ 3, k ¼ 10, k ¼ 0:5) as well as kðcÞ ¼ k0ðc=ð1 þ cÞÞ. Numerical

solutions of the models exhibit similar trends in dynamics. Therefore, to illustrate the

dependence of solutions on the diffusion rate and initial perturbation, we focus our attention

on Model 1 with constant k and a particular parameter set: a1 ¼ 1=12, dc ¼ 0:05,

db ¼ dg ¼ 0:1, k ¼ 0:5, m ¼ 1 and a ¼ 0:1.
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Figure 5. Different initial functions used in numerical simulations, cðx; 0Þ ¼ �cþ 1 cosðnpx2 p=2Þ, where �c is a
spatially homogeneous steady state, 1 is a size of a small initial perturbation (in presented further results of
simulations e was set to 0.01. Changing the value of 1 leads to lengthening of the period of the near-equilibrium
observed in simulations.
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5.1.1 Rate of increase of spike solutions. As evident from figures 6–9 the complete system

exhibits a period of near-equilibrium, i.e. cell density cðx; tÞ remains close to cðx; 0Þ until a

threshold time at which it starts exponentially increasing at some x-coordinates and

exponentially decreasing at other. The rate of the exponential growth read from the graph is

consistent with the eigenvalue lðm2
m=gÞ corresponding to the minimum wavenumber mm for

which the destablisation occurs, i.e. for which lðm2
m=gÞ is positive. The solutions stay

uniformly bounded and after some period of growth the height of peaks (spikes) reaches a

constant. Numerical calculation also indicates that the length of the dormancy period can be

calculated from the linearised system and depends on the amplitude of the initial

perturbation. Assume that the solution of our model close to the homogeneous steady state is

of the form, cðx; tÞ ¼ �cþ 1el1tfmðxÞ, where l1 corresponds to the growing mode. Using this

conjecture, we can calculate for which values of t the solution stays close to the steady state �c.

Calculated l1 and t ¼ ð1=l1Þlnð1=1Þ are consistent with the initial spike growth rate and the

length of the dormancy period as read from the graphs.

5.1.2 Spatial profiles of solutions: Dependence on diffusion coefficient. Series of

simulations, depicted in figures 6–9, show that the destabilisation of a spatially

homogeneous steady state leads to the formation of spikes. At the very beginning the

Figure 6. Time evolution of solutions of Model 1 with constant growth factor particles synthesis k and parameters:
a1 ¼ 1=12, dc ¼ 0:05, db ¼ dg ¼ 0:1, k ¼ 0:5, m ¼ 1, a ¼ 0:1. On the left-hand side we present solution cðx; tÞ, in
the centre bðx; tÞ, and on the right-hand side gðx; tÞ. Rows 1, 2 and 3 correspond to g ¼ 1, g ¼ 10 and g ¼ 100,
respectively. Initial perturbation of the steady state value is cosine function with one maximum (see figure 4) and
amplitude 0.01. We observe formation of spike patterns with the number of spikes dependent on the scalling
coefficient g. When g increases (what corresponds to the decreasing diffusion rate), the minimal unstable mode mm

increases (compare with figure 4 of dispersion relation) and the number of spikes in final pattern increases.
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number of the growing spikes reveals the number of maxima in the initial perturbation.

However, after a short time some of them may disappear and the final pattern consists of the

number of spikes corresponding to the minimum mm for which destabilisation occur.

Therefore, the spatial shape of final patterns depends on parameter g, the inverse of the

diffusion coefficient (compare with the dispersion relation shown in figure 4). For g small

enough we may observe a pattern of several or even only one spike. When g increases, so

does the number of spikes. When g increases, the solution profile displays an increasing

number of local maxima. For a regular initial perturbation (with cosine function) the final

pattern is also regular in the sense of similar shapes of spikes and symmetries, while for a

random initial perturbation, a chaotic-like profile emerges. For large g, we observe patterns

with many spikes of different heights, which even in the case of regular initial perturbation

look apparently chaotic (see figure 8). In such case, the number of spikes does not reveal

anymore the minimum wavenumber estimated from the dispersion relation; this might be an

effect of discretisation. We see that the higher-order wave numbers are damped in the

numerical discretisation. The number of spikes is equal to the smallest unstable mode, which

can be calculated from the dispersion relation for the linearised system. However, it also

depends on the symmetry of the initial perturbation. In case of the symmetric initial

perturbation with an even number of local maxima, the final pattern has an even number of

spikes, even if the smaller odd number is already unstable (see figure 7).

Figure 7. Time evolution of the solutions cðx; tÞ of Model 1 with the parameter set as in Figure 6, scalling
coefficient g ¼ 1 and initial perturbations with cosine functions of different frequencies (with different number of
local maxima) shown in Figure 5. We can see that the number of growing spikes corresponds to the minimal unstable
wavenumber mm ¼ 1 when the initial perturbation has odd number of maxima. In case of even number of maxima in
the initial function, we observe formation of two spikes.
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Figure 8. Numerical simulations of Model 1 with the parameter set as in Figure 6 and a large scalling parameter g ¼ 50,000. The simulations were performed for the initial
perturbation of the spatially homogeneous steady state with different cosine functions.
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6. Discussion

The model of early cancer invasion developed in this paper assumes that cell proliferation

rate is reduced by cell crowding but enhanced in a paracrine manner by a hypothetical

growth factor, which may be secreted by the AAH/BAC cells themselves or supplied from

the environment and which then diffuses among cells and binds to cell membrane

receptors. As stated in the Introduction, the main hypothesis of this paper is that the action

of this hypothetical growth factor is an explanation of the early invasion patterns observed

in AAH and BAC. As detailed in the Results section, if the reaction-diffusion system we

consider has parameter values inside the region of Turing pattern formation regime, the

patterns emerging have the form of spikes, the number and relative arrangement of which

strongly depend on the strength of diffusion and initial small perturbation of the space-

homogeneous steady state. These spike solutions seem to be very much like the

protrusions into the surrounding tissue matrix, observed in AAH and BAC (figure 2,

panels C and D).

It is worth noticing that this dynamics, based on two ODEs coupled with one reaction-

diffusion equation, differs from the dynamics observed in a model involving one ODE

coupled with one reaction-diffusion equation (compare [17]). In this former model, the final

pattern depended more on the initial perturbation than on the scalling coefficient g. Even for

small values of g, corresponding to the existence of small unstable modes, we observed

formation of the spatial structures, which strongly resembled initial conditions, i.e. had the

Figure 9. Numerical simulations of Model 1 with the parameter set as in Figure 6, and a range of scalling
parameters g ¼ 10, g ¼ 1, g ¼ 10, g ¼ 100, g ¼ 1000, g ¼ 10; 000. The simulations were performed for the
random initial perturbation of the spatially homogeneous steady state.
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same number of maxima. When g increased, the solution profile loses its similarity to

the initial condition and displays an increasing number of the local maxima. Moreover, in the

current model we observe spike solutions, while in the models with only one ODE we

observed the growth of “broader humps”. For the large g we observed similar dynamics as in

the 3-equation models discussed here. The difference in the pattern structure may stem from

different number of ODEs in the current model as compared to the model of reference [17].

In our model, free growth factor molecules diffuse in the extracellular space while binding

processes take place at the cells membrane. Recently in [18], using multi-scale analysis one

of us showed that such receptor–ligand binding processes can be modeled by the reaction-

diffusion equations coupled with the ODEs in case all the membrane processes are

homogeneous within the membrane. The framework we consider in the current paper, seems

to be applicable to many processes, which result from the interplay between intra-cell

dynamics and inter-cell signaling. In this sense, our model seems able to be applied to

different biological setups.

6.1 Effects of geometry and transport

As already discussed, the patterns of local invasion have been obtained by modelling spikes

of the one- or two-dimensional cell density function. No physical nor geometric model for

invasion was considered. To understand the importance of geometry, we may consider the

system with transport (local invasion) of cells along an additional spatial coordinate called z.

Now c ¼ cðt; x; zÞ and so forth. To free ourselves of other mechanisms and to radically

simplify the analysis, we assume that the processes of production and binding of growth

factor molecules are at equilibrium and there is no diffusion. We also neglect growth factor

dissociation from cells. Then we obtain

›c

›t
þ q

›c

›z
¼ c½ð2p2 1Þaðb; cÞ2 dc�; cðt; 0Þ ¼ c0ðtÞ

0 ¼ aðcÞg2 dbb

0 ¼ 2aðcÞg2 dggþ kðcÞ;

where q is the rate of invasion, which is considered constant. Solving the second and third

equation (both being algebraic) and substituting into the first equation, we obtain

›c

›t
þ q

›c

›z
¼ qrðcÞ;

where

qrðcÞ ¼ a
aðcÞkðcÞ

db½aðcÞ þ dg�
; c

� �
2

dc

2p2 1
:

Let us assume now that a{aðcÞkðcÞ={db½aðcÞ þ dg�}; c} has the property of being equal to 0

at c ¼ 0, converging to 0 as t!1, and being positive with a single maximum for c [ ð0;1Þ.

Then, 1=rðcÞ has two hyperbola-type singularities at the points at which rðcÞ has zeros.

Returning to the equation, we see that the characteristics have the form of

zðt; t0Þ ¼ qðt2 t0Þ; t $ t0:
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The solution along characteristics

~cðt; t0Þ ¼
cðt; qðt2 t0ÞÞ t . t0

c0ðtÞ t ¼ t0

(

satisfies the equation

d~c

dt
¼ qrð~cÞ

which has the solution implicitly given by

ð ~cðt;t0Þ
c0ðtÞ

dx

rðxÞ
¼ qðt2 t0Þ;

which can be written as

R½~cðt; t0Þ�2 R½c0ðt0Þ� ¼ qðt2 t0Þ;

where function R can be evaluated only outside the singularities of 1=rðcÞ. Wherever R is

defined

~cðt; t0Þ ¼ R21{R½c0ðt0Þ� þ qðt2 t0Þ}:

Expressing the latter in the terms of cðt; zÞ, we obtain

cðt; zÞ ¼ R21{R½c0ðt2 z=qÞ þ z} �!
t!1

R21{R½c0ð1Þ þ z}:

The interpretation is that the function cðt; zÞ, for any given z, increases with time. This is

equivalent to invasion. However, even at infinite times, cð1; zÞ is nontrivially dependent of z.

The density of cells increases with z (assuming the initial concentration c0 is located above

the lower singular point) and reaches saturation level at infinite z. This implies that the total

mass of invading cells increases indefinitely. Let us notice that with the transport term absent,

the total mass of cells stabilises. Therefore, taking into account transport, an independent

coordinate may radically alter the form and behavior of solutions. This question seems worth

pursuing.
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Appendix

In this Appendix, we present linear stability analysis of system (10), which leads to the

formulation of the necessary and sufficient conditions for diffusion driven instabilities in the

model.

Let A be the Jacobian matrix computed at the spatially homogeneous steady state. Linear

stability of the homogeneous steady state to spatially heterogeneous perturbations is

determined by the sign of Relðm2
nÞ, where lðm2

nÞ belongs to the spectrum of ~Aðm2
nÞ and

~A m2
n

� �
¼ A2 dD;
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where D is the matrix of diffusion coefficients,

D ¼

0 0 0

0 0 0

0 0 1

0
BB@

1
CCA:

and d ¼ m2
n=g involves the wavenumber obtained from the Laplacian’s eigenproblem:

Dxfm ¼ 2m2
mfm in V; ð28Þ

›nfm ¼ 0: ð29Þ

When the perturbing mode with an appropriate wavenumber is unstable, it can grow. From

the linear stability analysis we obtain the dispersion relation l ¼ lðm2
mÞ as a solution of the

characteristic polynomial,

j ~A2 lIj ¼ 0: ð30Þ

where jAj denotes the determinant of matrix A. Note that g occurs in the system in such way

that we may consider l ¼ lðm2
m=gÞ with g appearing nowhere explicitly. Function lðm2

m=gÞ
as a function of g for different m2

m is simply scaled along the g-axis.

Conditions for linearised stability of the kinetics system of three equations around the

spatially homogeneous steady state can be derived using the Routh–Hurwitz theory [8]. Let

us recall that for the system of three linearised ODEs the characteristic polynomial has the

form

xAðlÞ ¼ l3 2 trAl2 þ
X
i,j

jAijjl2 jAj ¼ 0: ð31Þ

Ai1i2 denotes the submatrix of A consisting of the i1-th and i2-th column and i1-th and i2-th

row and jAi1i2 j ¼ ai1i1ai2i2 2 ai1i2ai2i1 .

The Hurwitz matrix has the form,

H ¼

2s1 2s3 0

1 s2 0

0 2s1 2s3

0
BB@

1
CCA ¼

2trA 2jAj 0

1
P

i,jjAijj 0

0 2trA 2jAj

0
BB@

1
CCA: ð32Þ

Let Di be the determinants of successive principal minors of matrix H,

D1 ¼ 2trA ¼ 2s1;

D2 ¼ 2trA
X
i,j

jAijj

 !
þ jAj ¼ 2s1s2 þ s3;

D3 ¼ 2D2jAj ¼ 2ð2s1s2 þ s3Þs3:

Dynamics of growth and signaling 211



From Routh–Hurwitz Theorem [8]: The number k of roots of the real polynomial which

lie in the right half-plane is given by the formula,

k ¼ Vð1;D1Þ þ VðD1;D3Þ þ Vð1;D2Þ;

where V is the number of changes of sign of adjacent numbers in a sequence.

For the ODE system, k ¼ 0, i.e. the equilibrium is asymptotically stable, if and only if all

Di . 0. For the reaction-diffusion system, the characteristic polynomial has the following

form,

x ~AðlÞ ¼ l3 2 tr ~Al2 þ
X
i,j

j ~Aijjl2 j ~Aj ¼ 0; ð33Þ

and determinants of the principal minors of the Hurwitz matrix read,

~D1 ¼ 2trAþ
1

g
m2
m ¼ D1 þ

1

g
m2
m;

~D2 ¼ 2trAþ
1

g
m2
m

	 
 X
i,j

jAijj2 trA12

1

g
m2
m

 !
þ jAj2 jA12j

1

g
m2
m

	 


¼ 2trA12

1

g

	 
2

m4
m þ ðjA23j þ jA13j þ trA12trAÞ

1

g
m2
m þ D2;

~D3 ¼ 2 ~D2j ~Aj ¼ ~D2 2jAj þ jA12j
1

g
m2
m

	 

:

For a diffusion-driven instability we first require that Re l m2
m

� �
, 0 for m2

m ¼ 0, that is, the

uniform steady state is stable in the absence of diffusion. This leads to the conditions,

Re lðm2
m ¼ 0Þ , 0 ; 2tr A . 0; ð34Þ

^2 trA
X
i,j

jAijj

 !
þ jAj . 0; ð35Þ

^2 jAj . 0: ð36Þ

Second, we require that there exists a positive m2
m, for which l m2

m

� �
has a positive real part.

Using the Routh–Hurwitz conditions we obtain,

Re lðm2
mÞ . 0 ; ~D1 , 0; ð37Þ

_ ~D2 , 0; ð38Þ

_ ~D3 , 0: ð39Þ
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Adding diffusive terms to the trace can only decrease the trace and therefore increase ~D1.

Therefore, ~D1 is always positive if D1 is positive. We analyze the above conditions (34)–(39)

and obtain that a steady state which is stable in the absence of diffusion can be destabilised

due to the diffusion if and only if jA12j , 0.

Lemma 8.1. For the system (10) a steady state which is stable in the absence of diffusion

(conditions (34)–(36) are fulfilled), is destabilised when diffusion is introduced if and only if

jA12j , 0.

Proof. Sufficiency: If jA12j , 0 then there exists ðm2
m=gÞ . 0 such that

2j ~Aj ¼ 2jAj þ jA12j
1

g
m2
m , 0:

If ~D2 . 0 then ~D3 , 0 and if ~D2 , 0 then ~D3 . 0, i.e. in both cases k ¼ 1.

Necessity: Assume that jA12j . 0. Then a11 , 0 and also trA , 0 and trA12 , 0. We can

show that ~D2 . 0. Indeed, assume that ~D2 , 0 in any ð1=gÞm2
m. Then,

~D2 ¼ 2trA12

1

g

	 
2

m4
m þ ðjA23j þ jA13j þ trA12trAÞ

1

g
m2
m þ D2 , 0

only if

ðjA23j þ jA13j þ trA12trAÞ , 0:

From this condition we obtain

a23a32 . ða11 þ a22Þ
2 þ 2ða11 þ a22Þa33 2 a13a31:

On the other hand if D2 . 0, then
P

i,jjAijj . 0. This leads to the following condition,

a23a32 , a11a22 þ a11a33 þ a22a33 2 a13a31 2 a12a21:

Combining the two above inequalities we obtain

a2
11 þ a2

22 þ a11a22 þ a11a33 þ a22a33 , 2a12a21;

which cannot be verified considering the signs of aij and that a11 , 0.

If jA12j . 0 then also ~D3 . 0 for every mm. Therefore, for jA12j . 0, ~Di . 0, i ¼ 1; 2; 3

and the destabilisation of the steady state is impossible. This concludes the proof. A
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