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Characteristic times for transport processes in biological systems may be evaluated as mean
transit times (MTTs) (for transit states) or mean residence times (MRT) (for steady states).
It is shown in a general framework of a (linear) reaction–diffusion–convection equation that
these two times are related. Analytical formulas are also derived to calculate moments of exit
time distribution using solutions for a stationary state of the system.
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1. Introduction

Transport processes in various structures are investigated by the injection of a bolus amount

of a marker at the inlet to the system and the measurement of the injected marker fraction at

the outlet from the system as a function of time. For example, physiological experiments are

carried out for the whole isolated organs, in which exchange of water and solutes between

blood and the tissue involves a complex network of membranes and distributed transport

barriers [1–3]. Another system of this kind is applied for the penetration of infrared photons

into biological tissues [4–6].

Mean transit time (MTT) is usually defined for experiments with a momentary input to the

system of a known amount of substance, M0 (often a small amount of a labelled form of the

investigated substance), and the recording of its concentration, C, at the outlet from

the system as a function of time. MTT may then be calculated as
Ð1

0
tCðtÞdt=

Ð1
0
CðtÞdt [1].

The theoretical evaluation of MTT needs a solution of the model equations for the system,

which is generally described by ordinary differential equations (compartment systems) or

partial differential equations (distributed systems). The transport may be convective,

diffusive or combined. It was shown that for pure diffusive or pure convective transport in

some simple transport systems this definition of MTT is equivalent to another one that is

formulated for the steady state of the system [7–9]. In this case, for a steady input of the

solute, the system reaches after some time a steady state of the concentration distribution and
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the constant output of the substance. Under these conditions one can calculate the mean

residence time (MRT), as MRT ¼ MS/JSin, where MS is the amount of the substance in the

system and JSin is the rate of the substance input to the system. For pure convective transport

and pure diffusive transport in the system, MRT is equal to MTT calculated for the transient

passage of the substance through the system [7,8].

The typical biological applications that involve the estimation of MTT are in medicine,

physiology, cell biology and pharmacokinetics. The experiments with the in vivo perfused

organs are based on the convective transport of the (labelled) solute to the organ by a bolus

infusion to the organ artery and the measurements of the solute concentration in blood

leaving the organ via its vein [1]. The transport of the solute from blood to the tissue and

back may be diffusive or combined diffusive–convective. An example of such investigation

may be found in the studies of the transport in the liver using, among other data, MTT and

the variance of the distribution of transit times [3,10,11]. Another problem, diffusion of a

substrate from the cell surface to the site inside the cell, where the enzyme that consumes

the substrate is located, is a template for the discussion of MTT and MRT for the diffusive

transport by Hardt [8].

The transport system involved in the peritoneal dialysis and the local drug delivery is more

complex [12]. It comprises the transport (diffusive or diffusive–convective) through the organ

surface and the distributed internal source or sink (depending on the direction of the solute

transport, which may be regulated by imposing different boundary conditions) within the tissue.

The flow through the surface and the capillary wall is in general bi-directional, but one may select

some special boundary conditions which make the transport unidirectional, and in this way

simplify the interpretation of the results. Furthermore, the combined diffusive and convective

transport is typical for peritoneal dialysis, although for solutes of low molecular weight, diffusion

is prevailing and one may approximately neglect the convective transport [13,14]. The status of

microcirculation may also contribute to the efficiency of these therapies [1,15–17].

Transit times for infrared photons injected into the tissue, scattered there, and recorded at a

different site on the tissue surface are used for obtaining information about the tissue and its

microcirculation [4]. In particular, the first moment of the distribution of time of photon

flights can be used for the analysis of changes in the absorptive characteristics of the tissue,

and the inclusion of the second moment improves the analysis [5,6].

MTT, called also the mean first passage time, is usually defined for a system comprising

a solute with total mass M, which may be a function of time, t and the solute inflow, Fin, to

the system and the solute outflow, Fout, from the system, defined at the inlet to and the

outlet from the system, respectively, as functions of time. Under the assumptions: (1) initial

load of mass M0 at the inlet to the system, (2) no other solute inflow to the system, and (3)

no back-flow of molecules that leave the system through the inlet, one defines the MTT, t,

as [1,8]:

t ¼

ð1
0

thðtÞdt ð1Þ

where h(t) is the distribution of times for molecules to reach the exit from the system, and

is given by the formula [1,8]:

hðtÞ ¼
FoutðtÞÐ1

0
FoutðtÞdt

ð2Þ
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Taking into account that under the stated assumptions: Fout(t) ¼ 2dM(t)/dt, M(t) ! 0 for

t ! 1, and therefore
Ð1

0
FoutðtÞdt ¼ M0, one gets:

hðtÞ ¼ 2
1

M0

dM

dt
ð3Þ

and, using formula (1):

t ¼
1

M0

ð1
0

MðtÞdt ð4Þ

where it is assumed that tM(t) ! 0 if t ! 1.

If the system is in the steady state then the solute concentration, CS, within the system, the

solute mass, MS, in the system, and the solute inflow, FSin, to the system are constant. The

MRT, tres, i.e. the mean time the particle that enters the system spends in it, is given as [8]:

tres ¼
MS

FSin

ð5Þ

The equality of t and tres was initially shown for convective transport of a flow indicator

for measurements of blood flow and volume [7]. Next, the Hardt theorem stated that for the

systems with pure diffusion and the inflow and outflow only through the boundary, t ¼ tres

[8]. It was mentioned by Hardt that this theorem is also valid for the systems with the

distributed source/sink of the solute [8]. We show that this result is valid for a general linear

diffusion–convection—reaction system (described by elliptic differential operator), and that

higher moments of the transit time distribution function may also be calculated using a

steady state solution for the system.

2. Formulation of the model

The basic equation for C(x, t) in a connected bounded region V of n-dimensional Euclidian

space Rn, n $ 1; is:

›C

›t
¼ LC þ S ð6Þ

where L is a linear operator defined as

LC ¼ 2divF2 AC ð7Þ

and

F ¼ 2D gradC þ JC ð8Þ

for D ¼ ðDijÞðxÞ; J ¼ ðJiÞðxÞ; A ¼ AðxÞ $ 0; and S ¼ SðxÞ $ 0; i; j ¼ 1; . . .n and symbols in

bold describe n-dimensional vectors or n £ n matrices. Furthermore, it is assumed that

diffusivity matrix is symmetric, Dij ¼ Dji, and that j·D(x)j $ uj·j for some u . 0, almost all

x [ V, and all j [ Rn, where Rn is n-dimensional Euclidean space, and R ¼ R1 is the set of

real numbers. The last condition states that L is an elliptic operator, and guarantees that

diffusion goes along the concentration gradient [18].
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Boundary conditions: The boundary ›V of the region V can be split in three parts

›V ¼ ›VW < ›VD < ›VN, with the following characteristics:

(1) “no-flux” Robin boundary condition (impermeable wall) on ›VW: Fn(x,t) ¼ 0 for

x [ ›VW, t . 0,

(2) Dirichlet boundary condition for ›VD: C(x,t) ¼ w(x) for x [ ›VD, t . 0,

(3) Robin boundary condition for ›VN: Fn(x,t) ¼ 2c(x) for x [ ›VN, t . 0,

where subscript n denotes the component normal to the boundary in the direction outward

from V.

The third boundary condition, known also as the Dankwerts condition [3,10,11], includes a

practically important case of purely convective flow: ð›C=›nÞðx; tÞ ¼ 0 and Cðx; tÞ ¼ fðxÞ

for x [ ›VN, t . 0.

Initial condition: C(x,0) ¼ C0(x) for x [ Vn›V.

The Green function G(x, y, t) for equation (6) is defined, assuming x as a parameter and y

and t as variables, as the solution of the following equation for any x [ V

›G

›t
¼ L*

yG ð9Þ

where the linear operator L*
y is defined as

L*
yG ¼ 2divðF*Þ2 ðdiv Jþ AÞG ð10Þ

and

F* ¼ 2D gradG2 JG ð11Þ

for the same parameters that appear in equation (6), and all spatial derivatives taken in

variable y.

Boundary conditions for G in variable y for any x [ Vn›V are:

(1) “no diffusive flux” Neumann boundary condition on ›VW < ›VN :(D gradG)n (x,y,t)

¼ 0 for y [ ›VW < ›VN ; t . 0,

(2) Dirichlet boundary condition for ›VD:G(x,y,t) ¼ 0 for y [ ›VD; t . 0,

Initial condition for G:G(x,y,0) ¼ d(x 2 y) for x and y in Vn›V.

One can show that C can be expressed by G, S, w and c, and the initial solution as follows:

Cðx; tÞ ¼

ð
V

Gðx; y; t2 sÞCðy; sÞdyþ

ðt
s

ð
V

Gðx; y; t2 uÞSðyÞdydu

2

ðt
s

ð
›VD

ðDðyÞgradGðx; y; t2 uÞÞnwðyÞdydu

2

ðt
s

ð
›VN

Gðx; y; t2 uÞcðyÞdydu

ð12Þ

where s [ [0,t ].
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To proof formula (12) let us define

Aðx; tÞ ¼

ðt
s

ð
V

Gðx; y; t2 uÞ
›C

›u
2 LyC

� �
ðy; uÞ þ

›G

›u
þ L*

yG

� �
ðx; y; t2 uÞ

Cðy; uÞdydu

ð13Þ

Because

›G

›u
ðx; y; t2 uÞ ¼ 2

›G

›t
ðx; y; t2 uÞ ¼ 2L*

yGðx; y; t2 uÞ

then, using equation (6),

Aðx; tÞ ¼

ðt
s

ð
V

Gðx; y; t2 uÞSðyÞdydu: ð14Þ

On the other hand, equation (13) may be rearranged as follows:

Aðx; tÞ ¼ Cðx; tÞ2

ð
V

Gðx; y; t2 sÞCðy; sÞdyþ

ðt
s

ð
›V

Gðx; y; t2 uÞFnðy; uÞdydu

þ

ðt
s

ð
›V

ðDðyÞgradGðx; y; t2 uÞÞnCðy; uÞdydu

ð15Þ

using the Gauss–Ostrogradzki theorem
Ð
V

divB dy ¼
Ð
›V

Bndy, and the identity div(AB) ¼

A divB þ B·gradA for scalar function A(y) and vector function B(y). The application of the

boundary conditions for C to the integrals over ›V in equation (15) and the comparison of

equations (14) and (15) yield formula (12).

3. Mean transit times for impulse inputs

We assume that the system has a (stable) steady state C1(x) with total mass

M1 ¼
Ð
V
C1ðxÞdx, and this state is disturbed at t ¼ 0 by a pulse function concentrated at

x ¼ z : M0dðx2 zÞdðtÞ. Let C(x,t;z) be the solution of equation (6) with the initial condition

C0(x;z) ¼ C1(x) þ M0d(x 2 z), and denote Mðz; tÞ ¼
Ð
V
Cðx; t; zÞdx. The MTT is defined as

(c.f. equation (4))

tðzÞ ¼ 2
1

M0

ð1
0

tdmðz; tÞ ð16Þ

where m(z,t) ¼ M(z,t) 2 M1.

Integrating by parts one gets

tðzÞ ¼
1

M0

2ðtmðz; tÞÞj
1
0 þ

ð1
0

mðz; tÞdt

� �
ð17Þ
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and, assuming that tm(z, t) ! 0 for t ! 1 and z [ Vn{›VW > ›VD};

tðzÞ ¼
1

M0

ð1
0

mðz; tÞdt ¼
1

M0

ð1
0

ð
V

ðCðx; t; zÞ2 C1ðxÞÞdtdx: ð18Þ

The solution C(x,t;z) may be found using formula (12) for the initial state C0(x;z)

Cðx; t; zÞ ¼ M0Gðx; z; tÞ þ

ð
V

Gðx; y; t2 sÞC1ðyÞdyþ

ðt
s

ð
V

Gðx; y; t2 uÞSðyÞdydu

2

ðt
s

ð
›VD

ðDðyÞgradGðx; y; t2 uÞÞnwðyÞdydu

2

ðt
s

ð
›VN

Gðx; y; t2 uÞcðyÞdydu

ð19Þ

for any s [ [0,t ].

Note, that formula (12) applied for the steady state C1(x) implies that the terms with

integrals in equation (19) sum up to C1(x). Thus

Cðx; t; zÞ ¼ M0Gðx; z; tÞ þ C1ðxÞ ð20Þ

and

mðz; tÞ ¼ M0

ð
V

Gðx; z; tÞdx ð21Þ

From equation (9):

›m

›t
ðz; tÞ ¼ L*

zm
� �

ðz; tÞ ð22Þ

with

(1) “no diffusive flux” Neumann boundary condition on ›VW < ›VN:(D gradm)n(z,t) ¼ 0

for z [ ›VW < ›VN ; t . 0,

(2) Dirichlet boundary condition for ›VD:m(z,t) ¼ 0 for z [ ›VD; t . 0,

(3) Initial condition for m:m(z,0) ¼ M0 for z in Vn›V.

From equations (18) and (20) it follows that

tðzÞ ¼

ð1
0

ð
V

Gðx; z; tÞdtdx ð23Þ

Now, we may formulate an ordinary differential equation for t(z). Let us consider

L*
z tðzÞ ¼

ð1
0

ð
V

L*
zG

� �
ðx; z; tÞdtdx ¼

ð1
0

ð
V

›G

›t
ðx; z; tÞdtdx

¼

ð
V

½Gðx; z;1Þ2 Gðx; z; 0Þ�dx

ð24Þ
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Note, that G(x,z,t) ! 0 for t ! 1, because of the boundary conditions for G, and that

G(x,z,0) ¼ d(x 2 z). Therefore

L*
z t

� �
ðzÞ ¼ 21 ð25Þ

This PDE is supplemented by the boundary conditions that are of the same type as for

G(x,z,t):

(1) (›t/›n)(z) ¼ 0 for z [ ›VW < ›VN ;
(2) t(z) ¼ 0 for z [ ›VD.

Remark. Defining tðz; tÞ ¼
Ð t

0

Ð
V
Gðx; z; uÞdudx one can derive an equation for t(z,t):

›t

›t
ðz; tÞ ¼ L*

zt
� �

ðz; tÞ þ 1: ð26Þ

4. Mean residence time

Let �CðxÞ be a steady state solution for equation (6) for some boundary conditions, perhaps

different from those already specified, which will be defined later on. Then, by equation (25),

ð
V

�CðzÞ L*
zt

� �
ðzÞdz ¼ 2 �M ð27Þ

where

�M ¼

ð
V

�CðzÞdz ð28Þ

On the other hand,

ð
V

�CðzÞ L*
z t

� �
ðzÞdz ¼

ð
V

Lz �C
� �

ðzÞtðzÞdzþ

ð
›V

�CðD grad tÞn þ t �Fn

� �
ðzÞdz ð29Þ

Because Lz �C
� �

ðzÞ ¼ 2SðzÞ by the definition of the stationary state, one gets, comparing

equations (27) and (29) and using the boundary conditions for t,

�M ¼ 2

ð
›VD

ð �CðD grad tÞnÞðzÞdz2

ð
›VN

t �Fn

� �
ðzÞdzþ

ð
V

SðzÞtðzÞdz ð30Þ

Let us assume now the boundary conditions for �C, c.f. [8],

(1) �FnðzÞ ¼ 0 for z [ ›VW ,

(2) �FnðzÞ ¼ 2 �cðzÞ, �cðzÞ $ 0 for z [ ›VN, with ›VN considered as the inlet to the system,

(3) �CðzÞ ¼ �wðzÞ, �wðzÞ $ 0 for z [ ›VD, with ›VD considered as the outlet from the system.

The total inflow through the boundary, �Finlet, is then

�Finlet ¼

ð
›VN

�cðzÞdz ð31Þ
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The inflow-averaged mean time tinlet for the solute entering the system through ›VN is

defined as

tinlet ¼
1

�Finlet

ð
›VN

ðt �cÞðzÞdz ð32Þ

The total inflow from the source is Fsource ¼
Ð
V
SðzÞdz, and the inflow-averaged mean time

tsource for the solute entering the system from the source is defined as

tsource ¼
1

Fsource

ð
V

ðtSÞðzÞdz ð33Þ

Equations (30)–(33) together with the boundary conditions for �C yield the formula

tinflow 2

ð
›VD

ð �wðD grad tÞnÞðzÞdz ¼
�M

�Finlet þ Fsource

ð34Þ

where �M and �Finlet are calculated for the steady state �C, and tinflow is defined as

tinflow ¼
�Finlet

�Finlet þ Fsource

tinlet þ
Fsource

�Finlet þ Fsource

tsource: ð35Þ

Note that the residence time, tres, for this system is defined as

tres ¼
�M

�Finlet þ Fsource

ð36Þ

c.f. equation (5). Thus, for �w ; 0 one gets from equation (34) that

tinflow ¼ tres ð37Þ

i.e. the Hardt theorem [8]. Formula (34) may be therefore considered as a generalization of

the Hardt theorem to arbitrary Dirichlet conditions at the outlet from the system.

The inflow-averaged mean time tinflow for the solute entering the system through ›VN

depends on the boundary condition �cðzÞ at the inlet. However, if �cðzÞ does not depend on

z [ ›VN , then

tinflow ¼
1

j›VN j

ð
›VN

tðzÞdz ð38Þ

tinflow, given by equation (38), may be calculated directly if equation (25) is solved.

5. Higher moments of exit function

Using similar methods we can derive recursive equations and formulas for higher moments

of the exit time distribution function defined as

tkðzÞ ¼ 2
1

M0

ð1
0

t kdmðt; zÞ ð39Þ
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for integer k $ 0. Note that t0(z) ¼ 1. In the following, we assume that t kmðt; zÞ! 0 and

t k21Gðx; z; tÞ! 0 for t ! 1, z [ Vn{›VW > ›VD}, and all integer k $ 1. Then, for k $ 1

tkðzÞ ¼
k

M0

ð1
0

t k21mðt; zÞdt ¼ k

ð1
0

ð
V

t k21Gðx; z; tÞdtdx ð40Þ

c.f. equations (17) and (23) and their derivations. The PDE for tk(z) is obtained in the same

way as equation (25):

L*
ztk

� �
ðzÞ ¼ 2ktk21ðzÞ ð41Þ

and the boundary conditions are the same as those for equation (25).

The theorem by Hardt about the description of MTT by MRT [8], section 4, may be

generalized for higher moments of exit functions. Let us define the following parameters:

tk;source ¼
1

Fsource

ð
V

ðtkSÞðzÞdz ð42Þ

tk;inlet ¼
1

�Finlet

ð
›VN

ðtk �cÞðzÞdz ð43Þ

�tk ¼
1

�M

ð
V

ð �CtkÞðzÞdz ð44Þ

for the steady state �C. Then

tk;inflow 2

ð
›VD

ð �wðD grad tkÞnÞðzÞ ¼
k �M �tk21

�Finlet þ Fsource

ð45Þ

where �M and �Finlet are calculated for the steady state �C, and tk,inflow is defined as

tk;inflow ¼
�Finlet

�Finlet þ Fsource

tk;inlet þ
Fsource

�Finlet þ Fsource

tk;source ð46Þ

For k ¼ 1, formulae (42)–(46) reduce to those given in section 4.

6. Examples

Let us consider the transport equation with constant coefficients on interval ½0; L�

›C

›T
¼ D

›2C

›X 2
2 J

›C

›X
2 AC þ S ð47Þ

After rescaling with x ¼ X/L and t ¼ DT=L2 we get

›C

›t
¼

›2C

›x2
2 j

›C

›x
2 aC þ s ð48Þ
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with the coefficients j ¼ JL=D, a ¼ AL2=D, s ¼ SL2=D. Equation (25) is now

›2t

›z2
þ j

›t

›z
2 at ¼ 21 ð49Þ

with (›t/›z)(0) ¼ 0 and t(1) ¼ 0. The solution of equation (49) for j, a – 0 is

tðzÞ ¼
1

a
1 2 expðjð1 2 zÞ=2Þ

u coshðuz=2Þ þ j sinhðuz=2Þ

u coshðu=2Þ þ j sinhðu=2Þ

� �
ð50Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 4a

p
.

Important special cases of solution (50) are

(1) for j – 0, a ¼ 0

tðzÞ ¼
1

j
1 2 z2

expð2jÞ

j
ðexpðjð1 2 zÞÞ2 1Þ

� �
ð51Þ

(2) for j ¼ 0, a . 0

tðzÞ ¼
1

a
1 2

coshð
ffiffiffi
a

p
zÞ

coshð
ffiffiffi
a

p
Þ

� �
ð52Þ

(3) for j ¼ 0, a ¼ 0

tðzÞ ¼
1

2
ð1 2 z2Þ ð53Þ

t2ðzÞ ¼
1

2

5

6
2 z2 1 2

z2

6

� �� �
ð54Þ

and, for

varðzÞ ¼ 2
1

M0

ð1
0

ðt2 tÞ2dmðt; zÞ ¼ t2 2 t2;

varðzÞ ¼
1

6
ð1 2 z4Þ: ð55Þ

For the Dirichlet boundary conditions at both boundaries for the main equation (49) one

has the boundary conditions for t:t(0) ¼ 0 and t(1) ¼ 0. Then, the solution of equation (49)

for j, a – 0 is

tðzÞ ¼
1

a
1 2 eðu2jÞz=2 þ ðeu=2 2 ej=2Þe2jz=2 sinhðuz=2Þ

sinhðu=2Þ

� �
ð56Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 4a

p
.
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Some special cases of solution (56) are:

(1) for j – 0, a ¼ 0

tðzÞ ¼
1

j

1 2 expð2jzÞ

1 2 expð2jÞ
2 z

� �
ð57Þ

(2) for j ¼ 0, a . 0

tðzÞ ¼
1

a
1 2 expð

ffiffiffi
a

p
zÞ þ ðexpð

ffiffiffi
a

p
Þ2 1Þ

sinhð
ffiffiffi
a

p
zÞ

sinhð
ffiffiffi
a

p
Þ

� �
ð58Þ

(3) for j ¼ 0, a ¼ 0

tðzÞ ¼
1

2
zð1 2 zÞ: ð59Þ

For the Neumann boundary conditions at both boundaries for the main equation (49) one

has the boundary conditions for t :(dt/dz)(0) ¼ 0 and (dt/dz)(1) ¼ 0. Then, the solution of

equation (49) for a – 0 is

t ðzÞ ¼
1

a
ð60Þ

However, there is no solution if a ¼ 0.

7. Discussion

The equivalence of the passage times for transient and steady linear transport processes is

shown for the general linear reaction–diffusion–convection equation in Rn, n . 1. It was

described previously as the identity of MTT and MRT for pure convective and pure diffusive

transport separately [7,8]. This identity is now proved for combined diffusive–convective

transport with a possible linear chemical reaction. However, the “reaction” term may also

describe an internal sink of the solute, extending considerably (e.g. due to the presence of

blood microvessels and lymphatics) the range of systems under consideration. Furthermore,

formula (46) demonstrates how higher moments of the distribution of passage times may be

calculated from a steady state solution of the transport equation. The presented proof is based

on the theory of linear parabolic differential equations, but physical arguments may refer to

the assumption that the motion of any single molecule is independent of the motion of all

other particles, as reflected by the linearity of the system. Therefore, the proof might be also

based on the theory of stochastic processes, as it was used in Ref. [8].

Although the transport-reaction systems are in general non-linear, the linear equations are

sometimes applicable for some of these systems. There may be several reasons for usefulness

of linear systems in biological applications. First of all, some solutes are chemically “inert” and

transported only by passive diffusion and convection, as for example, urea and creatinine, the

basic markers for the clinical status of uremic patients and the efficiency of dialysis procedures,

inert gases and some drugs, etc. [1,3,12,14–16]. Also, linear approximations for some general

models are found to be accurate and practically useful descriptions, as in near-infrared
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spectroscopy [4–6]. Linearized systems appear also if small quantities of labelled markers are

applied in experiments, because such small quantities do not change the state of the system [1].

Finally, linear systems are studied just as an approximation to obtain an initial insight into the

system characteristics [11,14]. The parameters estimated from the experimental data for linear

systems may later be used directly or by interpolation for solutes that are involved in, say, linear

transport and non-linear reaction, etc. Note also that transit and residence times may be defined

in a dose/concentration independent manner only for linear systems.

The theorem about the equality of MRT and MTT depends on the assumption that after

perturbation of the system the total solute mass in the system returns to its steady state level

asymptotically faster than t 21, see equations (4) and (17)–(18). Furthermore, the derived

formulas for higher moments of the exit function are based on the assumption that the

asymptotic rate of return of the system mass to its steady state value is faster than t 2k if the k

moment is considered (see section 5). These properties of the exit function, taken for granted

in previous studies [7,8], are difficult to prove for general elliptic operators. The problem

may be reduced to the investigation of the principal (maximal) eigenvalue of the elliptic

operator that describes the system. Operator L, Equation (7), is in general the non-symmetric

if convective term J – 0. Nevertheless, it may often be shown that its principal eigenvalue is

real and strictly negative and all other eigenvalues have real parts not higher than the

principal eigenvalue if A . 0, see a proof for the case of Dirichlet boundary condition in Ref.

[18]. From such a characteristic of the operator’s spectrum a conclusion about the desired

asymptotic properties of the solute mass may easily be obtained.

The observation that information about the exit function for the linear transport systems

may be derived at large extent from a steady state solution may be helpful in obtaining

analytical formulas for systems with simple geometry, as shown in section 6 and Ref. [8]. It

may potentially be useful for numerical analysis of the transport systems. It also allows for

the derivation of some conclusions about transit characteristics from the studies of the system

in the steady state.
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