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The authors review existing models of biomarker dynamics and develop and investigate
several new models which may better accommodate the underlying biology. While the
general foundations of the models studied could be applied to a number of biomarker
systems, the parameter values and specific applications to treatment regimens are focused on
the role of prostate-specific antigen (PSA) as a biomarker for prostate cancer. Included are
suggestions for possible clinical validation studies.
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1. Introduction

A human biomarker system provides evidence of the relationship between a naturally

occurring and generally harmless or even beneficial biological product (often an enzyme)

that can be observed without serious physical insult to the human subject and an

underlying disease or condition (for example, cancer), the direct observation of which

requires higher-risk, invasive methods. By monitoring the level of the biomarker,

clinicians expect to better understand and anticipate changes in the underlying condition,

in order to suggest when more invasive testing or treatment should be scheduled most

efficiently. While biomarkers have been identified in connection with such disorders as

Alzheimer’s disease, exposure to toxic agents and several cancers, the one known best is

probably PSA [1–6].

Prostate-specific antigen (PSA) is a proteolytic enzyme produced by epithelial prostate

cells that serves to liquefy seminal fluid [7]. Under the regulatory control of male hormones,

newly synthesized PSA is secreted into the prostatic ducts and concentrated in the seminal

fluid. Most of the PSA produced by these prostate cells is naturally removed from the body

through the semen, but small amounts of the protein are able to diffuse into the circulation

and can be measured in the bloodstream [8]. Normally, leakage of PSA into the blood

is controlled by natural barriers between the prostatic ducts and circulation that set up

a million-fold concentration difference between the prostate fluid and the plasma. These

barriers include intact cellular tight junctions connecting neighboring epithelial cells, an
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undifferentiated basal cell layer, the basement membrane, and the stroma [9,10]. To enter the

circulation, PSA must cross through these tissue layers and then pass into the blood vessels,

where the antigen either exists in the free form or is inactivated and controlled by irreversible

binding to protease inhibitors in the blood [8]. Disruption or breakdown of these barriers has

been found to accompany prostatic intraepithilial neoplasia (PIN), a precursor to prostate

cancer [11,12]. A comprehensive review of prostate pathology can be found in Ref. [13]. The

potential degrading of these barriers by tumor cells and the resulting effect on biomarker

levels is one of the principal considerations in this study.

Normal values of serum PSA are considered to be at or below 4 ng/ml, but there are

many conditions that may prompt an elevated level of serum PSA [6], including prostatic

infection, recent biopsy of the prostate, benign prostate hyperplasia (BPH), and prostate

cancer [4]. Among these, adenocarcinoma of the prostate has been found to lead to the

greatest increase of serum PSA, often producing levels that are 10-times greater per gram

of tissue than those seen in normal or benign conditions [4]. Due to these findings, PSA

has been used as a biomarker to diagnose and monitor prostate cancer, with an increase of

PSA acting as an indicator for an increased number of cancerous cells in the prostate

gland.

That rising levels of PSA in the bloodstream may result, in part, from the disruption of

natural barriers that separate the contents of the affected organ from circulation has been a

conclusion reached in several studies [14,9,10]. Prostate cancer cells do not produce more

PSA on a per cell basis than benign or normal tissues but rather increase the leakage of PSA

across the barriers and into the bloodstream [9,8]. The fast replication rate of the cancer cells

leads to increased cell numbers situated in dense populations which are able to destroy the

organization of the normal epithelial cells and infiltrate the bloodstream. The increase in PSA

found in the serum of prostate cancer patients is thus due not only to an increase in the

number of cells producing PSA, but also to the breakdown in the barriers affected by the

underlying disease.

One of the principal uses of the biomarker models reviewed and developed below is to

support and monitor treatment of the disease condition. Although multiple treatments are

presently available, the primary method of cancer treatment considered in this analysis is

radiotherapy. The two forms of radiation treatment that exist for the control of prostate

cancer, external beam radiation therapy and brachytherapy, both act at the cellular level,

causing extensive damage to the DNA within a cell, resulting in the loss of reproductive

capability and ultimately in cell death [9]. The goal of radiation therapy is to administer a

large enough dose to the targeted organ to destroy the cancerous cells while maintaining

sufficient normal cells and surrounding tissue to allow for continued successful organ

function [15,16,9].

In formulating a model that accurately reflects the biology and kinetics of cancer growth

and treatment, there are many factors that must be taken into consideration. Previous

models [17,18] reflected the exponential growth of tumor cells and the decay of treatment

effectiveness over time, but have not directly considered the mechanism by which the

increase in biomarker is related to tumor growth. Models that describe this relationship in

greater detail may allow researchers to better determine optimal radiation dosages and

better estimate parameters associated with the disease and its response to treatment. Such

models, particularly the system models, are developed below with emphasis on the extent

to which the model dynamics express qualitative features of the underlying biology. In

several instances, clinical experiments are suggested as a step toward further model

validation.
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2. Simulation of treatment dynamics: a basic model

Any model which simulates the behavior of a biomarker in response to treatment of the

underlying disease or condition must accurately represent the three fundamentally different

treatment outcomes. The treatment can be successful, resulting in complete elimination or

sustained control of the disease. Otherwise, the treatment may appear to be successful at first,

with a subsequent relapse of disease or can simply be ineffective from the outset. A basic

deterministic model proposed for radiation treatment of prostate cancer (see references in

Ref. [17]) is based on the ordinary differential equation

dx

dt
¼ axðtÞ2 ke2at ð1Þ

for the evolution of PSA level, x, with respect to time, t. PSA levels are measured in ng/ml

and time is measured in days. Parameters represent the growth rate of cancer, a, the decay

rate of treatment, a, and the level or intensity of radiation treatment, k. Equation (1) is subject

to the initial condition

xð0Þ ¼ x0 ð2Þ

where x0 is the PSA level at time t ¼ 0. The solution to (1) and (2) is well known to be

xðtÞ ¼
k

aþ a
e2at þ x0 2

k

aþ a

� �
eat: ð3Þ

Parameters for this “bi-exponential” model can be selected to simulate each of the three

treatment scenarios. As long as a . a (tumor growth is slow relative to the decay rate of

treatment) and k . x0ðaþ aÞ (treatment dosage is sufficiently high), the treatment is

successful, but the model in this case leads to negative levels of the biomarker, an

impossibility. If k . x0ðaþ aÞ but a , a, the treatment success is only temporary (until

t ¼ 1=ðaþ aÞlnðak=aðk2 x0ðaþ aÞÞÞ, while if k , x0ðaþ aÞ, the treatment fails from the

outset. In addition to the problem of allowing negative biomarker levels, this model

incorporates at least one (related) questionable biological assumption, namely that the effect

of treatment on biomarker levels (and, by implication, on tumor mass) is unrelated to the

biomarker level (tumor mass) itself. Despite these shortcomings this model was found to be

useful in several studies [19–21].

3. Parameter selection issues

In a specific application of (3) above, parameter values used must be based on biological

data. These values can be chosen to match individual circumstances and may be different for

different patients or different treatment protocols.

Following successful radiation treatment of prostate cancer, clinicians report PSA values

of 0.5–1.0 ng/ml after 17 months, reflecting a very small probability of relapse in a patient’s

lifetime [17]. Values for x0, the pre-treatment PSA level, typically vary in the range of

4.0–20.0 ng/ml. (Even for patients with initial PSA readings below this range, an increase in

PSA of 0.75 ng/ml or greater over a year-long period is an indicator that cancer should
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be considered [4].) For simulations based on (3), values for x0 are chosen in the range of

4.7–5.0 ng/ml.

One measurement of the doubling time of prostatic tumors is 67 days, which gives a value

for a to be 0.01 day21 [22,8]. The treatment decay rate used in this model comes from the

brachytherapy half-lives of the two isotopes commonly used for the internal treatment of

prostate cancer, Pd103 and I125. The average half-life of these two isotopes is about 30 days,

yielding the value of 0.02 day21 for a [16,23].

The parameter for treatment intensity, k, in the model is required to have the units of

day21. In clinical situations, treatment intensity or dose is measured in Grays (Gy), a value

which corresponds to one joule per kilogram of tissue [9]. In this model, however, this

parameter has a value equal to the fraction per unit time of cells killed by radiation when it is

at its most effective level. Radiation treatment doses are typically given to prostate cancer

patients once every 24 h to allow the normal cells, but not the less effectively repairing

cancerous cells, to recover from the induced damage [16]. Based on this daily regimen, the

half-life for treated cells is taken to be 1 day in the simulation, with the corresponding value

of k ¼ 0.069 day21 [25].

The biomarker dynamics derived from (3) using parameter values associated with PSA as

described above show dramatically negative values of PSA as time increases. While this

model may accurately approximate observed biological behavior over a short time, model

outcomes with negative biomarker levels are a clear indication of a deficiency. Besides this

and the fact that treatment effectiveness is independent of tumor size, the model (3) does not

allow for non-constant yet stable patterns of biomarker behavior in the absence of disease

and treatment.

4. Alternative single-equation models

An alternative version of the model derived from (1) which does accommodate a stable

baseline level of biomarker, b, is represented by

dx

dt
¼ aðxðtÞ2 bÞ2 ke2at; ð4Þ

where only the levels of PSA that are above the baseline are reflective of the growing cancer.

The initial value of PSA just prior to treatment is generally above the baseline. The solution

to the model based on (4) and (2) is found, using standard methods, to be

xðtÞ ¼
k

aþ a
e2at þ x0 2

k

aþ a
2 b

� �
eat þ b: ð5Þ

With the same parameter values (derived for PSA) that were described above, along with

a value of b ¼ 4 ng/ml, the new model (5) is similar to (3) in that it also produces

unrealistic negative values of PSA and assumes a treatment impact independent of disease

level.

In a third model given by differential equation (6) below, we modify the treatment

term to reflect the fact that treatment effectiveness applies only to disease, represented by

the extent to which the biomarker level exceeds its baseline. This new differential
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equation is

dx

dt
¼ aðxðtÞ2 bÞ2 k

xðtÞ

b
2 1

� �
e2at; ð6Þ

again paired with the initial condition (2). Standard methods determine the solution in

this case to be

xðtÞ ¼ bþ eðk=abÞðe
2at21Þþatðx0 2 bÞ; ð7Þ

with a choice of parameters identical to those used for equation (4).

Of these first three models, (6) most closely matches the experience generally observed,

depicting treatment success in the near term with a relapse after about 200 days (figure 1).

For certain parameter values, the relapse will be postponed beyond a patient’s life

expectancy, thus resulting in what appears to be a complete cure. For initial levels of

biomarker greater than the baseline level, the lowest possible subsequent level is at the

baseline. However, in many cases of radiation treatment for prostate cancer, the lowest level

seen after treatment is less than 4.0 ng/ml, and values in the range of 0.5–1.0 ng/ml are

sometimes used as indicators of treatment success [7,8]. To address this apparent

shortcoming, one might adjust downward the baseline to a post-treatment baseline. With this

adjustment, the model (6) provides a more realistic picture of likely biomarker dynamics,

with the reservation that still not all biological implications (e.g. PSA loss rate) are

considered. Another concern is that an initially low biomarker level (x0 , b) eventually

results again in unrealistic negative levels.

Our fourth model, expressed by differential equation (8), captures the idea that the level of

treatment effect should be proportional to the amount or volume of cancer cells being treated.

Accordingly, we have modified (1) to include the biomarker variable x(t) in both the

treatment and decay terms, obtaining

dx

dt
¼ axðtÞ2 kxðtÞe2at: ð8Þ

Figure 1. This figure gives the modeled course of PSA levels as described by (6) with parameter values b ¼ 4.0,
a ¼ 0.02, k ¼ 0.639, a ¼ 0.01, x0 ¼ 4.7. Note the long period of disease control.
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This equation is also subject to the initial condition (2) and can then be solved using standard

methods to obtain

xðtÞ ¼ x0eðatþðk=aÞÞðe2at21Þ: ð9Þ

Although a baseline biomarker level is not involved here in either treatment or growth

terms, this model is valuable in that it allows both long-term cure and eventual relapse,

with no possibility of negative biomarker values. Considering that most men diagnosed with

prostate cancer are over the age of 50, it is not uncommon for male patients to die with an

undetected cancerous mass residing in the prostate [4,6], suggesting a potential for relapse

that may never be realized. After 5 years, if PSA has not shown more than three consecutive

and detectable increases, current treatment evaluation protocols may determine that the

treatment is a success [4].

Each of the single-equation models may have appropriate uses over certain ranges of

parameter values and over short time periods, but none are fully satisfactory in allowing the

variety of biomarker behavior noted in clinical studies and sometimes including high-low

fluctuations. In addition, despite the positive features of the model with solution (9), there is

no identified level of disease (tumor size) associated with a particular biomarker level and the

model allows only constant solutions in the absence of disease and treatment.

5. System models for biomarker dynamics

We will now consider systems of differential equations that address some of the inadequacies

of the single-equation models for biomarker dynamics. These models take into account that

normal cells may also contribute to the level of biomarker. In addition, the natural process for

removal of biomarker from the system will be modeled explicitly, as will the effect of tumor

cells on the integrity of the organ membranes. While single-equation models necessarily

combine characteristics of the biomarker and the underlying disease organism, the system

models identify as separate entities the biomarker, x(t), the diseased functioning cells, y(t),

and the normal functioning cells, z(t).

A basic version of the system model is represented by equations

dx

dt
¼ 2gxðtÞ þ mðyðtÞ þ zðtÞÞ ð10Þ

dy

dt
¼ ayðtÞ2 ke2atyðtÞ ð11Þ

dz

dt
¼ 0 ð12Þ

with initial condition x(0) ¼ x0, y(0) ¼ y0 and z(0) ¼ z0.

This model reflects the fact that biomarker levels are increased equally (at a rate m that

is independent of disease level) by normal and diseased cells (as is true in prostate

cancer) and decreased through elimination from the serum (at rate g). The level of

diseased cells is influenced by the growth rate of diseased cells a, and the treatment level

k, assumed in this model to decay exponentially as would be expected for a radioactive
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seed. In this first system model, the normal cell population level is taken to be constant. It

is easily seen that z(t) ¼ z0 and

yðtÞ ¼ y0eðat2ðk=aÞÞð12e2atÞ ð13Þ

so that the biomarker equation can be solved to yield

xðtÞ ¼ e2gt x0 þ m

ðt
0

e2ðk=aÞþgsðy0easþðk=aÞe2as

þ z0eðk=aÞÞds

� �
: ð14Þ

In the absence of disease (y0 ¼ 0) and treatment (k ¼ 0), the biomarker level is

xðtÞ ¼ ðmz0=gÞ þ ðx0 2 ðmz0=gÞÞe
2gt, rapidly approaching the stable value mz0/g. In the

case of untreated disease, xðtÞ ¼ ðmz0=gÞ þ ðmy0=ðaþ gÞÞeat þ ðx0 2 mðy0=ðaþ gÞÞ þ

ðz0=gÞÞ e2gt, showing a biomarker increase at the same (ultimate) rate of growth as that of

the diseased cells. (This connection may provide clinicians with a non-invasive method to

confirm tumor growth rates.)

For an application to PSA, reasonable initial and parameter values are x0 ¼ 5.0 ng/ml [6],

y0 ¼ 1.0 cm3 [10], z0 ¼ 40 cm3 [24], g ¼ 0.3 day21 [9], a ¼ 0.01 day21 [22,8], a ¼ 0.02

day21 [16], and k ¼ 0.07 day21 [25]. The ”transport rate” m, the rate at which PSA “leaks”

into the serum, has only recently become an object of study, but its value can be taken from

the no-disease case to be m ¼ 0.04(ng/ml)cm23 day21. For these initial parameter values, the

evolving PSA level, determined by (14), gives evidence of an early peak around day 10,

followed by a long period of gradual biomarker decline, with a relapse indicated roughly two

years later. By contrast, there are no preliminary peaks in the patterns observed for the single-

equation models (following a single treatment). Because clinicians have observed such

fluctuations in individual cases [4], the system model suggests a more realistic simulation of

the biomarker dynamics.

Other advantages of the model represented by (10)–(12) over the bi-exponential model

represented by (1) are that it distinguishes between the biomarker and the underlying disease,

that it accommodates the leakage of biomarker into the serum and that it expresses treatment

success proportional to the amount of diseased tissue (tumor size), thereby not allowing any

of the variables to become negative. However, this model is limited by the assumption that

the rate of leakage is constant. PSA studies such as those referred to in Ref. [14,9], suggest

that, while the production of PSA occurs at the same rate in normal and cancerous prostate

cells, the cancer cells have the ability to degrade the prostate epithelial cells and other

barriers that normally restrict the flow of PSA out of the gland. Another limitation results

from the assumption of constant normal tissue volume.

To address the limitation in the system model related to leakage rates, we replace the

constant leakage (or transport) rate m in (10) with a functional m(y(t)) to express the

dependence of the leakage on level of disease. We will consider first a linear form of m(y):

m(y) ¼ Ay þ B. Of course, there have been few opportunities yet for clinicians to investigate

the nature of leakage, so a linear form should only be considered an approximation until

future studies can confirm details of the membrane degradation process and its effects. Other

functional forms that might prove useful include, for example, fractional powers to

characterize an effect only on the tumor surface or a sigmoidal form which ranges between

specific low and high values. In the linear case, (10) is replaced by

dx

dt
¼ 2gxðtÞ þ ðAyðtÞ þ BÞðyðtÞ þ zðtÞÞ : ð15Þ
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Using the solutions for y(t) and z(t) already found, the biomarker equation becomes

dx

dt
¼ 2gxðtÞ þ ðAy0eat2ðk=aÞð12e2atÞ þ BÞðy0eat2ðk=aÞð12e2atÞ þ z0Þ ; ð16Þ

with solution

xðtÞ ¼ e2gt x0 þ

ðt
0

egs2ð2k=aÞð12e2asÞðAy0eas þ Beðk=aÞð12e2asÞÞðy0eas þ z0eðk=aÞð12e2asÞÞds

� �
:

ð17Þ

From the discussion of parameter values for PSA levels following (14), a reasonable value

for B is 0.04(ng/ml)cm23 day21. More clinical evidence is required for a reliable value for A,

but a plausible value is A ¼ 0.04(ng/ml)cm26 day21, suggesting a doubling of leakage as

tumor size grows from 1.0 to 2.0 cm3. With the other parameter values as determined above,

the result of simulation using (15) can be seen in figure 2, with a pronounced preliminary

peak in biomarker level at about five days post-treatment and relapse indicated at around 400

days. The fact that the model may be calibrated to replicate the early peak and then used to

forecast the later time of relapse may be helpful in scheduling follow-up testing and possible

treatment. Clinical evidence might also be sought to validate the temporal pattern predicted

by the model.

To address the limitation related to the assumption of constant volume of normal tissue, we

will incorporate into the system model two additional realistic assumptions. The first is that

the treatment may affect normal cells as well as diseased cells, although the impact on

normal cells is typically less because the cell repair mechanism has not been compromised

and/or the treatment may be targeted more directly at diseased cells. The second new

assumption is that normal cell volume is regulated through a logistic mechanism with a

predetermined (for each individual) equilibrium size z1. With these additional assumptions

Figure 2. Evolution of PSA modeled from (15) with parameter values A ¼ 0.04, B ¼ 0.04, a ¼ 0.02, k ¼ 0.07,
m ¼ 0.04, g ¼ 0.03, a ¼ 0.01, x0 ¼ 5, y0 ¼ 1 and z0 ¼ 40, over a time span of 30 days. Note the early peak in
biomarker level followed by a long decline. The second panel shows the continuation of PSA levels with identical
parameter values over a span of 100–550 days, indicating a likely tumor resurgence after about 440 days.
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the equations governing the complete system model can be expressed as

dx

dt
¼ 2gxðtÞ þ mðyðtÞÞðyðtÞ þ zðtÞÞ ð18Þ

dy

dt
¼ ayðtÞ2 kye

2atyðtÞ ð19Þ

dz

dt
¼ rzðtÞ 1 2

zðtÞ

z1

� �
2 kze

2atzðtÞ ð20Þ

where the transport function m(y) is a smooth nondecreasing function with

limy!1mðyÞ $ mð0Þ . 0. The two cases treated earlier for constant z(t) were cases with

m(y) ¼ m (constant) and m(y) ¼ Ay þ B (linear).

The solution of (20) with initial condition z0 ¼ z1 is given by

zðtÞ ¼
z1ertþðkz=aÞe

2at

eðkz=aÞ þ r
Ð t

0
ersþðkz=aÞe2as

ds
: ð21Þ

With z(t) given by (21) and y(t) given by (13) with ky in place of k, the form of the biomarker

equation (18) becomes

x 0ðtÞ ¼ 2gxðtÞ þ mðy0eat2ðky=aÞð12e2atÞÞ y0eat2ðky=aÞð12e2atÞ þ
z1ertþðkz=aÞe

2at

eðkz=aÞ þ r
Ð t

0
ersþðkz=aÞe2as

ds

 !
;

which has the solution given by (22) in Remark 2 below.

In the case of prostate cancer, as mentioned above, the elevated levels that are

characteristic of disease are prompted by the breakdown of natural barriers separating the

contents of the prostatic epithelial lumen from the bloodstream [14,9,10], allowing

biomarkers produced by both diseased and normal cells to enter the bloodstream more

easily. The mechanism for the disruption of barriers and subsequent increase in serum

PSA is accounted for in the model by the transport term m(y). Future investigations of the

membrane degradation process may contribute to a better understanding of the transport

phenomenon. Analogous transport processes may play a role in other biomarker systems.

When values for B ; m(0) and C ; limy!1m(y) can be estimated, along with the level of

disease y ¼ D where m(y) is increasing most rapidly, one appealing form of the transport

function is mðyÞ ¼ ðBþ CÞ=2 þ ðC 2 BÞ=2 erf ðvðy2 DÞÞ where v determines the overall

rate at which transport across the barrier takes place and erf (·) is the standard error

function. Clinical studies may be helpful in identifying parameter values if this particular

form is adopted.

A comprehensive examination of the possible scenarios included in the model (18)–(20) is

provided by the following result:

THEOREM (QUALITATIVE BEHAVIOR OF DISEASE/BIOMARKER DYNAMICS). Let x(t), y(t) and

z(t) be the levels of biomarker, diseased tissue and normal tissue, respectively, satisfying

equations (18)– (20) where parameters identify the rate of removal of biomarker from the
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body, g, the growth rate of disease/tumor, a, the intensity of initial treatment on diseased

cells, ky, the intensity of treatment on normal cells, kz, the rate at which treatment

effectiveness decays, a, and the rate at which normal tissue ”relaxes” to its equilibrium

level, r, and where the transport function m(·) is a smooth non-decreasing function on

[0,1) with m(0) . 0 and limy2.1mðyÞ , 1. Initial values x(0) ¼ x0, y(0) ¼ y0 and

z(0) ¼ z0 are non-negative and x1 ¼ mð0Þz1=g and z1 are positive (non-disease)

equilibrium levels of the biomarker and normal tissue, respectively. Then the following

dynamics are possible.

Case A (no disease, no treatment). If y0 ¼ 0 and ky ¼ kz ¼ 0, then one of the following

occurs:

(A1) zðtÞ ; z1 and x(t) approaches x1 monotonically, or

(A2) z(t) approaches z1 monotonically and, after at most one critical point, x(t) approaches

x1 monotonically.

Case B (treatment, no disease). If y0 ¼ 0 with ky . 0 (and kz $ 0), then one of the following

occurs:

(B1) z(t) increases monotonically to z1 and, after at most one local minimum, x(t)

increases monotonically to x1, or

(B2) z(t) first decreases to a minimum value zmin , z1 and then increases monotonically to

z1 while x(t) may experience a single maximum (while z0ðtÞ , 0), possibly

followed by a single minimum (while z0ðtÞ . 0), after which x(t) approaches x1

monotonically.

Case C (disease, no treatment). If y0 . 0 and ky ¼ kz ¼ 0, then one of the following occurs:

(C1) zðtÞ ; z1, y(t) increases without bound and, possibly following a single local

minimum, x(t) increases without bound, or

(C2) z(t) approaches z1 monotonically, y(t) increases without bound and, x(t) may

experience at most one local minimum, possibly preceded by at most one local

maximum, before increasing without bound.

Case D (disease and treatment). If y0 . 0, ky . 0 and kz . 0, then one of the following

occurs:

(D1) z(t) increases monotonically to z1 (if kz # rð1 2 ðz0=z1ÞÞ)), y(t) increases without

bound (if ky # a), and, x(t), after at most one local minimum, increases without

bound (i.e. treatment fails, but biomarker may show an early false decline).

(D2) z(t) first decreases to a minimum value zmin , z1 and then increases monotonically to

z1 (if kz . rð1 2 ðz0=z1ÞÞ) and y(t) increases without bound (if ky # a), while x(t) has

at most one local maximum and at most one local minimum (in that order) before

then increasing without bound (i.e. a drop in normal cells may cause limited early

biomarker fluctuations that are misleading).

(D3) z(t) first decreases to a minimum value zmin , z1 and then increases monotonically to

z1 (if kz . rð1 2 ðz0=z1ÞÞ) and y(t) decreases to a single local minimum before

increasing without bound (if ky . a). The behavior of x(t) ends in a period of
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unbounded growth but may first exhibit a number of local maxima and/or minima

(i.e. in the case of temporary or prolonged disease control, there may be an early

sequence of inconsistent biomarker signals).

(See Appendix for a proof of the theorem.)

Remarks.

1. Expressions for normal and diseased tissue: explicit formulas for the mass of normal cells

z(t) and disease cells y(t) are given by

zðtÞ ¼
z0z1ertþðkz=aÞe

2at

z1eðkz=aÞ þ rz0

Ð t
0
ersþðkz=aÞe2as

ds

and

yðtÞ ¼ y0eat2ðky=aÞð12e2atÞ:

2. Expression for biomarker: the biomarker level x(t) is given by an integral expression that

involves the transport function m:

xðtÞ¼ egt x0

 

2

ðt
0

egu2ðky=aÞ 2y0z1m y0eat2ðky=aÞð12e2at Þ
� �

eauþðkz=aÞþðky=aÞe
2au

2z0z1m y0eau2ðky=aÞð12e2at Þ
� �

eruþðky=aÞðkz=aÞe
2au

2ry0z0m y0eau2ðky=aÞð12e2at Þ
� � Ð u

0
ersþðkz=aÞe

2as

ds
� �� �

z1eðkz=aÞe
2as

þrz0

Ð u
0
ersþðkz=aÞe2as

ds

!

ð22Þ

3. Long-term behavior of disease and biomarker: for cases of disease (C and D), while the

model does not ever produce an absolutely complete cure (in the sense that the level of

disease becomes zero), it may produce disease levels which are undetectably low over a

time period comparable to the human lifespan, resulting in a ”cure”. The time at which an

apparently successful treatment ultimately begins to fail is reflected in the long-term

behavior of the biomarker, suggesting in some cases a time when re-treatment should be

considered. The time at which a relapse in disease levels occurs is tlow ¼ ð1=aÞlnðky=aÞ,
only realized when ky . a.

6. Model implementation and implications for the use of biomarkers

In the case (D) of disease and treatment, it is important to recognize the various

possibilities that may be observed features of the disease/biomarker dynamics. As seen in

cases D1 and D2, a clear case of treatment failure may still allow the possibility of a

temporary decline in biomarker levels. Clinicians are likely already aware of the possibility

of such false signals, with the model confirming that these may result from actual

biomarker dynamics or from changes in the level of normal cells (as well as from spurious

test results).

In some cases, there will be a need for retesting often enough to avoid being fooled by the

appearance of success in the early biomarker behavior. The fact that biomarker levels may
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make two or more changes of direction before confirming the ultimate direction of disease

level suggests that required follow-up, including at least three biomarker readings over an

extended period of time (as is practiced in assessing the success of prostate cancer treatment),

is prudent. Single-equation models do not generally allow for such a rich collection of

behaviors.

Because of the complexity of the general solution (22) for the biomarker x(t) and the many

variables and factors contributing to the level of biomarker, we first provide an example of

the behavior of this model when zðtÞ ; z0 (normal cell volume is steady) and there is no

treatment (i.e. ky ¼ kz ¼ 0). In this case (22) simplifies to

xðtÞ ¼ e2gt x0 þ

ðt
0

egsðeasy0 þ z1Þmðy0easÞds

� �
ð23Þ

which can be applied with various forms of the transport function m. As expected in this case,

disease and biomarker levels increase exponentially.

Focusing specifically on the case of prostate cancer and PSA, the literature again

provides guidance for the assignment of parameter values. In the system model (18)–(20),

the value for g comes from the half-life of bound PSA of 2–3 days which yields a value for

g of 0.3/day [9]. z0 is the average initial prostate size and we choose values for the volume

of a normal prostate in the range of 30–45 cm3 [24]. y0 is the initial cancerous tumor size

and it has been observed that tumor sizes at different stages in cancer can range from 0.19

to 16.9 cm3 with a median average of 2.4 cm3 [10]. At time t ¼ 0 we are considering this

value to be less than 0.19 cm3 because we are looking first at the initial stage of cancer

where the tumor is quite small. The initial PSA level will be set equal to 4.3 and the cancer

growth rate used is a ¼ .01, following the discussion in section 3. The transport function

m(y), of which the least is known, describes the accelerated leakage of PSA due to

increased volumes of cancer cells, although actual measurements of this effect in clinical

situations could not be found. The expression for m(·) involving the error function,

discussed above, may be applicable in many situations, but for this example we will use

m(y) ; 0.04. With other parameters chosen as indicated, (23) depicts the expected

biomarker behavior in the absence of treatment, revealing a quick jump from 4 to about

5.4 ng/ml, a level which then is held for almost a year before beginning to reflect the

cancer’s exponential growth.

To illustrate the variety of biomarker behavior that can result from various choices of

parameter values in the model (18)–(20), we consider below two additional implementations

of the model. The first set of parameter values is given by a ¼ 2; a ¼ :5; ky ¼ 5; kz ¼
4; z1 ¼ 4; z0 ¼ 8; y0 ¼ 8; r ¼ 2; g ¼ 1; x1 ¼ 40; and x0 ¼ 36, where the transport function is

the increasing function mðwÞ ¼ 10 þ ð10=24pÞð4pw2 sinð4pwÞÞ: In this case, the nature of

the transport function creates a number of maxima and minima for the biomarker given by

(22). These undulations are superimposed on a larger-scale pattern which includes a single

maximum followed by a single minimum and then followed by the inevitable increase in

biomarker levels. While the transport function satisfies all of the conditions of the theorem, it

may be seen as an unusual choice because of the ripples in its rising graph. Such behavior,

could, however, be related to biorhythms of the host or disease organisms or to some kind of

environmental cyclicity.

In a final example, the transport function has a more typical “sinusoidal” pattern, rising

from an initial constant value and leveling off at a higher value. The set of parameter values

in this case is similar to the set considered previously, differing only in that r ¼ 3.5, and the
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transport function is

mðwÞ ¼

10 þ 5
3pðpw2sinðpwÞÞ

if w # 2

40
3

if w . 2
:

8<
:

The biomarker behavior in this situation is shown in figure 3 and reveals two reversals in

direction, with the second coming quite soon after the first. Clearly the timing of biomarker

measurements would be critical in such a case, with an ill-timed sequence of measurements

falsely signaling what to expect a short time later. Only regular measurements over a long

period of time would allow identification of the complete pattern of biomarker (hence,

disease) behavior.

7. Conclusions and future research

In its full generality, the model (18)–(20) provides a realistic account of the growth and

treatment over time of a disease condition indicated by a biomarker. The implications of the

model accommodate the current understanding of biological processes that produce and

remove biomarker and regulate its relationship to disease and treatment.

Continued research with the models proposed above, particularly the system model (18)–

(20), may lead to more accurate simulation of disease/biomarker behavior and

correspondingly allow for a better understanding of treatment effectiveness in the case of

diseases for which biomarkers exist. Variation of the parameter values in any of the above

models may significantly modify the resulting biomarker dynamics. In particular, the

possibility of changes in direction for the evolving level of biomarker supports the current

practice of frequent testing for PSA and suggests careful monitoring in other biomarker

systems. These models might also be adapted for other modes of cancer treatment, e.g.

chemotherapy or the use of viruses. In all cases, clinical validation of model dynamics will be

important in confirming the usefulness of the models.

Patient data that was considered for this paper was made available from public sources,

particularly those referenced in Ref. [19]. Some parameter values used in the models

Figure 3. Rapid changes in the direction of biomarker levels demonstrate the possibility of more complex patterns
of behavior allowed by the model (18)–(20). See text for additional details.
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described above were selected to demonstrate various possible patterns of behavior and do

not necessarily represent parameter sets from a single patient. Further investigation of data

on trends of growth and treatment kinetics collected directly from prostate cancer patients

would help to achieve a more accurate implementation of these models. Because the

parameter values play such a determinate role in the results obtained from each model,

reliable estimates of those values will be necessary to establish precise modeling of prostate

cancer growth and treatment. In particular, further studies to carefully describe the nature of

membrane transport may provide valuable insights regarding the disease process in the case

of prostate cancer. Future investigations of other biomarker systems will necessarily rely on

the accurate estimation of their corresponding parameter values.
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Appendix A: Proof of the theorem on qualitative behavior of disease/biomarker

dynamics

Case A. It is evident that yðtÞ ; 0 (no disease) and, similar to (21), zðtÞ ¼ z0z1=z0þ

ðz1 2 z0Þe
2rt, demonstrating the monotonic convergence of any non-constant z(t). For

zðtÞ ; z1, (18) has a simple solution that reveals the monotone behavior of x(t). For non-

constant z(t), if ever x0ðtÞ ¼ 0 it must be true that x 00ðtÞ ¼ mð0Þz 0ðtÞ. Since z is monotonic, x(t)

then can have at most one local minimum or one local maximum, depending on whether z is

increasing or decreasing, respectively. For example, if x1 ; ðmð0Þz1=gÞ , x0 , ðmð0Þz0=gÞ
so that z0ðtÞ , 0 and x0ð0Þ . 0, it follows that x(t) has one local maximum and then decreases

to x1.

Case B. Again yðtÞ ; 0. In this case, z00ðtÞ ¼ rz0ð12 ðz=z1ÞÞ2 ðrzz0=z1Þ2 kze
2atz0 þakze

2atz,

so any critical point of z must be a minimum. If z0ð0Þ $ 0, then z(t) increases to z1 but if

z0ð0Þ ¼ z0ðrð1 2 ðz0=z1ÞÞ2 kzÞ , 0, then z(t) will experience a local minimum before

increasing to z1. The only case not immediately clear is for z(t) . z1 in which case z0ðtÞ ¼

zðtÞðrð1 2 ðzðtÞ=z1ÞÞ2 kz*e2atÞ , 2z1*kz*e2at as long as z(t) . z1. By integration on the

interval [0,t ], it follows that zðtÞ , z0 2 z1*kz=2a for sufficiently large t. By repeating the

argument a number of times, it is seen that z(t) would eventually fall below z1 and find a

minimum. Similar to case A, the number and character of critical points of x(t) are restricted

to the identified possibilities.

Case C. It is clear that z(t) is constant or monotone, approaching z1 (as in Case A) and that y(t)

grows exponentially. In this case, x00ðtÞ ¼ 2gx0ðtÞ þ m0ðyðtÞÞy0ðtÞðyðtÞ þ zðtÞÞ þ mðyðtÞÞðy0ðtÞþ

z0ðtÞÞ. If zðtÞ ; z1, any critical point of x(t) must be a minimum, so there can be at most one

such point. (There is such a local minimum if x(0) is sufficiently large.) Since z0ðtÞ $ 0 if

z0 , z1, the only possible critical point for x(t) in that case is also a minimum. In the event

that z0 . z1, computation using the explicit formula for z(t) (see Case A) shows that z00ðtÞ . 0

so that x00ðtÞ can change signs at most once between consecutive critical points. That is, x(t)

could experience at most one local minimum (while z0ðtÞ . 0), preceded possibly by one

local maximum (while z0ðtÞ , 0). That x(t) grows without bound follows from integration of

(18) using the facts that m(y(t)) is bounded below by a positive constant and y(t) grows

exponentially (rate a).

Case D. An expression can be found for z(t) (see Remark 1) and, as in case B, the two

possible behaviors for z(t) can be confirmed. The expression for y(t) in Remark 1 also holds

in this case, so that y(t) obtains a local minimum if and only if ky . a and is otherwise strictly

increasing. In case D1, it follows from (18) to (20) that y(t) and z(t) are increasing, that any
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critical point of x(t) is a minimum and that x(t) eventually grows without bound. For x0

sufficiently large, x0(0) , 0 and x(t) actually takes on a local minimum before increasing.

The key observations needed to establish scenario D2 are that z00(t) is strictly positive when

z0ðtÞ # 0 (which follows from (20) in this case), that once z0(t) becomes positive, it remains

positive (as in case B2) and that y(t) is positive, increasing and concave up. Depending on the

value of x0, x(t) may experience one local maximum (while z0ðtÞ , 0) and/or one local

minimum before growing without bound.

Case D3 allows a rich class of possible behaviors. For the parameter relationships

indicated, it is clear that z(t) and y(t) each have a single minimum. After that, z(t) approaches

z1 and y(t) grows exponentially. The behavior of the biomarker, x(t), however, may fit many

different patterns. Eventually, x(t) will experience unbounded growth in reaction to the

growth in y(t). Earlier, though, depending on the nature of the transport function m and the

initial values of x0, y0 and z0, x(t) may undergo a number of sequential maxima and minima.

Some of these behaviors are shown in the examples at the end of section 5.
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