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We use a model to study the dynamics of malaria in the human and mosquito population to
explain the stability patterns of malaria. The model results show that the disease-free
equilibrium is globally asymptotically stable and occurs whenever the basic reproduction
number, R0 is less than unity. We also note that when R0 . 1, the disease-free equilibrium is
unstable and the endemic equilibrium is stable. Numerical simulations show that recoveries
and temporary immunity keep the populations at oscillation patterns and eventually converge
to a steady state.
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1. Introduction

The development of malaria parasites in a human host begins in the liver cells where the

malaria parasites undergo asexual multiplication to produce merozoites that are eventually

released into the blood stream to invade red blood cells. The infected red blood cells burst

after 2–3 days to release merozoites and gametocytes into the blood stream. This is

associated with the clinical symptoms of the disease. Mosquitoes become infected when they

feed and ingest human blood that contains mature gametocytes. The gametocytes develop

into male and female gametes that fertilize to become zygotes in the mid-gut wall of the

mosquito. The zygote elongates to become ookinete and penetrates the mid-gut epithelium

that later develop and ultimately produce sporozoites which become infective when they

migrate to the salivary glands. The prevalence of the Plasmodium infections in humans

mainly depends on the distribution of Anopheles mosquitoes.

Protective immunity against malaria can be thought of in different categories. There are

two types of clinical immunity, one which reduces the risk of death from malaria and another

which reduces the intensity of clinical symptoms. A third type of protective antimalarial

immunity is antiparasitic immunity, which directly reduces the number of parasites in an

infected individual. These are epidemiological definitions of immunity. The actual cellular

and molecular mechanisms of immunity may overlap to a considerable degree between these

categories. The number of malarial inoculations experienced, and the intervals between

them, are all-important to the malaria immune status of an individual. In the case of acute

attacks of Plasmodium falciparum malaria, it is possible that a degree of immunity to some
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aspects of severe, life-threatening disease may be achieved after only one or two infections

[10]. It is noted that a single untreated attack of P. falciparum malaria in a non immune

individual carries a risk of death that may be anywhere from a few percent to at least

20–30% according to circumstances [1].

Incidence of malaria disease tends to decline uniformly with age such that children living

in areas of high endemicity experience less frequent episodes of malaria after the age of

5 years [20].

People living in regions where malaria is endemic develop an acquired immunity to

malaria which enables them to remain asymptomatic while still carrying parasites.

The acquired partial immunity to the disease reduces the frequency of clinical attacks,

although it does not necessarily reduce parasite prevalence. It is not sterile and requires

continual boosting. This process is slow and may take years or decades to develop [13].

However, low level exposure to infection is important and acts as vaccination and develops

immunity against the disease [9]. Thus, humans are susceptible to re-infections because the

immune protection may wane over time (temporary immunity) or may not be fully protective

(partial immunity). Dietz et al. [6] note that in some cases a partial cure may be worse than

none since the reduction in immunological function due to short-term suppression of the

disease may later result in higher levels of morbidity.

Malaria endemicity may be categorized into three types, according to MacDonald [19].

One is stable endemic malaria. Stable malaria occurs when a population is continuously

exposed to a fairly constant rate of malarial inoculation (sub Saharan Africa). The next

category is unstable endemic malaria, under which a population is subjected to more or less

permanent malaria transmission (Asia, Latin America, Carribean, Mediterranean) but under

circumstances in which there are large fluctuations in the rates at which malarial inoculations

are delivered to individuals within the population. In terms of disease and immunity, these

fluctuations become especially significant when they cause individuals to experience

intervals of a year to several years between inoculations of malaria. The third type is

epidemic malaria. This is, in effect, an extreme form of unstable malaria. It occurs when a

population, or even a small group of individuals, is subjected to an increase in malaria

transmission rates above that previously or normally experienced (highland Africa, Latin

America).

There are at least 300 million acute cases of malaria each year globally, resulting in more

than a million deaths. Around 90% of these deaths occur in Africa, mostly in young children.

Malaria is Africa’s leading cause of under-five mortality (20%) and constitutes 10% of the

continent’s overall disease burden [22]. The climatic conditions in Africa are highly

conducive to malaria transmission, being warm and humid with relatively few fluctuations.

This supports longevity of the vector mosquitoes and rapid development of the parasites

within them. All of these features combine to a recipe for stable and, indeed, generally

intense malaria transmission.

Many malaria models have been used [2,6,15,17,21] to study the dynamics of malaria at

population level. Some of these have been used to consider the effect of different strategies

such as vector control and use of vaccines on the transmission dynamics of malaria.

The effect of acquired immunity was proposed by Dietz et al. [6] in the Garki model. This is

was extended by Bailey [4] and Aron [3] .

In this paper, we extend these models to investigate the patterns of malaria transmission in

the presence of vital (birth and death) dynamics both in the human and mosquito populations,

which are usually ignored with a general reason that the life expectancy of mosquito vector is

normally too short to affect the pattern. The assumptions of equal birth and death rates in all
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human epidemiological classes as in Koella and Antia [15] seems to be unrealistic in most

malaria endemic regions. We also incorporate the role of acquired immunity and the rate of

recovery of the infected humans because these are vital in the sub Saharan setting where we

have continuous exposure to re-infection. Unlike in Koella and Antia [15] and Koella and

Boate [16], where they ignore disease induced mortality, our model takes this into account

since malaria is a major killer disease in Africa. The model is built on the system of equations

and assumptions similar to those in Tumwiine et al. [24], but with interest in finding out the

global behavioural patterns of both human and vector populations at endemic levels, under

the influence of acquired immunity and effective recovery of the infected human hosts.

2. Model description and formulation

As in Tumwiine et al. [24], the human population is divided into three epidemiological

classes that include the susceptible class SH, infective class IH and immune class RH.

The mosquito population is divided into two epidemiological classes, the susceptible class

SV, and infective class IV. The vector population does not include immune class [4,12] as

mosquitoes never recover from infection; that is, their infective period ends with their death

due to their relatively short life-cycle. There is no vertical transmission and all the newborns

are susceptible with a per capita birth rate lh. The human immune individuals lose their

immunity at a constant rate g, and the infected human individuals recover at a constant rate n

to join the susceptible. The infected individuals acquire immunity at constant rate r and may

die due to the disease at a rate d. The natural per capita death rate is assumed to be the same

constant mh for all humans. The mosquito population has lv and mv as the natural per capita

birth and mortality rates respectively. The infected female mosquitoes bite humans at a rate

a. The fraction of the bites that successfully infect humans is b and c is the fraction of bites

that infect mosquitoes when they bite infected humans. The incidence term is of the standard

form with the terms abSHIV/NH denoting the rate at which the human hosts SH get infected by

infected mosquitoes IV and acSVIH/NH for the rate at which the susceptible mosquitoes SV are

infected by the infected human hosts IH. The rate of infection of human host SH by infected

vector IV is dependent on the total number of humans NH available per infected vector [21].

The above description leads to the compartmental diagram in figure 1. From the

 

Figure 1. The host–vector dynamics of malaria transmission with temporary immunity.
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compartmental diagram in figure 1, we have the following set of equations for the dynamics

of the model:

dSH

dt
¼ lhNH 2

abSHIV

NH

þ nIH þ gRH 2 mhSH ð1Þ

dIH

dt
¼

abSHIV

NH

2 nIH 2 rIH 2 dIH 2 mhIH ð2Þ

dRH

dt
¼ rIH 2 gRH 2 mhRH ð3Þ

dSV

dt
¼ lvNV 2

acSVIH

NH

2 mvSV ð4Þ

dIV

dt
¼

acSVIH

NH

2 mvIV ð5Þ

with the total population sizes SH þ IH þ RH ¼ NH and SV þ IV ¼ NV.

3. Model analysis

In this section we carry out qualitative analysis of the model to investigate stability of the

steady states. But first, we transform the system of populations into a system of proportions.

The equations are obtained by differentiating each proportion with respect to time t.

The proportions for the system are sh ¼ SH/NH, ih ¼ IH/NH, rh ¼ RH/NH, sv ¼ SV/NV and

iv ¼ IV/NV in the classes SH, IH, RH, SV and IV of the populations respectively and

m ¼ NV/NH is the female vector–host ratio, defined as the number of female mosquitoes per

human host [2,7,23]. This gives the following system of equations:

dsh

dt
¼ lhð1 2 shÞ2 abmshiv þ nih þ grh þ dshih ð6Þ

dih

dt
¼ abmshiv 2 ðnþ r þ lh þ dÞih þ di2h ð7Þ

drh

dt
¼ rih 2 ðgþ lhÞrh þ dihrh ð8Þ

dsv

dt
¼ lvð1 2 svÞ2 acihsv ð9Þ
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div

dt
¼ acsvih 2 lviv ð10Þ

with the restrictions Sh þ ih þ rh ¼ 1 and Sv þ iv ¼ 1.

The equilibria are obtained by equating the right-hand side of system (6)–(10) to zero.

Thus,

lhð1 2 shÞ2 abmshiv þ nih þ grh þ dshih ¼ 0 ð11Þ

abmshiv 2 ðnþ r þ lh þ dÞih þ di2h ¼ 0 ð12Þ

rih 2 ðgþ lhÞrh þ dihrh ¼ 0 ð13Þ

lvð1 2 svÞ2 acihsv ¼ 0 ð14Þ

acsvih 2 lviv ¼ 0 ð15Þ

We express the solutions in terms of ih for easy analysis of the steady states to obtain

sh ¼ ½lhþgþðn2gÞih�½lvþacih�
ðlhþg2dihÞðlvþacihÞþa 2bmcih

rh ¼ rih
lhþg2dih

sv ¼ lv
lvþacih

iv ¼ acih
lvþacih

9>>>>>>>=
>>>>>>>;

ð16Þ

3.1 Disease-free equilibrium E0

At the disease-free equilibrium, we have ih ¼ iv ¼ 0 and the equations give the steady state,

E0 ¼ (1, 0, 0, 1, 0). The local stability of this point is established from the Jacobian of the

system (6)–(10) evaluated at E0. The Jacobian matrix of the system (6)–(10) is given by

JE¼

2ðlhþabmiv2dihÞ nþdsh g 0 2abmsh

abmiv 2ðnþrþlhþdÞþ2dih 0 0 abmsh

0 rþdrh dih2ðlhþgÞ 0 0

0 2acsv 0 2ðlvþacihÞ 0

0 acsv 0 acih 2lv

2
666666664

3
777777775
ð17Þ

On malaria dynamics 195



The Jacobian matrix (17) evaluated at E0 ¼ (1, 0, 0, 1, 0) gives

JE0
¼

2lh nþ d g 0 2abm

0 2ðnþ r þ lh þ dÞ 0 0 abm

0 r 2ðlh þ gÞ 0 0

0 2ac 0 2lv 0

0 ac 0 0 2lv

2
666666664

3
777777775

ð18Þ

We observe that matrix (18) has negative eigenvalue 2lh, 2 (lh þ g) and 2lv, and the

remaining two can be obtained from the 2 £ 2 block matrix given by

A ¼
2ðnþ r þ lh þ dÞ abm

ac 2lv

" #
ð19Þ

whose trace and determinant are given by

TrA ¼ 2ðlv þ lh þ nþ r þ dÞ , 0 ð20Þ

DetA ¼ lvðnþ r þ lh þ dÞð1 2 R0Þ . 0 if R0 , 1; ð21Þ

where

R0 ¼
a2bmc

lvðnþ r þ lh þ dÞ
;

Thus, E0 is locally asymptotically stable if and only if R0 , 1, and we have thus

established the following Lemma:

LEMMA 1. The disease-free equilibrium E0 is locally stable if R0 , 1 and unstable if R0 . 1.

The quantity R0 is the basic reproduction number of the disease. It represents the average

number of new infections produced by one infected individual introduced in an otherwise

susceptible population. It is a useful quantity in the study of a disease as it sets the threshold

for its establishment. If R0 , 1, then the disease-free equilibrium is locally stable.

3.2 Global stability of disease-free equilibrium E0

As in Tumwiine et al. [24], we use the following theorem to prove the global stability of the

disease-free equilibrium point:

THEOREM 1. The disease-free equilibrium E0 ¼ (1, 0, 0, 1, 0) of (6)–(10) is globally

asymptotically stable if R0 # 1 and unstable if R0 . 1.
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Proof. Consider the following Lyapunov function, L ¼ acih þ (n þ r þ lh þ d)iv. Then

L0 ¼ a2bmcshiv 2 acih½nþ r þ lh þ d2 dih� þ ðnþ r þ lh þ dÞ½acihsv 2 lviv�

¼ a2bmcshiv 2 lvivðnþ r þ lh þ dÞ þ acih½dih þ ðnþ r þ lh þ dÞðsv 2 1Þ�

¼ ðnþ r þ lh þ dÞlviv
a2bmcsh

lvðnþ r þ lh þ dÞ
2 1

� �
þ acih½dih 2 ðnþ r þ lh þ dÞiv�

¼ lvivðnþ r þ lh þ dÞ½R0sh 2 1�2 acih½ðnþ r þ lh þ dÞiv 2 dih�

# lvivðnþ r þ lh þ dÞ½R0sh 2 1� # 0 if R0 # 1

L0 ¼ 0 holds if and only if R0 ¼ 1 and ih ¼ iv ¼ 0. Thus, by Lyapunov–Lasalle’s Theorem

[11], every solution that starts in the feasible region where the solutions have biological

meaning approaches E0 as t ! þ 1. This shows that the disease eventually disappears from

the community. Hence, the disease-free equilibrium point is globally asymptotically stable

and hence Theorem 1 is proved.

The reproduction number depends on the product of the transmission coefficients, abm and

ac, the average residence time, 1/(n þ r þ lh þ d) in the infective class and the average life

span, 1/lv of the mosquito. It is also dependent on the rate of acquisition of immunity, r rate

of recovery from infection, n and disease induced mortality rate, d.

We can quantify that higher values of coefficients of transmission between humans and

mosquito vectors ma, b and c can allow the establishment of the disease. There is need to pay

attention to processes that can limit the spread of the disease such as protection of the

vulnerable groups from human–mosquito interaction by use of treated mosquito nets,

providing prompt and effective treatment to those who are sick.

Based on the expression for, R0 we observe that lowering the average residence time in the

infectious class is essential in the fight against the outbreaks. This can be done for example

through epidemiological parameters such as seeking prompt and appropriate treatment d,

prompt and appropriate treatment, n, and increased continued exposure that guarantee

R0 , 1. A

3.3 Local stability of endemic equilibrium E1

Let rh ¼ 1 2 Sh 2 ih and Sv ¼ 1 2 iv, then we can reduce system (6)–(10) to a 3-dimensional

system whose Jacobian becomes

JE1
¼

2ðlh þ gþ abmiv 2 dihÞ nþ dsh 2 g 2abmsh

abmiv 2ðnþ r þ lh þ dÞ þ 2dih abmsh

0 acð1 2 ivÞ 2lv 2 acih

2
664

3
775 ð22Þ

The expressions for solutions in equations (16) should satisfy conditions lh þ

g 2 dih . 0 for the endemic equilibrium E1 ¼ (Sh, ih, iv) . 0 to exist. The characteristic

equation of JE1
is

j3 þ A1j
2 þ A2jþ A3 ¼ 0
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where, j is the eigenvalue and A1, A2 and A3 are constants given by the expressions

A1 ¼ lv þ acih þ lh þ gþ abmiv 2 dih þ nþ r þ lh þ d2 2dih

# lv þ acih þ lh þ gþ abmiv 2 dih þ nþ r þ lh þ d2 dih

A2 ¼ ðlv þ acihÞðnþ r þ lh þ d2 2dihÞ2 a2bmcð1 2 ivÞsh

þ ðlh þ gþ abmiv 2 dihÞðlv þ acih þ nþ r þ lh þ d2 2dihÞ þ ðg2 n2 dshÞabmiv

# ðlv þ acihÞðnþ r þ lh þ d2 dihÞ2 lvðnþ r þ lh þ d2 dihÞ

þ ðlh þ gþ abmiv 2 dihÞðlv þ acih þ nþ r þ lh þ d2 dihÞ

þ
abmiv½ðlh þ gÞð1 2 shÞ2 ðnþ r þ lh þ d2 dihÞih�

ih

¼ acihðnþ r þ lh þ d2 dihÞ þ ðlv þ acihÞðlh þ abmiv þ g2 dihÞ

þ ðlh þ g2 dihÞðnþ r þ lh þ d2 dihÞ þ
abmiv½ðlh þ gÞð1 2 shÞ�

ih

A3 ¼ ðlh þ gþ abmiv 2 dihÞ½ðlv þ acihÞðnþ r þ lh þ d2 2dihÞ2 a2bmcð1 2 ivÞsh�

þ a3b2m2cshð1 2 ivÞ þ ðg2 n2 dshÞðlv þ acihÞabmiv

# ðlh þ gþ abmiv 2 dihÞ½ðlv þ acihÞðnþ r þ lh þ d2 dihÞ

2 lvðnþ r þ lh þ d2 dihÞ�

þ abmlvðnþ r þ lh þ d2 dihÞ þ ðg2 n2 dshÞðlv þ acihÞabmiv

¼ acihðlh þ gþ abmiv 2 dihÞðnþ r þ lh þ d2 dihÞ þ abmlvðnþ r þ lh þ d2 dihÞ

þ
ðlv þ acihÞabmiv½ðlh þ gÞð1 2 shÞ2 ðnþ r þ lh þ d2 dihÞih�

ih

¼ acihðlh þ g2 dihÞðnþ r þ lh þ d2 dihÞ þ abmlvðnþ r þ lh þ d2 dihÞð1 2 ivÞ

þ
ðlv þ acihÞabmivðlh þ gÞð1 2 shÞ

ih

then

A1A2 2 A3 ¼ ðlv þ acihÞ½acihðnþ r þ lh þ d2 dihÞ þ ðlv þ acihÞðlh þ gþ abmiv 2 dihÞ�

þ ðlh þ gþ abmiv 2 dihÞðnþ r þ lh þ d2 dihÞ

�
acihðnþ r þ lh þ d2 dihÞ

þ ðlv þ acihÞðlh þ abmiv þ g2 dihÞ þ ðlh þ g2 dihÞðnþ r þ lh þ d2 dihÞ

þ
abmivðlh þ gÞð1 2 shÞ

ih

�
þ lvðlh þ g2 dihÞðnþ r þ lh þ d2 dihÞ

þ abmlvðnþ r þ lh þ d2 dihÞðiv 2 1Þ

By the fact that lh þ g 2 dih . 0, which follows from the equilibrium solutions given in

equation (16), we deduce that A1 . 0, A2 . 0, A3 . 0 and A1A2 2 A3 . 0. Hence by the

Routh–Hurwitz criteria, the endemic equilibrium is locally stable.

For global stability of the endemic equilibrium, we use the numerical analysis in the

following section to predict the long term pattern of both the host and vector populations.
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3.4 Numerical analysis of the model

In this section, we present the numerical analysis of the model. The parameter values in

table 1 are used in the simulations to illustrate the behaviour of the model. In figures 2 and 3,

we observe that in the early stages of the epidemic, there is a high prevalence of malaria

because of a large proportion of infected mosquito vectors that results in a significant

decrease in the number of susceptible human hosts. As the proportions of infected humans

and infected mosquitoes decrease and remain at low level values, we observe a dramatic

increase in the immune class. Since the acquired immunity to malaria develops gradually due

to continuous exposure to infections and can be lost, the proportion of the immune

individuals declines as they join the susceptible class. In the absence of infected human hosts

and mosquito vectors, the proportion of the immune class decreases as a result of immunity

loss and this leads to an increase in the human susceptibles. We eventually have a higher

proportion of immune humans (figure 2c) compared to the proportion of susceptible humans

(figure 2a). There are damped oscillations of the proportions until an endemic equilibrium

level is eventually reached and this converges to a steady state that is asymptotically stable.

These numerical results support the results earlier obtained analytically that the endemic

equilibrium is stable.

4. Discussion

We proposed a model with standard incidence for the dynamics of malaria within human

hosts and mosquito vectors in which the reservoir of the susceptible human hosts is refilled

by individuals who lose their immunity to the disease and newborns. The model was then

reformulated in terms of the proportions of the classes of the respective populations. Model

analysis and simulations were carried out. Two equilibria points were obtained and their

stability analysed.

It was established that for the basic reproduction number, R0 # 1, the disease-free

equilibrium is globally stable so that the disease always dies out, and if R0 . 1, the disease-

free equilibrium point is unstable while the endemic equilibrium emerges as a unique

equilibrium point, re-invasion is always possible and the disease never dies out.

Thus, a threshold population size is necessary for the perpetuation of the disease. These

may be based on the parameters of the threshold quantity, R0. We notice that in order to

reduce the basic reproduction number below 1, intervention strategies need to be focused on

treatment and reduction on the contact between mosquito vector and human host. Thus, there

Table 1. The model parameter estimates.

Parameter Value Reference

a, the average daily biting rate on man by a single mosquito 0.29/day [14,18]
b, the proportion of bites on man that produce an infection 0.75 [18]
c, the probability that a mosquito becomes infectious 0.75 [18]
g, the per capita rate of loss of immunity in human hosts 0.000017/day [14]
r, the rate at which human hosts acquire immunity 0.00019/day [5]
d, the per capita death rate due to the disease 0.333 [25]
n, the rate of recovery of human hosts from the disease 0.0022/day [3,8]
lh, the per capita natural birth rate of humans 0.0015875/day [8]
lv, the per capita natural birth rate of the mosquitoes 0.071/day [8]
mh, the per capita natural death rate of the humans 0.00004/day [5]
mv, the per capita natural death rate of the mosquitoes 0.05/day [19]
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Figure 2. Endemic patterns of the susceptible, infected and immune human populations.
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Figure 3. Endemic patterns of the susceptible and infected mosquito populations.
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is need for effective drugs, treated bed nets and insecticides that would reduce the mosquito

population. Since malaria induced immunity is not everlasting, it remains a major obstacle to

eradicate the disease even if individuals are protected.

Numerical analysis revealed that the endemic equilibrium converges to a steady state.

From figures 2(b) and 3(b), we observe that there is a strong relationship between the

proportion of infected mosquitoes and infected humans in the same locality in a way that a

rise in the proportion of infected mosquitoes results in an increase in the proportion of

infected humans. Therefore, control efforts aimed at lowering the infectivity of infected

individuals to the mosquito vector will contribute greatly to the lowering of the malaria

transmission and this will eventually lower the prevalence of malaria and the incidence of the

disease in that locality. This can be achieved by prompt provision of effective antimalarial

drugs to reduce transmission and morbidity. Thus, from the model, it is noted that recurrent

and temporary immunity leads to oscillatory pattern in all the populations of the model.
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