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Mathematical models of cerebral hemodynamics, applicable to humans and rats have been
developed and analysed with the purpose of reaching a deeper insight to which degree
experimental results on rats can be extrapolated to humans and to clinical management of
patients. These models include regulation mechanisms involving the small cerebral arteries
and arterioles, flow autoregulation, as well as CO2 and NO reactivity. Bifurcation analysis
was conducted on both models.

The human model includes Hopf-bifurcations, which allow for the existence of periodic
solutions with a time scale comparable to Lundberg’s plateau waves in intracranial pressure
(Pic). By contrast, the rat model does not manifest Hopf-bifurcations and thus does not predict
the existence of periodic solutions with critical high Pic.
Therefore the model questions the relevance of rodent injury models to predict human

physiology following TBI.
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1. Introduction

Elevation of intracranial pressure is a phenomenon that accompanies many diseases. While a

slow, i.e. chronic, elevation of intracranial pressure is often tolerated for a long time without

significant clinical symptoms, acute elevation of intracranial pressure cannot be

compensated. For instance traumatic brain injury (TBI) is typically accompanied by

intracranial hypertension. This may be due to intracranial haemorrhage, which often is

amenable to surgical treatment. More often there is diffuse tissue damage resulting in brain

edema. In contrast to localized haemorrhage diffuse swelling of the brain cannot be treated

causally. Increased intra-cerebral pressure due to brain swelling can only be ameliorated by

indirect measures. Increasing intravascular colloid osmotic pressure by infusion of high

molecular weight substances, deep sedation and control of intracranial blood flow

by modulation of CO2 tension are the tools of the physician to reduce intracranial

pressure. However, persistent elevation of intracranial pressure and recurrent pressure peaks

are the major causes for recurrent brain damage resulting in permanent disability or
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even brain death. Clinical research, e.g. testing or comparing different types of interventions,

in these patients is difficult or impossible due to ethical reasons. Thus experimental research

is focused on animal models of TBI. Usually rat models with either fluid percussion

mechanism or a cortical impact mechanism are used. These models have improved our

understanding of the cellular mechanisms of TBI [1] and are currently used to explore the

therapeutic potential of stem cell transplantation [2] after TBI. With respect to the effects

of clinical interventions to improve cerebral perfusion the question to what extent

observations from the animal can be transferred to human injury remains unanswered.

Plateau waves consist of a sudden rapid elevation of intracranial pressure to 50–100 mmHg

for 5–20 min, followed by a plateau. After a sustained period of elevation, termination of the

wave is characterized by a rapid decrease of ICP.

These sudden increases of ICP are thought to be a source of secondary brain damage. Thus

a deeper understanding of the mechanisms and dynamics resulting in the formation of

plateau waves is mandatory.

We developed and analysed a human model of cerebral hemodynamics and compared

these analysis results with results of the analysis of our earlier derived rat model of cerebral

hemodynamics [3].

The purpose of this comparison is to evaluate whether experimental results of rats can be

extrapolated to humans and finally to the clinical management of patients.

With these models TBI is simulated by (1) changing intracranial pressure (Pic) linearly

from 6 to 33mmHg in the first 5min and decreasing it linearly to 28mmHg for 23 h 55min,

(2) decreasing arterial CO2 pressure (40–33mmHg) and increasing heart rate (80–100 bpm)

linearly over 24 h (Waschke et al. [4]).

The model equations in both systems are almost the same. The only equational

difference is given by the description of the interaction of the NO and the CO2 reactivity.

Both systems differ in parameters. Both models represent anatomically correct models for

the particular species.

2. Qualitative model description

A work of Ursino et al. [5] is used as the basic model for our new investigations.

The derivation of the corresponding model equations is described in detail in Ref. [3] and all

model equations are given in Appendix A.

The blood flow starting from the left ventricle of the heart through the brain and back to the

right ventricle of the heart is modeled by a hydraulic system of series connected vessels.

The parallel blood vessels which exist after each ramification are comprised of one entire vessel.

Figure 1 shows the biomechanical analog of the mathematical model. Starting from the left

ventricle a certain amount of blood, the cardiac output Q is ejected into the aorta. The first

extracranial segment of the model is given by the aorta, which is represented by a hydraulic

resistance Ra and a hydraulic compliance Ca. The aorta branches out into the large and

middle cerebral arteries, which represent the first intracranial segment of the model. It is

represented by the hydraulic resistance Rla and the hydraulic compliance Cla.

The pial arteries and arterioles compose the second intracranial segment of the

model, which is described by the hydraulic resistance Rpa and the hydraulic compliance Cpa.

Rpa and Cpa are regulated actively by the cerebrovascular regulation mechanisms

(autoregulation, CO2 and NO reactivity). The resistance Rpa is the sum of the resistances

of the pial arteries and arterioles and the capillaries. To model the pial intracranial segment
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Rpa was bisected and connected before and after the pial arterial compliance to get the blood

flow into these arteries as well as the blood flow out of these vessels into the capillaries

dependent on the regulation mechanisms.

Because the capillaries are very thin and hardly extensible vessels they were not modeled

with a compliance.

The third intracranial segment consists of the venules and the small and large cerebral

veins and is represented by the hydraulic resistance Rpv and the hydraulic compliance Cvi.

The last intracranial segment represents the terminal intracranial veins (e.g. lateral lakes,

bridge veins). During intracranial hypertension these vessels collide or narrow at their

entrance into the dural sinuses. Therefore the resistance Rvs, which describes these cerebral

veins, is modeled by a starling resistor (cf. [6]).

The compliance of the intracranial space is given by Cic.

The last segment of the model represents the vena cava, which transports the blood back

into the heart again. It is described by the hydraulic resistance Rve and the hydraulic

compliance Cve.

A formation of cerebral edema is modeled by wateroutflow qf at the capillaries into the

craniospinal space and reabsorption qo at the dural sinus. The strength of cerebral edema is

regulated by the inflow resistance Rf and the outflow resistance Ro.

The differential equations which describe the pressure changes in each segment of the

model are derived from the biomechanical analog.

Cerebrovascular regulation mechanisms work by modifying the resistance Rpa and the

compliance Cpa (and hence the blood volume and the blood flow) in the pial arterial–

arteriolar vasculature.

Figure 1. Biomechanical analog of the mathematical model, in which resistances are represented with restrictions
and compliances with bulges. Pa, systemic arterial pressure; Ra and Ca, systemic arterial resistance and compliance;
Q, cardiac output from the left heart, only a fraction of it goes into head; Pla, Rla and Cla, pressure, resistance and
compliance of large intracranial arteries, respectively; Ppa, Rpa and Cpa, pressure, resistance and compliance of pial
arterioles, respectively; Pc, capillary pressure; q, tissue cerebral blood flow; Rpv, resistance of proximal cerebral
veins; Cvi, intracranial venous compliance; Pv, cerebral venous pressure; Pvs and Rvs, sinus venous pressure and
resistance of the terminal intracranial veins, respectively; qf and qo, cerebrospinal fluid flow into and out of the
craniospinal space, respectively; Rf and Ro, inflow and outflow resistance; Pic and Cic, intracranial pressure and
compliance, respectively; Pcv, central venous pressure, Rve and Cve, resistance and compliance of the extracranial
veins.
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There are three of these mechanisms considered inside the model, the autoregulation, the

CO2 and the NO reactivity.

The block diagram in figure 2 describes the action of cerebrovascular regulation

mechanisms according to the present model. They are modeled by means of a first order low

pass filter with time constant t and gain G.

These three mechanisms interact nonlinearly through a sigmoidal static relationship, and

therefore producing changes in pial arterial compliance and resistance.

The last mechanism which is included into the model desribes the release of

norepinephrine into blood during sympathetic nerve stimulation. Cardiac function is

modulated in many aspects by norepinephrine. Among the primary effects of this substance

is an increase in heart rate and thus an increase in cardiac output Q. A detailed description of

this mechanism can be found in Ref. [3].

3. Rat model

The estimation of systemic parameters of the rat model under basal conditions is described

now. The values of the compliances in the craniospinal space, like Cla, Cpa and Cvi, and the

intracranial compliance Cic were fitted by using pressure curves of these compartments.

The values were fitted in the way that the model amplitudes of the pressures in each

compartment are equal to the given physiological amplitudes of the pressures (see [7–10]).

The basal value of the resistance of the large intracranial arteries is calculated by using the

Hagen–Poiseuille law R ¼ (8hl)/(r 4p). All other model resistances, Rs, Rpa, Rpv, Rvs and Rve

are calculated by using the mean pressure values in each compartment (see [7–9]) and

solving the differential equations describing the system in steady state. All rat model

parameters under basal conditions are given in table 1.

Figure 2. Block diagram describing the action of cerebrovascular regulation mechanisms according to the present
model. The upper branch describes autoregulation, the middle branch indicates CO2 response, and the lower branch
describes NO reactivity. The input quantity for autoregulation is cerebral blood flow change
(DCBF ¼ ððq2 qnÞ=qnÞ). The input quantities for the CO2 and NO mechanisms are the logarithm of arterial CO2

tension ðPaCO2Þ, i.e. DPaCO2
¼ log10ðPaCO2

=PaCO2nÞ, and the logarithm of NO production (qNO), i.e.
DqNO ¼ log10ðqNO=qNOnÞ, respectively. The dynamics of these mechanisms are simulated by means of a gain
factor (G) and a first order low pass filter with time constant t. The variables xaut, xCO2

and xNO are three state
variables of the model that account for the effect of autoregulation, CO2 reactivity and NO reactivity, respectively,
they are given in ml/mmHg. qn, PaCO2n and qNOn are set points for the regulatory mechanisms. The gain factor of the
CO2 reactivity is multiplied by a corrective factor ACO2

, because as a consequence of tissue ischemia CO2 reactivity
is depressed at low CBF levels. These three mechanisms interact nonlinearly through a sigmoidal static relationship,
and therefore producing changes in pial arterial compliance and resistance.
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Numerical simulations using these model parameters and validations of the rat model have

been shown in Ref. [3]. In particular, in this paper pathological cases of serious injuries have

been simulated by modifying corresponding model parameters.

4. Human model

The overall aim of our work was to develop and analyse a rat model as well as a human model

of cerebral hemodynamics with the purpose of reaching a deeper insight into whether

experimental results on rats can be extrapolated to humans and to clinical management of

patients.

In this section the parameters of the developed model equations in Ref. [3] will be

determined to get a model which describes the human cerebral hemodynamic realistically.

The only difference between the human and the rat model described in Ref. [3], besides the

different set of parameters, consists of the relation between the NO and CO2 reactivity, which

in the case of the rat model is described by:

qNO ¼ 0:4332 £ PaCO2
þ 39:8048: ð1Þ

In the case of the human model there exist no reliable sources that describe an analogical

dependence of the NO production rate on PaCO2
or vice versa. This is the reason why the

relation between qNO and PaCO2
is not considered in the human model.

The following sections show the results of the bifurcation analysis† of the human and the

rat model. The model results are compared afterwards.

The parameters of the human model are determined or rather taken from earlier works as

follows:

Table 1. Basal values of rat model parameters.

Ca ¼ 0.0042ml/mmHg Rs ¼ 99.4286mmHg sml21

n ¼ 13 b ¼ 378/60 beats s2

n ¼ 0.1852ml per beat kCla ¼ 0.0305ml
Rla ¼ 47.1609mmHg sml21 kR ¼ 1.6258e þ 06mmHg3 sml21

Cpan ¼ 4.7277e 2 07ml/mmHg DCpa1 ¼ 6.6188e 2 06ml/mmHg
DCpa2 ¼ 3.7822e 2 07ml/mmHg Rpv ¼ 29.4756mmHg sml21

Rf ¼ 2830mmHg sml21 Ro ¼ 1783mmHg sml21

qn ¼ 0.1696ml s21 taut ¼ 20 s
Gaut ¼ 0.00006ml/mmHg tCO2

¼ 50 s
GCO2

¼ 0.000435ml/mmHg PaCO2
n ¼ 33mmHg

tNO ¼ 40 s GNO ¼ 0.000125ml/mmHg
qNOn ¼ 54.1 ng/g tissue kCO2

¼ 27
bCO2

¼ 19 kven ¼ 4.9353e 2 08ml
Pcv ¼ 1.7mmHg Rvs1 ¼ 5.566mmHg sml21

Pv1 ¼ 22.5mmHg Rve ¼ 2.9476mmHg sml21

kE ¼ 41ml21 Dhrmax ¼ 175/60 beats s2

thr ¼ 5 s kNE ¼ 100mg kg21min

†Both model equations are analysed depending on their model parameters. A bifurcation occurs when a small
smooth change made to the parameter values of a system causes a sudden qualitative change in the system’s long
term dynamical behaviour.
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The arterial compliance Ca was chosen in the way that the diastolic and systolic pressures

are 80 and 120mmHg respectively, which means that the pressure curve of the aorta has an

amplitude of 40mmHg.

The values of the systemic arterial resistance Rs, the heart rate b and the stroke volume n

are given by Peskin et al. [11].

The parameter kCla
is a measure for the compliance of the large and middle cerebral

arteries ½Cla ¼ kCla
=ðPla 2 PicÞ� and chosen in the way that the compliance under basal

conditions is 0.8 ml/mmHg. McGavock et al. [12] measured a compliance of these cerebral

arteries of 1.0 ^ 0.4ml/mmHg experimentally.

The values for the parameters, which describe the resistance of the large cerebral arteries,

the compliances and resistances of the pial and the intra and extracranial vessels, as well as

the autoregulation and the CO2 reactivity in the case of a patient, are taken from works of

Ursino et al. [5,6].

The basal value of the NO production rate is corresponding to Vaughn et al. [13]

6.8 £ 10214mmolmm22 s21. The produced NO molecules are metabolised very quickly

after production. That is the reason why the time constant for the NO mechanism tNO is

chosen as one fourth of the time constant of the CO2 reactivity tCO2
.

The parameters which describe the process of sympathetic nerve stimulation, hrmax, thr, kf
and tNE, are given in a work of Mokrane et al. [14] for dogs. These cardiac parameters of

30–40 kg dogs are corresponding to [14] comparable to the cardiac parameters of men and

therefore taken over into this system.

4.1 Simulation results

With the given data from table 2 numerical simulations were performed in this section, to

show that the model reflects also a reasonable and realistic description of the cerebral

perfusion of men. Pathological cases of serious head injuries have been simulated by

modifying model parameters like the CSF outflow resistance Ro, CSF inflow resistance Rf,

and the parameters which are relevant for blood flow regulation. The results of these

simulations are given in section origin. Figures 7 and 8 show the changes in intracranial

pressure by changing the above mentioned parameters.

Table 2. Basal parameter values of the human model.

Ca ¼ 1.5ml/mmHg Rs ¼ 1.05mmHg sml21

b ¼ 80/60 bps n ¼ 70ml per beat
kCla

¼ 64.4ml Rla ¼ 0.6mmHg sml21

kR ¼ 13,100mmHg3 sml21 Cpan ¼ 0.205ml/mmHg
DCpa1 ¼ 2.87ml/mmHg DCpa2 ¼ 0.164ml/mmHg
Rpv ¼ 0.88mmHg sml21 Rf ¼ 2380mmHg sml21

Ro ¼ 526.3mmHg sml21 qn ¼ 12.5ml s21

taut ¼ 20 s Gaut ¼ 3ml/mmHg
tCO2

¼ 40 s GCO2
¼ 8ml/mmHg

PaCO2
n ¼ 40mmHg tNO ¼ 10 s

GNO ¼ 5ml/mmHg qNOn ¼ 6.8 £ 10214mmolmm22 s21

kCO2
¼ 15 bCO2

¼ 0.5
kven ¼ 0.155ml Pcv ¼ 4mmHg
Rvs1 ¼ 0.366mmHg sml21 Pv1 ¼ 22.5mmHg
Rve ¼ 0.16mmHg sml21 kE ¼ 0.077ml21

hrmax ¼ 72.6/60 bps thr ¼ 5 s
kf ¼ 1.21Hz tNE ¼ 9 s
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The autoregulation curve of men, which describes the dependence of cerebral blood flow

on arterial blood pressure is shown in the left of figure 3. The lower and upper autoregulation

limits are 50 and 140 mmHg, respectively. These limits were also simulated and validated

with experimental data by Ursino et al. [5].

The dependence of cerebral blood flow on arterial CO2 pressure is shown in the right of

figure 3. The simulation results correspond to the measured data of Harper et al. [15] and to

the simulation results of Ref. [5].

The NO reactivity is shown in the left of figure 4. The simulated dependence of CBF on the

NO production rate matches with a work of Kavdia et al. [16], who calculated the

dependence of vessel diameter on the endothelial NO concentration with a mathematical

model and validated their results with experimentally given data. The basal value of the NO

production rate qNO is 6.8 £ 10214mmolmm22 s21. Any increase in NO production yields a

vasodilation of the pial vessels and an increase in cerebral blood flow, whereas any decrease

in NO production yields a vasoconstriction of these vessels and a decrease in CBF.

The dependence of the CO2 reactivity on the NO production rate is shown in the right

of figure 4. One can see that, despite the neglect of a direct relation between PaCO2
and qNO,

Figure 3. Regulation mechanisms of the human model. Left: Autoregulation curve, lower and upper autoregulation
limits are at Pa ¼ 50 and 140mmHg, respectively (see [5]). Right: CO2 Reactivity. The simulated changes in CBF
because of changes in PaCO2

agree with experimental data of Harper et al. [15].

Figure 4. Left: NO reactivity. Simulated changes in CBF because of changes in the NO production rate agrees with
experimental given data of Kavdia et al. [16]. Right: Dependence of CO2 reactivity on the NO production rate:
qNO ¼ 6.8 (basal value), qNO ¼ 5 (dashed line) and qNO ¼ 4 (dotted line).
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the NO mechanisms have an indirect and strong impact on the CO2 reactivity. This indirect

impact is given by changes in cerebral blood flow by means of NO, which on the one hand

serve as input for autoregulation and on the other hand affect the corrective factor ACO2
of the

CO2 reactivity and therefore the strength of this regulation mechanism.

5. Results of the bifurcation analysis of the human model

In the human model one observes supercritical Hopf-bifurcations‡ by changing the relevant

parameters belonging to the blood regulation mechanisms and to the cerebrospinal fluid flow.

The periodic solutions which originate at these points have a time pattern comparable to

Lundberg’s A- or plateau waves.

A clinically observed intracranial plateau wave in patients with severe head injury is shown

in figure 5. Figure 6 shows simulated intracranial plateau waves. In the left of figure 6 the

Figure 5. Clinically observed intracranial pressure in patients with severe head injury (taken from [19,20]).

Figure 6. Simulated intracranial plateau waves. Left: The heart rate was decreased to 75 bmp and the NO
production rate and the arterial CO2 pressure were increased to 30 £ 10214mmolmm22 s21 and 100 mmHg,
respectively. Right: The heart rate, the NO production rate and the arterial CO2 pressure have been raised to 89 bpm,
350 £ 10214mmolmm22 s21 and 50 mmHg, respectively.

‡At a supercritical Hopf-bifurcation stable periodic solutions bifurcate from a stationary solution, which becomes
unstable [17,18].
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heart rate b was decreased to 75 bmp, which corresponds to a decrease in systemic blood

pressure Pa to 91.9mmHg and the NO production rate qNO and the arterial CO2 pressure

PaCO2
were increased to 30 £ 10214mmolmm22 s21 and e100mmHg, respectively.

The heart rate, qNO and PaCO2
were increased to 89 bpm, which corresponds to an

increasing of Pa to 109mmHg, 350 £ 10214mmolmm22 s21 and 50mmHg respectively in

figure 6 on the right.

5.1 Origin of plateau waves

The analysis of our human model shows that either a vasodilatory stimulus, an increase in the

CSF outflow resistance Ro, or a reduction in the CSF inflow resistance Rf cause an initiation

of plateau waves in the intracranial pressure.

A vasodilatory stimulus is given by changes in the CO2 concentration in blood, in

the NO production at the endothelial cells in the vessel wall and in the blood

pressure. Any increase of PaCO2
or qNO yields an arterial–arteriolar vasodilation with an

increase in CBF as a consequence. On the other hand any decrease in Pa yields a

decrease in CBF with an activation of cerebral autoregulation and arterial–arteriolar

vasodilation as a consequence. The corresponding increase in arterial blood volume yields

an increase in ICP.

This result is illustrated in figure 7, which shows the time pattern of ICP, where heart rate,

arterial CO2 pressure and the NO production rate have been changed linearly during

integration. The heart rate b and therefore the arterial blood pressure, have been increased

linearly from 68 to 88 bpm with occurrence of periodic solutions from 70.6 to 84.1 bpm

(PaCO2
and qNO were also increased during this simulation to 100mmHg and

30 £ 10214mmolmm22 s21, respectively) (top left). The arterial CO2 pressure PaCO2
has

been increased linearly from 170 to 440mmHg with occurrence of periodic solutions from

214.1 to 394.1mmHg (top right) and the NO production rate qNO has been increased linearly

from 30 to 300 £ 10214mmolmm22 s21 with occurrence of periodic solutions from

qNO ¼ 99.6 £ 10214 to 264.4 £ 10214mmolmm22 s21 (bottom). The PaCO2
interval in

which periodic solutions exist does not belong to a reasonable physiological range.

The periodic solutions can be shifted into a reasonable physiological interval of PaCO2
by, for

example, increasing the NO production rate.

This result agrees with a thesis held by Rosner and Becker [21].

The analysis of the human model shows also that changes in CSF outflow and inflow

resistance can initiate plateau waves. This result is illustrated in figure 8, which shows the

time pattern of ICP by (a) increasing the CSF inflow resistance Rf linearly from 80 to

190mmHg s/ml during integration with occurrence of periodic solutions from 89.95 to

154.77mmHg s/ml (left) and (b) by increasing the CSF outflow resistance Ro linearly from

5000 to 21,000mmHg s/ml during integration with occurrence of periodic solutions from

8093.42 to 15054.47mmHg s/ml (right).

This result corresponds to a result given by Ursino et al. [19] who showed

by analysing their model of cerebral hemodynamics that plateau waves, which

are also ascribed to the presence of Hopf-bifurcations, can originate even without a

vasodilatory stimulus, provided CSF outflow resistance is increased and intracranial

compliance is reduced. Which means that the oscillations are self-sustained, i.e. they may

occur without any external perturbation, simply as a consequence of the intrinsic instability

of system dynamics.
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Figure 7. Time pattern of intracranial pressure. The parameters which are relevant for the regulation mechanisms
have been raised linearly during integration. In all three cases one can see an appearance and disappearance of
periodic solution at specific parameter values.

Figure 8. Time pattern of intracranial pressure. The CSF inflow resistance Rf (left) and the CSF outflow resistance
Ro (right) have been changed linearly during integration. In both cases one can see an appearance and disappearance
of periodic solutions at specific parameter values.
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6. Results of the analysis of the rat model

By analysing the human and the rat model we found an interesting difference in the model

behaviour. The mechanism of sympathetic nerve stimulation is phenomenological

comparable in both systems. In contrast one observes a totally different behaviour in the

human and the rat model by changing the parameters belonging to the regulation

mechanisms and by changing the parameters belonging to the CSF inflow and outflow into

the craniospinal space.

Section 5 showed the existence and possible origins of plateau waves in the human model.

In contrast to that there exist no Hopf-bifurcations in the rat model.

That means no plateau waves with critical high pressure peaks arise by changing the

parameters which are relevant for vessel vasodilation or by changing the parameters

describing CSF flow.

These results are illustrated in figures 9 and 10.

In figure 9 the time course of intracranial pressure is given by (a) changing the heart rate b

linearly from 320 to 450 bpm (PaCO2
and f were also increased to 82.5mmHg and 163 ng/g

tissue, respectively) (top left), (b) changing PaCO2
linearly from 30 to 450mmHg (top right)

and (c) by changing the parameter f which describes the changes in the NO production rate in

the case of the rat model (see equation (1)) from 0 to 10,000 ng/g tissue (bottom) during

integration. In all three cases we also observe an increase in ICP by increasing the above

Figure 9. Time courses of intracranial pressure. The relevant parameters of the regulation mechanisms have been
increased linearly during the integration. The behaviour of ICP is stationary and stable. There is no occurrence of
periodic solutions.
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mentioned parameters but we do not see an occurrence of periodic solutions in contrast to the

human model (figure 7).

Figure 10 shows time patterns of ICP simulated with the rat model where (a) the CSF

inflow resistance Rf has been decreased linearly from its basal value 2830–

0.001mmHg s/ml, (b) the CSF outflow resistance Ro has been increased linearly from

1000 to 1,00,000mmHg s/ml and (c) the parameter kE which describes changes in the

intracranial compliance has been changed linearly from 41 to 410 l/ml during integration.

In all three cases the behaviour of the intracranial pressure is stationary and stable and we do

not observe an occurrence of periodic solutions in contrast to the human model (figure 8).

7. Discussion

In this paper mathematical models of cerebral hemodynamics under physiological aspects

applicable to humans and rats are presented. The overall aim was to compare human and rat

cerebral hemodynamics, as experimental results on rats can only be extrapolated to humans

and finally to the clinical management of patients, if the experimental system and human

physiology and pathophysiology are comparable not only with respect to outcome related

endpoints but also with respect to the dynamics of the regulatory systems involved.

Figure 10. Time pattern of intracranial pressure simulated with the rat model. The CSF inflow resistance Rf (top
left), the CSF outflow resistance Ro (top right) and the parameter kE (bottom) which describes changes in the
intracranial compliance have been changed linearly during integration. All other model parameters have not been
changed. The behaviour of ICP is stationary and stable. There is no occurrence of periodic solutions.
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The analysis of both models has shown that there are different nonlinear phenomena in the

rat and in the human model.

If physiological parameters are set to values which are typically seen in patients that suffer

from TBI in combination with hemodynamic instability, i.e. lowered blood pressure

combined with intracranial hypertension, the human model displays periodic behaviour

while the rat model shows stationary solutions only.

In terms of the clinical conditions this means that in the human model dangerous

differences in intracranial pressure occur, while the rat model does not display these sudden

changes in intracranial pressure. As a matter of fact there is good clinical evidence

concerning the occurrence of plateau waves in humans, while there is no evidence

documenting the existence of plateau waves in rat models of TBI or in models of TBI

combined with hemodynamic instability.

From the physiological point of view the rat model can be assumed to be more robust

compared to the human model. This is an observation which can be agreed upon, although

only on the phenomenological level in the first instance, if the clinical performance of

humans and rats is compared.

Corresponding to the results of earlier works (cf. [19,21]) the analysis of our human model

suggests that the origination of intracranial plateau waves is triggered by either a critical

vasodilatory stimulus or a dysbalance between intracranial fluid extravasation and

reabsorption.

These results suggest a significant difference between the human system and the animal

system in terms of the dynamic response in certain clinical situations. As this phenomenon is

especially interesting with respect to the clinically important secondary brain damage

problem, further analysis is required to discover whether this observation reflects a true

difference of the systems under investigation or whether it is a structural epiphenomenon

resulting from the model structure.
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Appendix A

All model equations are presented in Appendix A.

A.1 Extracranial arterial pathways

The work of Ursino et al. [5] is used as the basic model for the new investigations. There only

the cerebral hemodynamics are considered and the blood pressure Pa is chosen as a constant

input parameter for the cerebral blood circulation. In this work the extracranial arterial

pathways are also modelled and thus the arterial blood pressure is no constant parameter but

depends on time t, cardiac output Q and thus on cardiac parameters.

Changes in blood pressure dPa=dt are described by the following differential equation

dPa

dt
¼

1

Ca

Q2
Pa

Rs

� �
; ðA 2 1Þ
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where Ca is the aortic compliance and Rs the systemic resistance. The fraction of cardiac

output Q which goes into the head is then given by ðPa 2 PlaÞ=Rla, where Pla and Rla are

pressure and resistance of the large and middle cerebral arteries, respectively.

A.2 Cardiac output

The model function for cardiac output Q, developed by Stevens et al. [22], is used to get a

pulsatile blood flow throughout the circulatory system.

The cardiac output Q is modelled by defining an interior function which oscillates with the

frequency of the heart pulse and an envelope function for these interior oscillations. By

normalizing the product of these functions so that the total outflow over one period equals the

stroke volume n one gets

Qðt; n;FÞ ¼
n

Aðn;FÞ
sinnðvtÞ cos ðvt2FÞ ðA 2 2Þ

where

Aðn;FÞ ¼

ðp
0

sinnðvtÞ cos ðvt2FÞdt; ðA 2 3Þ

and t is time, v one half of the basic frequency of the heart pulse, p the period of the heart

cycle, F a suitable phase angle and n determines the narrowness of the output function Q.

A.3 Intracranial hemodynamics and hydrodynamics

In this model, volume changes in the craniospinal space are ascribed to four compartments:

large and middle cerebral arteries dV la=dt, pial arteries and arterioles dVpa=dt, cerebral veins

dVv=dt, and the H2O compartment dVH2O=dt, where the H2O compartment is modelled

similar to the CSF compartment in Ref. [5]. According to the Monro–Kellie doctrine the

following conservation equation holds:

Cic

dPic

dt
¼

dV la

dt
þ

dVpa

dt
þ

dVv

dt
þ

dVH2O

dt
ðA 2 4Þ

with time t.

Changes in volume in the H2O compartment are given by dVH2O=dt ¼ qf 2 qo, where qf
and qo represent water or cerebrospinal fluid flow into and out of the craniospinal space,

respectively. Because both processes are assumed to be passive and unidirectional, we have

qf ¼

Pc2Pic

Rf
if Pc . Pic

0 else

(
ðA 2 5Þ

qo ¼

Pic2Pvs

Ro
if Pic . Pvs

0 else:

(
ðA 2 6Þ
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where Rf and Ro are inflow and outflow resistances, respectively. Pc is cerebral capillary

pressure and Pvs is dural sinus pressure.

The intracranial compliance Cic, which represents the capacity of the craniospinal system

to store a volume load, is according to Ref. [5] assumed to be inversely proportional to

intracranial pressure through a constant parameter

Cic ¼
1

kE £ Pic

ðA 2 7Þ

where kE is the intracranial elastance coefficient.

The first intracranial segment of the model represents the circulation of blood in the large

and middle cerebral arteries. The hemodynamic is described by a hydraulic resistance Rla and

a hydraulic compliance Cla. In contrast to the model of Ref. [5] changes in the storage

capacity Cla and thus on the blood volume Vla and the pressure Pla are modelled.

The pressure changes dPla=dt in the large and middle cerebral arteries are described by the

following differential equation

dPla

dt
¼

1

Cla

Pa 2 Pla

Rla

2
Pla 2 Ppa

Rpa=2

� �
þ

dPic

dt
ðA 2 8Þ

where Pla, Ppa and Rla, Rpa are pressures and hydraulic resistances of the large and middle

cerebral arteries and the pial arterial–arteriolar vascular bed, respectively.

The compliance Cla of these large cerebral vessels is assumed to be inversely proportional

to the transmural pressure

Cla ¼
kCla

Pla 2 Pic

ðA 2 9Þ

with kCla
the proportionality constant.

In the pial arterial compartment all sections of the cerebrovascular bed directly under the

control of the regulatory mechanisms are comprised. This pial arterial segment is described

by a hydraulic resistance Rpa and a hydraulic compliance Cpa. Both of these parameters are

regulated by cerebrovascular control mechanisms. The two equations which describe the

changes in volume dVpa=dt in this segment and the calculation of the pressure at the cerebral

capillaries Pc (applying Kirchhoff’s law) are given in Ref. [5].

With these three equations the pressure change dPpa=dt in the pial arterial compartment is

described by

dPpa

dt
¼

1

Cpa

Pla 2 Ppa

Rpa=2
2

Ppa 2 Pc

Rpa=2
2

dCpa

dt
ðPpa 2 PicÞ

� �
þ

dPic

dt
: ðA 2 10Þ

The intracranial vascular bed of the veins is described by a series arrangement of two

segments. The first, from the small postcapillary venules to the large cerebral veins, contains

the resistance Rpv and the venous compliance Cvi. Corresponding to Ref. [5] the compliance

is calculated by

Cvi ¼
kven

Pv 2 Pic 2 Pv1

; ðA 2 11Þ
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where kven is a constant parameter and Pv1 represents the transmural pressure value at which

cerebral veins collapse.

Using the equations defined in Ref. [5], which describe the volume changes dVv=dt of this

venous compartment, the pressure changes dPv=dt are given by

dPv

dt
¼

1

Cvi

Pc 2 Pv

Rpv

2
Pv 2 Pvs

Rvs

� �
þ

dPic

dt
; ðA 2 12Þ

where Rvs is the resistance of the terminal intracranial veins and Pvs the pressure at the dural

sinuses.

The second segment represents the terminal intracranial veins (e.g. lateral lakes). During

intracranial hypertension these vessels collide or narrow at their entrance into the dural

sinuses, with a mechanism similar to that of a starling resistor (cf. [5]). Because of this

phenomenon the resistance Rvs depends on the pressures of the system in the following way:

Rvs ¼
Pv 2 Pvs

Pv 2 Pic

Rvs1; ðA 2 13Þ

where Rvs1 represents the terminal vein resistance when Pic ¼ Pvs.

In contrast to the model of Ref. [5] the sinus venous pressure Pvs is not assumed to be

constant, but depends on time and the other pressures of the system and is calculated by

Kirchhoff’s law

Pv 2 Pvs

Rvs

þ qo ¼
Pvs 2 Pcv

Rve

: ðA 2 14Þ

Since the water backflow at the dural sinuses qo is negligible in comparison to the blood

flows, it is assumed to be zero.

The extracranial venous circulation from the dural sinuses through the vena cava back to

the heart is described by the hydraulic resistance Rve and the hydraulic compliance Cve.

Because no mechanisms acting on these blood vessels are taken into account, these

parameters are assumed to be constant.

A.4 Cerebrovascular regulation mechanisms

Cerebrovascular regulation mechanisms work by modifying the resistance Rpa and the

compliance Cpa (and hence the blood volume) in the pial arterial–arteriolar vasculature.

In this section three mechanisms are considered which regulate cerebral blood flow.

The effects of two of them, like autoregulation and CO2 reactivity, are described in Ref. [5].

One new cerebrovascular regulation mechanism, the NO reactivity, is inserted into the model

and its effect on the pial arterial compliance is modelled by using the given idea in Ref. [5] of

a sigmoidal relationship of the whole regulation process.

The actions of the cerebrovascular regulation mechanisms are described by means of a first

order low pass filter with time constant taut, tCO2
and tNO and gains Gaut, GCO2

and GNO.
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This corresponds to the following differential equations

dxaut

dt
¼

1

taut
2xaut þ Gaut

q2 qn

qn

� �
ðA 2 15Þ

dxCO2

dt
¼

1

tCO2

2xCO2
þ GCO2

ACO2
log10

PaCO2

PaCO2n

� �� �
ðA 2 16Þ

dxNO

dt
¼

1

tNO
2xNO þ GNO log10

qNO

qNOn

� �� �
; ðA 2 17Þ

where xaut, xCO2
and xNO are state variables of the model that account for the effects of

autoregulation, CO2 and NO reactivity, respectively. qn, PaCO2n and qNOn are set points for

the regulatory mechanisms. The cerebral blood flow q is calculated by Ohm’s law:

q ¼
Ppa 2 Pc

Rpa=2
: ðA 2 18Þ

The strength of the CO2 reactivity in the model is not constant but decreases during severe

ischemia. This phenomenon is described by the corrective factor ACO2
in equation (A-16)

which has the following expression

ACO2
¼

1

1þ exp{½2kCO2
ðq2 qnÞ=qn�2 bCO2

}
ðA 2 19Þ

with constant parameters kCO2
and bCO2

(cf. [5]).

Finally, by adapting the situation of Ref. [5] to three regulation mechanisms one gets the

value of the pial arterial compliance depending on xaut, xCO2
and xNO

Cpa ¼
ðCpan 2 DCpa=2Þ þ ðCpan þ DCpa=2Þexp½ðxCO2

þ xNO 2 xautÞ=kCpa
�

1þ exp ½ðxCO2
þ xNO 2 xautÞ=kCpa

�
ðA 2 20Þ

where Cpan is the pial arterial compliance under basal conditions, DCpa the change in

compliance and kCpa
a constant parameter, which is chosen in the way that the slope of the

sigmoidal curve at Cpa ¼ Cpan is equal to 1. This condition is satisfied by choosing

kCpa
¼ DCpa=4.

An important point is that this sigmoidal curve is not symmetrical: the increase in blood

volume caused by vasodilation is greater than the decrease of blood volume caused by

vasoconstriction. That is the reason why two different values of the parameter DCpa have to

be chosen depending on whether vasodilation or vasoconstriction is considered. It is

xCO2
þ xNO 2 xaut . 0 : DCpa ¼ DCpa1; kCpa

¼ DCpa1=4

xCO2
þ xNO 2 xaut , 0 : DCpa ¼ DCpa2; kCpa

¼ DCpa2=4:

8<
: ðA 2 21Þ
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An expression for dCpa/dt is obtained by differentiating equation (Cpa) to

dCpa

dt
¼

DCpa

kCpa

exp½ðxCO2
þ xNO 2 xautÞ=kCpa

�

{1 þ exp½ðxCO2
þ xNO 2 xautÞ=kCpa

�}2
£

dðxCO2
þ xNO 2 xautÞ

dt
: ðA 2 22Þ

The cerebrovascular control mechanisms act also on the hydraulic pial arterial resistance

Rpa. Because the blood volume is directly proportional to the inner radius second power,

while the resistance is inversely proportional to inner radius forth power, the following

relationship holds between the pial arterial volume and resistance (cf. [5])

Rpa ¼
kRC

2
pan

V2
pa

ðA 2 23Þ

where kR is a constant parameter.

A.5 Release of norepinephrine and its impact on heart rate

The changes of the norepinephrine concentration in blood d[NE]/dt are described by the

equation

d½NE�

dt
¼ r 2 aNE½NE�; ðA 2 24Þ

where r is the constant NE release during sympathetic nerve stimulation and aNE is the NE

elimination rate.

The heart rate response to a steplike increase of the norepinephrine concentration [NE] is

described by

thr
dhr

dt
¼ 2hrþ Gð½NE�Þ; ðA 2 25Þ

where hr is the heart rate variation. The steady-state heart rate response G([NE]) is, according

to [14], defined by

DHR ¼ Gð½NE�Þ ¼
DHRmax½NE�

2

k2NE þ ½NE�2
; ðA 2 26Þ

where KNE is the NE concentration producing a half maximum response and DHRmax is the

maximum value of DHR.

The new heart rate �b is then given by adding the heart rate variation hr to b.
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