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This paper presents one-dimensional and two-dimensional microwave inverse computing
methods to detect an internal object using measurements based on a signal applied from the
surface of the host material. The modelling of our application system has been aimed towards
the in vivo detection of a breast tumour, in particular, and to enable the calculation of the
tumour size and its distance from the surface of the breast. However, our approach is also
applicable for more general foreign object identification. Complex backscattered
electromagnetic waves characterise the relations of the internal properties of the host
material. Forward and backscattered signals are used to calculate the impedance and
reflection coefficients as a function of the applied microwave frequency. In the study of one-
dimensional modelling, we discuss the approach to identifying a foreign object hidden inside
the host material and we present a method for computing the distance to the object from the
surface of the host. Subsequently, a cylindrical coordinate system is used for two-dimensional
modelling. A method to compute the size of the object (up to one millimetre in radius) is
discussed. Computation of unknown electrical and non-electrical parameters using front-end
microwave application is challenging but it is feasible.
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1. Introduction

Breast cancer is a non-skin malignancy in women and is the most prevalent cause of female

cancer mortality [1]. In vivo methods of early-stage breast tumour detection make a

significant contribution towards the likelihood of successful treatment. Microwave

technology can be used as a non-invasive method to detect breast tumours in early stages.

Finding accurate and stable solutions to inverse problems is the most important task in object

detection using microwave measurements. The microwave signal we use in this application

is harmless, because it has a low power and therefore does not damage the normal cells.

Screening mammography is the most effective method used at present for breast cancer

detection but it suffers from a number of drawbacks such as: high false-positive and false-

negative rates, a possible risk factor, discomfort for the examinee and their difficulty

in tolerating breast compression [2,3]. In our approach, the microwave signal applied from
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the surface of the breast skin requires a minimal compression of the breast for accurate

measurements.

Our earlier research for internal property measurement of dairy products and food samples

have shown that microwave imaging is feasible using a dielectric permittivity profile obtained

from a suitable measuring system [4,5]. Further, ex vivomeasurements taken using the Keam

Holdem VE2 analyser [6] have shown that a tumour has a significant difference in complex

dielectric permittivity to that of healthy breast tissue. As the malignant tumours have

increased protein hydration, they have a significant contrast in dielectric properties with

normal breast tissue [7,8]. Results of the investigation performed using microwave radar

technology [9] also illustrate the opportunities for active microwave sensing in the breast.

The contrast between the normal and malignant breast tissue can provide a significant

difference in the backscattered microwave energy [10] but, for a time-domain approach using

the ultra wideband radar technique, it can be challenging to obtain robust signal processing

methods and appropriate hardware is needed. In the study of confocal microwave imaging for

breast imaging [7], the breast is modelled with planar and cylindrical configurations and

methods are developed to detect and localise tumours in three dimensions. In this approach,

a finite difference time domain method is used to compute the backscattered data. Another

development uses optical tomography to obtain medical imaging for diagnosis of possible

breast tumours [11]. In this approach, the solutions to the time-dependent diffusion equation

are found using data produced from only one source but with many detectors. However, these

methods too may have practical limitations when used for breast tumour detection.

We propose non-invasive methods that can be used to identify a very small tumour inside

the breast. Our approach analyses the behaviour of the microwave signal and computes the

distance from the surface of the host material. The type of signal used in this application is a

uniform plane wave which penetrates through the non-homogeneous internal structure.

In practice, there are losses due to finite conductivity and lossy dielectric but these are usually

very small and can be neglected [12,13]. The behaviour of the signal with different material

properties have led to general equations which can be obtained from the well-known theory

of electromagnetic wave propagation [13,14]. Those equations contain information on the

electrical and magnetic properties of the internal structure and can be used to develop

algorithms to compute the unknown parameters of the internal object. The front-end

microwave measurement provides us with the required information which is needed to

identify and then to compute these parameters. We discuss a simple and cost effective

approach for detecting a tumour in the first instance using microwave measurements. With

further development, this method has a potential for breast screening. Earlier, we provided in

Ref. [15] evidence that the method works in the two-dimensional situation, and this is

extended further here. The derivation is given here for completeness.

The X-ray technique is very common as a diagnostic tool but it needs the signal to

penetrate fully through the breast and the quality of the received signal is dependent upon

breast compression. In the method, we propose, breast compression is not required because

the information about the tumour, if any, is found using the difference between forward and

reflected signals measured at the same antenna position. We use a continuous microwave

signal rather than a discrete signal as used for the conventional X-ray approach.

The basic model for the microwave measurement system is shown in figure 1.

The measurement system provides a microwave signal to the antenna system and this signal

is then excited into the host material. The backscattered signal from the internal structure of

the host is received by the same antenna system and is returned to the measurement system

for analysis. The measured data is then processed using the reconstruction algorithms. In both
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transmitted and received signals, amplitude and phase changes are expected and will be

measured a number of times at different frequencies. There are two main parts to our study.

One is to solve the inverse problem using the reflection coefficient measurements based on

the multi-layered plane wave reflection. The other approach is to consider the internal object

as a ‘wave scatterer’ and solve the two-dimensional inverse problem in cylindrical

coordinates to compute the unknowns. We have begun with simple canonical geometries in

order to illustrate the general approach. The one-dimensional study is straightforward but

helps us to understand the practical difficulties with accuracy when working with plane wave

measurements. It is important because the computed results of the forward and inverse

algorithms provide an insight into the subsequent two-dimensional and three-dimensional

cases. The two-dimensional study lays the groundwork for the practical computation of the

inverse method using a simple microwave measurement system. Although the forward

problem is simple, the inverse problem in a two-dimensional application may have practical

complications due to the complexity of multiple scattering [16], multi-path and diffraction

effects in non-homogeneous internal structure of the host material.

The frequency of the microwave signal must have a constant value during the measurement

time but it may be changed to another value for subsequent measurements. The reflection

coefficient [17] at the front surface of the model for any given profile is given by

Gð f Þ ¼
Z inð f Þ2 Z0

Z inð f Þ þ Z0

; ð1Þ

where f represents the frequency of the microwave signal, Zin( f) is the complex electrical

impedance into the surface of the breast skin and Z0 is the complex electrical impedance of

the measurement system.

In order to develop the model, we initially develop the forward and reflected wave theory

using the formulation appropriate to the geometry (one- and two-dimensional situations)

considered. We then, with field equations, use the theoretical results to find the dimensions of

an object from the effect of the scattered reflected wave by the familiar inverse problem

technique. This is explained in following sections.

In the first case considered, the internal structure of the breast is modelled as thin layers

(described in section 2). A basic analytical system is constructed for forward and inverse

computations to find front-end impedance and the thickness of the layers. In section 3, a more

realistic approach for microwave scattering is developed using a cylindrical coordinate system.

An inverse algorithm for calculating an unknown tumour’s size and its location is presented and

the error and stability is discussed. For a general outline of inverse techniques see Ref. [18].

There are more sophisticated models for inverse estimation using finite bases, that is,

pixels representing the material properties, which may be applicable in microwave

tomography [19,20]. Our approach is to find the size and the location of the object using

Figure 1. A basic model of the microwave measurement system (as in Ref. [15]).
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microwave measurements. As the object is relatively small in size compared to the wave

length of the signal, a fair approximation is for the object to be a circular in shape. We seek a

simple and cost effective method for a dielectric reconstruction of an internal object using the

frequency domain with phase and amplitude measurements.

In this study, we first use the numerically generated data to test our inverse algorithm. Then, the

process is extended to error and stability analysis. By doing this, we investigate the possible range

of guess values which can be used when calculating the unknowns from measurement results.

Our computer-programmed algorithms have been verified with laboratory microwave

experiments. In this experimental application, a conducting cylinder was placed at different

distances in front of an antenna. The amplitude and phase of the reflection coefficient

(the ratio of incoming and outgoing microwave signals in complex form) were measured

using a network analyser. The amplitude and phase of the measured reflection coefficients

with respect to the position of the cylinder have been plotted in figures 2 and 3, respectively.

Also, the calculated reflection coefficients using our forward equation have been plotted

in the same graph for easy comparison. Overall, there is a good agreement between

calculated model predictions and experimental data (figures 2 and 3). More details of the

experimental measurements and the calculation of unknowns using the measured data are

explained in Ref. [21].

2. One-dimensional study

In the following sections, we analyse the time and space dependence of the microwave signal

within the application model. The plane wave reflection model is shown in figure 4.

The internal structure of the host material is represented using a number of regions, each of

which is homogeneous. In particular, we assume that the electrical properties are constant

over each of these regions. For the one-dimensional model, the regions are a number of thin

rectangular layers which have been cascaded to form the host material.

Figure 2. Calculated and measured reflection coefficients (amplitude).
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The layers inside the model are specified with individual material properties. These are

permittivity 1, permeability m and conductivity s and they characterise the media with

electric flux, magnetic flux and the electric current, respectively. When the microwave signal

is applied from the front, it penetrates through the layers and, if the properties of any two

layers differ from each other, it reflects back from the boundary between them. Similarly,

looking from the electrical view point, it can be observed that each of these layers must have

individual impedances in the presence of uniform plane waves. In order to find the reflection

from the surface of the host, it is necessary to perform a series of impedance transformations

at the layer boundaries. The impedance transformation towards the front end can be seen as a

belt with n cascaded strips, as shown in figure 4.

Figure 3. Calculated and measured reflection coefficients (phase).

Figure 4. Plane wave reflection model (as in Ref. [15]).
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2.1 Impedance transformation

The front-end impedances of the layers are indicated as Z(·) (looking from the front) and the

first and last layer impedances are taken as Zin and Znþ1, respectively. We consider the host

internal structure to be lossless (s ¼ 0) for the electromagnetic waves and therefore the wave

propagation depends only upon the complex value of the propagation constant [22]. For

simplicity, in the reminder of this paper the magnetic permeability m is assumed to be unity,

but this is not a restriction for this application. The recursive equation to find the electrical

impedance [14] at the front of the nth layer of the model, that has a width of dn, is

Znð f Þ ¼ hnð f Þ
Znþ1 þ jhnð f Þtan½bnð f Þdn�

hnð f Þ þ j Znþ1tan½bnð f Þdn�
; ð2Þ

where hn( f) is the intrinsic or characteristic impedance of the nth layer given by

hnð f Þ ¼
h0ffiffiffiffiffiffiffiffiffiffiffi
1nð f Þ

p ; ð3Þ

h0 is the intrinsic impedance in a vacuum and is approximately equal to 377Ohm and

j ¼
ffiffiffiffiffiffiffi
21

p
. The 1n( f) is the relative permittivity of the nth layer and bn( f) represents the phase

constant of the nth layer given by

bnð f Þ ¼
2pf

ffiffiffiffiffiffiffiffiffiffiffi
1nð f Þ

p

c
; ð4Þ

where c is the velocity of light given as approximately 3 £ 108m/s and f is the frequency of

the microwave signal.

Given the characteristic impedance and the propagation constant of any layer and the load

impedance of the succeeding layer, the front-end impedance of that layer can be calculated

using equation (2). Starting with the known impedance of the last layer (the deepest layer of

the model), the layer impedances can be computed from layer to layer up to the surface of the

front layer. Finally, this result is used to compute the reflection coefficient using equation (1).

We consider three layers having thicknesses of dn21, dn and dnþ1. The front-end

impedance of the (n 2 1)th layer at frequency fi can be found by substituting Zn in the

equation that is obtained for Zn21 using equation (2). Then at frequency fi,

Zi;n21 ¼ hi;n21

Zi;nþ1 hi;n 2 hi;n21tanðbi;ndnÞtanðbi;n21dn21Þ
� �

þ hi;nj½hi;ntanðbi;ndnÞ þ hi;n21tanðbi;n21dn21Þ�

Zi;nþ1j½hi;n21tanðbi;ndnÞ þ hi;ntanðbi;n21dn21Þ� þ hi;n½hi;n21 2 hi;ntanðbi;ndnÞtanðbi;n21dn21Þ�

� �
;

ð5Þ

where Zi, bi and hi represent the front-end impedance, phase constant and characteristic

impedance, respectively (at the frequency fi). Equation (5) calculates the front-end

impedance without knowing the front-end impedance Zn of the middle layer. Similarly this

procedure can be continued up to the first layer of our model to calculate the front-end

impedance, Zin ( f). The final equation of this process would be a large and complicated

equation with a number of unknowns. We can obtain i equations for i different frequencies,

and these equations can be used to find the i unknowns.

If, instead, the reflection coefficients are found from measurement, we can find the front-

end impedance of the host material and calculate alternative unknown quantities, for

example, the distances (as explained below). Again using the equations (2) and (5), we may
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obtain two different equations for two frequencies (i ¼ 1 and i ¼ 2) to find two unknowns in

the Zn and Zn21 layers.

2.2 Layer thickness calculation

Suppose that we know the front-end impedance, Zin( f), by practical measurement of the host

material using the microwave antenna system. Then, the next task is to find the distance to

the scattering object from the surface of the host. The total distance is the sum of the

individual widths of each layer. This is calculated using inverse equations derived from

equation (5).

If we take the three layers, the distance to the (n 2 1)th layer from the (n þ 1)th layer can

be obtained from

tan ðdn21bn21Þ ¼
hn21hnðZnþ1 2 Zn21Þ þ j tanðbndnÞhn21 h2

n 2 Zn21Znþ1

� �
jhn Znþ1Zn21 2 h2

n21

� �
2 tanðbndnÞ Zn21h2

n 2 Znþ1h
2
n21

� �
" #

; ð6Þ

where bn and bn21 can be calculated using equation (4).

By following the above procedure, we can find a similar equation for even more than three

layers. In equation (6), we have two unknowns, dn21 and dn. For simplicity, we assume

Znþ1 ¼ 0. Then using equation (6), we obtain a general equation as

Fð f i; dn21; dnÞ ¼ jhn21ð f iÞ{hn21ð f iÞtan½bn21ð f iÞdn21� þ hnð f iÞtan½bnð f iÞdn�}

þ Zn21{hnð f iÞtan½bn21ð f iÞdn21�tan½bnð f iÞdn�2 hn21ð f iÞ} ¼ 0; ð7Þ

where fi is the microwave frequency applied at each measurement, and i ¼ 1,2,. . ., m.

With more than one unknown, it is not possible to obtain a direct solution using a single

equation, therefore we use m equations produced from m trials each applying a different

frequency into the system. In fact, for equation (7) to have a solution Zn21 has to be purely

imaginary, i.e. a complex number with real part equal to zero. In order to then find the

unknowns, we use an algorithm based on Newton’s iterative method [23].

Let our unknowns be the thicknesses of the layers. Taking m ¼ n frequencies then, the set

of equations are:

FðXÞ ¼

F1ðd1; d2; . . .; dnÞ ¼ 0

F2ðd1; d2; . . .; dnÞ ¼ 0

..

.

Fnðd1; d2; . . .; dnÞ ¼ 0

2
6666664

3
7777775
: ð8Þ

We form the n £ n Jacobian matrix of the above system of equations

J ¼ ½Jk;l�; ð9Þ

where Jk;l ¼ ›Fk=›dl and k, l ¼ 1,2,. . .,n.

Using the initial guess for X ð0Þ ¼ ðdð0Þ1 ; dð0Þ2 ; . . .dð0Þn ÞT, we carry out a multidimensional

Newton’s method [24] to search for the solution to F(X) ¼ 0. The solution of the above

system often needs several iterations, the number of iterations dependent mainly upon the

number of unknowns and the value of the initial guess.
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2.3 Results of the one-dimensional model

2.3.1 Front-end impedance. Using equation (2), the front-end impedance of 10 layers was

calculated recursively. Starting with the last layer, Znþ1, the calculation is carried out from

layer to layer up to the first layer, Z1 ¼ Zin. The simulation results are shown in figure 5.

The plot (i) is for ten layers each having electrical properties: m ¼ 1, s ¼ 0 and 1 ¼ 10.

We assume the medium is lossless. In all the layers, the permittivity 1 was equated to 10

which is assumed to be similar to that of the normal breast tissue [2,3]. However, these values

of the electrical properties vary with the frequency in use at the time of measurements.

The plot (ii) is similar except that the last layer’s permittivity is set to be similar to that of a

breast tumour (110 ¼ 50; 19 ¼ 18 ¼ . . . ¼ 11 ¼ 10).

There is a significant difference in front-end impedance when the permittivity of the last

layer is 50 rather than 10 as in the other layers. With our detection system, there should be a high

probability of identifying an internal object with significantly different material properties to

its surroundings.

2.3.2 Distance calculation. Finding the layer thicknesses is important because their

arithmetic addition will give the distance from the surface to the layer boundary of interest.

For a test example, we used our algorithm to compute the thicknesses of two layers (n ¼ 2)

within our model. Using equation (5), we first calculate the front-end impedances of the

(n 2 1)th layer for two different frequencies f1 ¼ 2GHz and f2 ¼ 2.2GHz. The thickness of

the second and first layers are taken to be 0.004 and 0.002m, respectively. As the f1 and f2 are

close in value, we can set 1ið f 1Þ ¼ 1ið f 2Þ ¼ 10 for i ¼ 1, 2. From the values of Z1,1 and Z2,1
at the two different frequencies, we may estimate the values d1 and d2 using two equations

Figure 5. Plot of the layers’ front impedance.
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of the form of equation (7). That is

FðXÞ ¼
F1ðd1; d2Þ

F2ðd1; d2Þ

" #
¼

0

0

" #
; ð10Þ

where

Fiðd1; d2Þ ¼ jh2
i;1 tan½bi;1d1� þ Zi;1hi;2 tan½bi;1d1� tan½bi;2d2�

2 Zi;1hi;1 þ jhi;1hi;2tan½bi;2d2�; i ¼ 1; 2; ð11Þ

where hi;l ¼ hlð f iÞ and bi;l ¼ blð f iÞ, for i, l ¼ 1, 2.

The solutions for d1 and d2 have been computed using Newton’s method in the

mathematical software package MATLAB and are plotted in figure 6 (Newton’s method is

discussed further in the two-dimensional study). The two graphs show that the

approximations to d1 and d2 in F1 and F2 rapidly approach the exact values of

d1 ¼ 0.002m and d2 ¼ 0.004m. During the first few iterations, d1 and d2 have negative

values which are infeasible, of course. However, we are interested only in the values to which

they eventually converge and these are real and positive.

3. Two-dimensional study

Here, we consider the internal object to be a conducting circular cylinder with a radius in

millimetres. The microwave signal application system is the same as figure 1, but the model

of the host material is different from the one-dimensional case.

Figure 6. Computed results of layer thicknesses, d1 and d2.
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The two-dimensional model with cylindrical coordinates is shown in figure 7. Here, we

analyse the propagation of the microwave signal and the scattering effect at the cylinder

boundary (the circle with radius a in figure 7). We only consider the boundary condition at

the cylinder in the model because both forward and reflected signals are measured

simultaneously at the antenna front-end. The antenna is connected to the measuring system

(figure 1) where the reflection coefficient is calculated using the forward and backward

signals at the antenna A1. The scattered wave for another skin position (e.g. at A2 and A3) can

be found by the same procedure.

We consider this to be a single scattering problem and construct the electromagnetic wave

equations for the forward and scattered fields using the solutions to the scalar Helmholtz

equation [25]. Our discussion of the two-dimensional model is restricted to the conducting

cylinder. The extension to the case of a non-conducting cylinder having dielectric with

parameters m and 1 similar to those of a breast tumour can be developed as in [26–28]. In this

latter case, the boundary conditions of the normal and scattering fields on the cylinder are

based on the wave impedance that we discussed in the one-dimensional model.

3.1 The forward problem in the two-dimensional study

A plane wave incident upon the host material can be expressed in terms of cylindrical waves

[25]. The incident wave at the host material is z-polarised and travelling in the x direction as

shown in figure 5. The forward incident wave of frequency f is

Einc
z ð f Þ ¼ E0e

2jkx ¼ E0e
2jkp cosf; ð12Þ

where p is the radial distance from the centre of the cylinder, f is the angle with respect to the

x direction and k is the wave number of the medium given by

k ¼
2pf

ffiffiffiffiffiffi
m1

p

c
: ð13Þ

Figure 7. Two-dimensional model with cylindrical coordinates.
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As the wave is finite at the origin and periodic in f, of period 2p, equation (12) becomes

Einc
z ð f Þ ¼ E0

X1
n¼21

j2nJnðkpÞe
jnf ; ð14Þ

where Jn is the Bessel function [29] of the first kind. Due to scattering at the cylinder

boundaries, for the outward-travelling waves, the scattered field is

Es
zð f Þ ¼ E0

X1
n¼21

j2nanHnðkpÞe
jnf; ð15Þ

where Hð2Þ
n is the Hankel function [25,29] of second kind. The total field is the sum of the

incident and scattered field, that is,

Ezð f Þ ¼ Einc
z ð f Þ þ Es

zð f Þ: ð16Þ

Since we have zero electrical conductivity in the host material and zero field intensity

inside the conducting cylinder, then we have zero electric field components on the outer

surface of the cylinder by continuity of the field [13,25]. Considering the boundary condition

on the cylinder Ez ¼ 0, the total field at the point o given by equation (16) can be re-written

using equations (14) and (15).

Ezð f Þ ¼ E0

X1
n¼21

j2n JnðkpÞ2
JnðkaÞ

Hð2Þ
n ðkaÞ

Hð2Þ
n ðkpÞ

� �
ejnf: ð17Þ

Equation (17) can be used to find the total field at the point o in our two-dimensional

model. This includes both forward and scattered waves resulting from the incident wave Ez

from the antenna. Now, suppose the point o is rotated to the point o0 where o0 lies along the x

axis. If we consider this model for the breast tumour case, then the distance o0 is the distance

to the centre of the tumour from the surface of the breast. The equation after rotating the point

o into point o0 is

Ezð f Þ ¼ E0

X1
n¼21

j2n JnðkdÞ2
JnðkaÞ

Hð2Þ
n ðkaÞ

Hð2Þ
n ðkdÞ

� �
21ð Þn: ð18Þ

The computational cost of the inverse process depends on the number of arithmetic

operations required to calculate (18) accurately. It can be reduced by combining terms with

positive and negative values of n. The new equation is

Ezð f Þ ¼ E0

X1
n¼1

JnðkdÞ2
JnðkaÞ

Hð2Þ
n ðkaÞ

Hð2Þ
n ðkdÞ

� �
2j n þ E0 J0ðkdÞ2

J0ðkaÞ

Hð2Þ
0 ðkaÞ

Hð2Þ
0 ðkdÞ

" #
: ð19Þ

Equation (19) is the forward equation we use to find the unknowns for the two-dimensional

model. Using a similar approach to that used in the one-dimensional case, Ez( f) can be

measured and then equation (19) may be numerically inverted in order to determine a and d.
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3.2 The inverse problem in the two-dimensional study

In the forward problem a and d are known at a single location of the cylinder and the

amplitude values of the scattering field at each frequency have to be computed as explained

elsewhere [15,28]. In the inverse problem, the field quantity at the receiver is known by

measurement and a and d are the unknowns. In the practical situation, we can measure Ez( f)

for two frequencies f1 ¼ 2.0GHz and f2 ¼ 2.2GHz. Then, we compute the unknowns, a

and d, using the inverse method. Similarly to the one-dimensional case, the general equation

has two constituent equations of the form

DE ¼
DE1;zða; dÞ ¼ 0

DE2;zða; dÞ ¼ 0

" #
; ð20Þ

where we now use the subscripts 1 and 2 to indicate two different frequencies. In full,

DE ¼
DE1

DE2

" #
¼

E1 2 c1 ¼ 0

E2 2 c2 ¼ 0

" #
; ð21Þ

where c1 is the right hand side of the forward equation when the frequency is f1, and c2 is the

right-hand side of the forward equation when the frequency is f2. Here, E1 and E2 are the two

field components to be obtained from microwave measurements. In this analytical study, we

have used reasonable values for a and d (a ¼ 0.002m and d ¼ 0.04m) to calculate these two

values. In this study, we used the electrical parameters s ¼ 0, m ¼ 1 and 1 ¼ 10 within the

host material (outside the cylinder), and E0 is considered to be equal to unity. As there are

Bessel and Hankel functions inside the summation of the equation (19), it is necessary to

handle this equation carefully to obtain the correct answer for Ez( f). Calculations of the field

vectors and the subsequent verification using the experimental measurements have been

discussed in Ref. [21].

Solution of the inverse problem can be used to find the size and the location of the internal

object and the routine is summarised as follows. We start from an initial approximation

to our unknowns, X (0) ¼ (a0, d0)
T. Subsequent improvements to this approximation

X (N) ¼ (aN, dN)
T, N ¼ 1,2,. . ., are obtained by the following steps:

(1) Compute the field component based on the incident and the scattered field. The circular

boundary of the cylinder is the cause of the potential scatter and the angle f determines

the receiver location for the measuring system. The wave number k is frequency

dependent and there exists a field component for each frequency.

(2) Form the difference of the field vectors by subtracting the calculated field components

from the measured electric fields.

(3) Construct the n £ n Jacobian matrix Jl,m, l, m ¼ 1, 2,. . ., n, which is necessary in

Newton’s method to find the minimum difference in (2) above.

(4) Obtain the correction vector and form the implicit function for the vector X (N) to update

the computed values of unknowns in the vector X (N21) [23,24].

(5) Repeat the steps 1–4 until the vector X (N) satisfies some suitable stopping criterion.

Following the above procedure, the two unknowns were computed. The result is shown in

figure 8.
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Using the above procedure, we calculated a and d values using a set of guess values

(a ¼ 0.0028m and d ¼ 0.030m). The two graphs show that the approximations to a and d

rapidly approach the exact values of a ¼ 0.002m and d ¼ 0.04m. Again, the initial

iterations for a are negative, but the iterative procedure converges to a positive value.

The plots of DE1 and DE2 versus the number of iterations are shown in figure 9. Both DE1 and

Figure 8. Plots of calculated values of “a” and “d” using Newton’s method.

Figure 9. Plots of DE1 and DE2 versus number of iterations.
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DE2 converge towards zero as a and d approach 0.002 and 0.04m, respectively

(approximately after 12 iterations). When we determine Ez( f), we use equation (19),

truncating the series at successively larger values of n until we obtain a steady value for Ez( f).

The value of n will depend on the values of frequency, distance d, radius a and the electrical

parameters of the medium. Care must be taken when testing for convergence of equation (19)

since the solution oscillates with respect to n [28]. The accuracy of the initial guess can also

be a limitation.

We carried out a number of simulations to test our inverse algorithm for convergence.

First, using the forward method, the values of Ez( f1) and Ez( f2) were calculated for the

values of a and d equal to 0.002 and 0.04m respectively. Those results were used in our

inverse algorithm to test for the convergence using a range of initial (guess) values of a

and d. The selected range starts from a ¼ 0.001m and d ¼ 0.03m and changed by 0.0002

and 0.002 up to a ¼ 0.003m and d ¼ 0.05m respectively. Every pair of initial values

was tested separately, and the number of iterations, N, required for convergence is

counted.

The results are displayed in figure 10. The x and y axes represent the initial values of a

and d, respectively. Every grid point corresponds to a pair of a and d initial values. The

number of iterations (N) required for convergence is shown at the grid point. When the

initial values are far away from the true values we require a large number of iterations.

Furthermore, there exists a range beyond which we cannot expect any accuracy in the

convergence. In our test, a and d could vary by up to ^50 and ^22.5% from their actual

values, respectively, and still converge. In our example, we found that a ¼ 0.0010:0.0030

and d ¼ 0.030:0.048 is a safe range for convergence within a reasonable number of

iterations. We suggest that in general 20 iterations are needed in order to determine whether

the process is within a safe range before restarting the iteration process with alternative

starting values for a and d. It is important to display the result with double precision in order

to identify the exact solution.

We carried out an error analysis to study the robustness of the inverse computation method

with respect to measurement errors in the forward system. We added errors into the Ez( f1)

and Ez( f2) simulated values to find the corresponding errors in a and d values. Those values

are tabulated in table 1. The percentage error in a is quite large. We should note that our

original value of a is small compared to d (d is 20 times larger than a). However in general, d

is less sensitive to measurement errors than a.

Figure 10. Result of the simulations for convergence using different initial values of a and d (as in Ref. [15]).
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4. Discussion and conclusions

The approach used in this study has demonstrated the feasibility of calculating the unknown

size and position of a tumour inside the breast. Our inverse method is relatively simple when

compared to other approaches, but has the properties of fast convergence capability and

computational simplicity.

In the one-dimensional model, a layer of high permittivity equivalent to that of a breast

tumour is shown to provide a significant difference in front-end impedance. Similarly, the

algorithm developed for three layers indicates that the determination of the distance from the

breast skin surface to the cancer is computationally feasible using in vivo microwave

measurements.

As we have previously explained in Ref. [15], the two-dimensional study of the microwave

inverse computing method has proved capable of estimating the unknowns. In the two-

dimensional model, we have taken the object boundary to be conducting and so the reflection

coefficient at this boundary is equal to unity. For a non-conducting cylinder, the reflection

coefficient would change relative to the electrical properties on the two sides of the boundary.

For this, the equation (19) is modified to include the effect of the reflection at the non-

conducting cylinder boundary. Using the wave impedances of the two regions, the reflection

coefficient can be calculated at the boundary. Parameters for the properties of both regions

appear inside the new equation [28,30].

Inverse problems are notorious for being ill-posed yielding (in this case) non-unique

solutions, see Hadamard [31]. This is Hadamard’s original paper describing the concept of

well- and ill-posedness. This will be reflected by the Jacobian matrix in the linearisation

process described earlier having a high condition number and being nearly singular. This can

occur here and the system of equations can have non-unique values for a and d. We took care

within the computational scheme to ensure that the outputs gave unique answers for these

unknowns, which were both feasible (being both real and positive) and of the appropriate

sizes. This worked at the practical level. However, further work is needed to finally

characterise the degree to which this problem is indeed ill-posed.

Reflected waves may be received at the antenna due to other internal scattering

mechanisms. It is clear that the amplitude of the received reflected signal at the antenna due

to the tumour is significantly higher than the majority of these [6]. Therefore, the measured

data with and without a tumour should be easily distinguished despite these other effects.

However, the reflection from the chest wall may have to be considered separately, although

this effect can be included in the forward equation [21,28].

In practice, some form of calibration could be performed to reduce the influence of

measurement error. This could consist, for example, of normalising the measurement data with

measurements taken where it is known that there are no scattering objects present. Once the

Table 1. Result of the error analysis (as in Ref. [15]).

Measurement error (%) Error in a (%) Error in d (%)

1 2.1 0.005
2 5.1 0.125
3 10.5 0.16
5 18.5 0.31
7.5 29.5 0.41
10 41.5 0.54
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calibration procedure is completed then analysis of the measured data has a potential first

to identify the presence of the tumour and, if present, then to find its size and location inside the

breast.

This approach could be extended to use more than two frequencies in an over-determined

system. In this study, we tested and studied the computational stability of the inverse

algorithm with the minimum requirement for different frequencies. This has been shown to

be adequate; however, one could use more than two frequencies, and subsequently more than

two equations, to find the two unknowns, and this might be more accurate. There will be

practical limits on the number of different frequencies which can be used as appropriate

frequencies to provide a high contrast of the measured data with and without the object. This

frequency selection procedure is in Ref. [28]. The best range of microwave frequencies

depends upon a number of factors in the type of application [4–6]. We used 2.0 and 2.2 GHz

frequencies for this study.

Future work will incorporate three-dimensional modelling with a similar approach. This

will provide a means to compute the size and position of the breast tumour accurately.

The algorithms developed at this stage will be further validated in the laboratory.
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