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In the present work, we propose a discrete model to the characterization of heart rate
variability (HRV) complexity in the aging process of healthy subjects. We apply the Shannon
entropy on the basis of an alternative way to probability calculation and to define a new index
taking into consideration the transition probability that is related to the physiological
complexity of the system. Our results suggest that in the aging process the capability response
decreases according to the reduction of the physiological complexity. In the oldest group, an
alternative mechanism emerges to compensate for this lack of capability; however, this effect
does not increase the physiological complexity. Concomitantly, we provide some
physiological explanation for our results.
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1. Introduction

A biological system can be considered a complex dynamic system changing far from the

thermodynamic equilibrium; the complexity and diversity of these systems are the main

features that have led researchers to find a multifactorial theory for aging. The complex

nature of aging is the main difficulty preventing a single approach. There are several theories

like Harman’s free radical theory [1,2] that consider several facts, but the factors that

determine aging represent one of the fundamental problems of human knowledge.

The cardiovascular system response is related to a great variety of processes (respiratory

cycle, hormonal fluctuation, physical and psychological stress, etc.) converting the

cardiovascular system in a potential candidate for the study of complex behavior in the

organism like the aging process. On the other hand, many of the necessary data to study this

system could be obtained with non-invasive techniques that allow checking the system
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response from minutes to days. The HRV study is one of the possibilities and the problem is

subsequently the characterization of this signal.

Many indexes had been proposed in these years following the linear and non-linear tools

[3–6], but we still need appropriate indices that explain the changes in HRV with age and

sex, and that allow a correct prediction according to a physiological approach.

Several problems are present in the study of HRV: the lack of physiological sense of the

indexes, the problem with the recording time or series size, the non-stationary behavior of

signal, noise, etc. However, some magnitudes like fractal dimension, and entropies by different

methods, have shown very good results because they are related to the physiological comple-

xity and in some cases show more information than lineal index (Pnn50, SD1, etc.) [3,5–11].

It is important to note that some indexes are related to the mathematical complexity

(ex: predictability) but not with the physiological complexity. For this reason they fail in the

study of some diseases and even in the aging process [33].

In this work, we propose a discrete model to the characterization of HRV complexity in the

aging process of healthy subjects. We used the Shannon entropy on the basis of an alternative

way to probability calculation and define other indexes that are related to physiological

complexity and transition space. Concomitantly, we provide some physiological explanation

for our results.

2. Methods

2.1 Data collection

We studied a group of 73 healthy volunteers distributed in four different age groups: 26–30,

31–40, 41–50 and 51–60 years old, without any kind of pharmacological treatment.

The ECGs (electrocardiographic records) were recorded in relaxed sitting positions for a

20 min period, and the signal digitalized to 40 kHz and 8 bit. The filter used in the analysis

was proposed by Machado et al. [13]. We eliminate the first 2.5 min (see result and

discussion) of the record and the final RR series had a time interval of 10 min.

2.2 Theoretical support

From physiological perspective, RR interval variation is a consequence of the change in

sympathetic and/or parasympathetic systems and other events like respiratory rhythms,

electrical conduction mechanism, psychological and endocrinal influence, etc.

[3,15,19–21,33]. Several described methods consider that RR intervals or RR series are a

continuum of values in time, but according to the fact that the R wave is the result of

electrical impulses it would be more interesting to interpret variation behavior as a discrete

process in the continuo time, as referred to in [18].

The application of discrete models to the study of time series in the scientific literature has

been carried out with diverse tools like symbolic dynamic, point process, statistical physics,

stochastic approach, etc. [6,14–20]. Some of them take in to consideration different ways to

express the probability. The probability function and methods used to evaluate it will reflect

some specific interest according to a mathematical or physiological perspective. To construct

our discrete model, we considered the following postulates:

1. The RR interval corresponds to a measure of a discrete variable and its possible values do

not have the same probabilities.

2. Each measure (Ei) describes a state of the system.
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3. The states numbers (n) remain approximately constant after a certain time and during a

period of time if the system is not perturbed.

Due to the complexity of the control mechanism in the RR variation as a consequence of

their multiple factors, a state will be the global response of the system to all these variables.

If each measure represents a state of the system, then is important to define how many different

states are in the RR series. To do this, we use a measurement interval DE (a bin) and the state is

characterized by the mean value of the bin �Ei ^ DE. This is a clustering process in a time

series and other authors have reported good results with a bin of 8–15 ms [3,18–21,34].

According to the third postulate, the states number (n) must remain approximately

constant after a certain time, therefore the bin selected should allow this, and is important to

consider that of small window size would result in a fluctuation at the states number

associated with the noise of the series, and with the use of higher values we can lose

information for the states superposition.

The probability of a specific state in a time interval may be defined as:

Pi ¼
NiXn

i¼1

Ni

; ð1Þ

where ‘n’ is the states number and Ni is the frequency of the state ‘i’ in the time interval

analyzed. With this probability definition, we are not assuming any specific distribution; it is

a simple way to calculate probabilities. However other authors have used Gaussian

distribution function to describe the RR intervals [4,19,22]. Given the probability, we

calculate the entropy of Shannon as:

S ¼ 2k·
Xn

i¼1

Pi ln Pi; ð2Þ

where k ¼ 1 in our calculations.

2.3 Transition between states

It is known that RR series are irregular, perhaps due to noise or random components, or due to

deterministic chaos, but at same time are present some important short and long-range

correlations under different scales or partners that are the source of the fractality or

multifractality property of the signal [7,9]. This short or long-range (fractal) correlation is

somehow broken in aging or disease processes and, in this rupture, the physiological

complexity decreases [32,33]. The short and long-correlation indicates the ‘memory’ in the

heart response to some external or internal stimulation and could be translated saying that the

transition probability from the state i to j is not the same for any state i or j and in general

depends on the time involved between transitions. In some way this probability is connected

to the physiological complexity. It is the main reason to study transitions.

If Tij is the number of transitions from the states i to j (figure 1), then we define the

transition frequency matrix F (n £ n) with element Tij. The F matrix could be transformed in

a binary matrix F [1] with element 1 or 0 if Tij – 0 and Tij ¼ 0, respectively.

It is not difficult to note that the graphic representation of F [1] is similar to a Poincaré

map and its spatial representation has a big impact in the physiological implication
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[4,23,29–31]. The graphic representation of F (transition maps) has to include a new axis

corresponding to the frequency of transition. We will use a color scale to represent this axis.

An important feature of the transition map is its symmetry. If the map is symmetric then

Tij ¼ Tji for all i and j; on the other hand, if there are preferential states in the system, it is a

logical guess that the density of transitions around this states increases and the symmetry has

to change. We proposed an asymmetric index A(F) as follows.

If:

Gi;j¼iþ1 ¼
1 if jTi;j 2 Tj;ij . 0

0 otherwise
;

Then, we define:

AðFÞ ¼
2

nðn 2 1Þ

Xn21

i

Xn

j¼iþ1

Gij: ð3Þ

The 2/n (n 2 1) is a normalization term, therefore 0 # A # 1. In the cases A ¼ 0 or A ¼ 1,

the matrix is symmetric or asymmetric, respectively. It is important to emphasize that an

increment of the asymmetry values is not necessarily associated with point dispersion in the

transition maps but would be a consequence of variations in the density close to a specific

area in the map or in the random component of the system dynamic. The asymmetry is

related to the roughness of the transition space.

3. Results and discussions

In figure 2(A),(B) it is possible to identify the influence of bin size in the conservation of

states numbers and the state of maximal frequency along the recording time. We can observe

that with a size of 15 ms, it is possible to obtain a reproducible value in the n and Emax after

approximately 2.5 min of recording time.

Those results do not mean that our series are stationary but they are consistent with the

third postulate and at the same time fix the time interval to do our calculations. Above the

2.5 min approximately (for bin size bigger than 15 ms), it is possible to obtain small

fluctuations of n and Emax; this leads to the possibility of applying our model to extract useful

information in short-term recordings that is a general problem in RR time series analysis

[5,9,10,15]. We select a bin size of 15 ms, but in the range of 10–20 ms the significance

levels between the groups and errors are the same with our indexes.

Figure 1. Representation of the model. �Ei is the mean value of RR interval in the state i and Tij, is the number of
transition from states i to j.
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The RR mean fluctuation is not significant. This result is not contradictory for two possible

reasons: first the hear rate is not only determined by sympathetic modulation—in general it is

a result of several complex interactions between sympathetic, vagal, baroreflex and physical

influences [23,35]; and second we are using a relatively small population.

The states numbers decrease with the ageing process, and it is evident that there must exist

a close relation between this index, SDRR and S (figure 3). The decrement in the heart rate

standard deviation (SDRR) is equivalent to the reduction in the states accessibility (n);

however this index cannot say anything about how to change the transition between this

state, its mean, the n or SDRR index which are independent of the scales correlations.

A little more information is available with the entropy (S). In uncorrelated and uniform

state distribution:

S ¼ 2
Xn

i¼1

1

n
ln

1

n

� �
¼ ln n;

however in figure 3 the linear equation shows a significant difference with respect to the

uncorrelated uniform behavior. The entropies (S) lessen in the aging process (table 1)

as we should expect according to previous works [8,10–12,15,23–25] and this decrease

Figure 2. (A) States number (n) and (B) maximal frequency state (Emax) variation respect to time considering
different bin sizes.

Figure 3. Relationships between entropy (S) and SDRR respect to states number (n). (Left) S ¼ 1.27 ln(n) 2 1.3,
R ¼ 0.92, p , 0.001. (Rigth). R ¼ 0.94, p , 0.001.
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is a consequence of the complexity reduction of the signal. In the aging process, several

changes in the sympathetic tone had been noted by other authors as an increment in the

plasma or epinephrine levels, reduction in the baroreflex sensibility and a reduction in the

hear rate variability and SDRR [36,37]. The decrement in the entropy and accessibility space

(n) could be related with the same effect and is a signal of the increment in the sympathetic

tone. The same reason and the decrement in the physical exercise with the age are the

possible causes of the increment in the sympathovagal balance (LF/HF) [3,23,26,28,39].

However, SDRR, S and n indexes show a little increase in the oldest group. This effect is

not casual; it has also been described by other authors with a larger population [23,38] and

will be discussed in the next topic.

Although the asymmetry would have some mathematical connections with the entropy

they represent different information. The entropy is related to the states accessibility;

however, asymmetry takes in consideration the transition between these states and decreases

in the aging process and most in the oldest group (table 1).

4. Stability of states

In a system under certain external conditions that can change and/or modify their dynamic, the

states of higher probability correspond to the region of maximal stability, and as a consequence

of external influence, the system is forced to transit between different states. For this reason,

the capability response or transition space is as important as the region of maximal stability.

The mean probability distribution function of each group (figure 4), shows different

behavior according to the results of table 1. The two youngest groups present similar

distribution, but the second one shows a little displacement to lower states indicating an

increase in the beat frequency. We can observe in the 41–50 age group a compression in the

states space that must lead to a reduction in the accessible states reflected in the state number

and entropy decrease and as a consequence new states appear (close to 1150 ms) with

relatively low probability. On the other hand, the oldest group shows an increment of states

with low beat frequency but with a very low probability.

We can observe in the normalized graphic representation of matrix kFl (figure 5) the

transition spaces compression process and the appearance of new transition according to the

new states in the oldest groups. In this picture, the states are represented by number for

simplicity but taking care of scales conservation. As we can verify, a gradual compression of

the transition space exists, a clear indication of the reduction in the capability response and

an increase of the localization of the transitions (violet area) that could explain the

Table 1. Mean values of states number (n), entropy (S), asymmetry (A), RR mean, standard deviation of the RR
(SDRR) and the low frequency—high frequency ratio form the power spectra (LF/HF) obtained from healthy

subjects.

Parameters 26–30 years 31–40 years 41–50 years 51–60 years p-values

N 24 19 15 18 ,0.001
S 2.73 2.52 2.15 2.34 ,0.001
A 0.33 0.34 0.31 0.28 ,0.02
RRmean 855.41 802.00 811.04 862.52 **
SDR 58.98 47.60 32.66 38.70 ,0.01
LF/HF 0.771 1.223 1.542 1.909 ,0.01

**Not significant differences between groups.
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diminution in other linear index [12,23]. As a consequence of this transition reduction in the

41–50 age group, some transitions disappear with a little increase in the transition with

relatively high probability between unstable states as we referred before; these effects reduce

the asymmetry values (table 1).

In the youngest group, we cannot find a concentration in the transition that could be a good

way to distribute the response to excitation between a wide stable states area. However, in the

oldest group, the previous reduction in the transition space produces some emerging states

with low probability and low transition probability but in a very unstable area.

This effect is a possible explanation for the small increase in the states number, SDRR and

entropies. It is not an indicator of complexity increase, but the asymmetry reduction is

accordance with a physiological complexity decrease.

It is possible that the mechanism that follows the system during aging changes in oldest

subjects with the appearance of a random component in the time series, as this random

component increases the signal complexity. This would increases the state number and the

entropy [33] but decrease the physiological complexity and reduce at the same time the

asymmetry of kFl.
From a physiological perspective, we saw previously that in the aging the sympathetic tone

increases. The reasons of this change remain unclear and could be by multifactorial causes.

However, is generally accepted that with the increment of age or in disease like arrhythmias,

the conduction mechanism as well as automatism and impulse genesis are very affected by

the change in Gap conduction proteins distribution and the heterogeneity of SA node

structure [39–41].

The reduction conduction protein concentration like Cx40 and Cx43 together with an

increment in the sympathetic tone (and surely several other factors) would be associated with

an increment in the conduction path and a loss of uniformity in the SA node pulse given

Figure 4. Mean probability distribution of states for each age group.
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a possible explanation for the reduction in the transition space (roughness) with a small

tendency to follow the same transition path in different times scales (loss of complexity) and

the increment in the probability of transition to low beat frequency states.

5. Conclusions

In this work, we apply a method to the study of the heart rate variability in healthy subjects

with different ages using short length records and give an alternative way to the physiological

complexity loss.

Our results show that in aging, the capability response decreases and this behavior is

associated with the physiological complexity reduction of the system dynamic that could be

evaluated with the space transition changes. The emergence of new states and transitions in

the oldest group, which correspond to a lower beat frequency, is an interesting result that

should be studied later from physiological and mathematical perspectives.
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