
Modeling and simulation of a bacterial biofilm
that is controlled by pH and protonated lactic

acids

HASSAN KHASSEHKHAN and HERMANN J. EBERL*

Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada N1G 2W1

(Received 14 August 2006; revised 11 October 2007; in final form 25 October 2007)

We present a mathematical model for growth and control of facultative anaerobic bacterial
biofilms in nutrient rich environments. The growth of the microbial population is limited by
protonated lactic acids and the local pH value, which in return are altered as the microbial
population changes. The process is described by a non-linear parabolic system of three
coupled equations for the dependent variables biomass density, acid concentration and pH.
While the equations for the dissolved substrates are semi-linear, the equation for bacterial
biomass shows two non-linear diffusion effects, a power law degeneracy as the dependent
variable vanishes and a singularity in the diffusion coefficient as the dependent variable
approaches its a priori known threshold. The interaction of both effects describes the spatial
spreading of the biofilm. The interface between regions where the solution is positive and
where it vanishes is the biofilm/bulk interface. We adapt a numerical method to explicitly
track this interface in x– t space, based on the weak formulation of the biofilm model in a
moving frame. We present numerical simulations of the spatio-temporal biofilm model,
applied to a probiotic biofilm control scenario. It is shown that in the biofilm neighbouring
regions co-exist in which pathogenic bacterial biomass is produced or killed, respectively.
Furthermore, it is illustrated how the augmentation of the bulk with probiotic bacteria leads to
an accelerated decay of the pathogenic biofilm.
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1. Introduction

Bacteria, good or bad, tend to colonize surfaces that are immersed in aqueous environments.

Planktonic cells attach to the surface (the so-called substratum) and become sessile. The

bacteria produce extracellular polymers (EPS) that form a gel-like layer in which the cells

themselves are embedded. Their number increases by cell division and vivid, highly

organized microbial communities develop. Such biofilms form wherever nutrients are

available to sustain microbial life, which makes them one of the most successful life forms on

Earth [25].
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Biofilm occurrence reaches from beneficially engineered systems, mainly in

environmental applications [47] such as wastewater treatment, soil remediation or bio-

barriers for groundwater protection to unwanted ones. Most bacterial infections in the human

body encountered by physicians are thought to be caused by such microbial communities,

including many that are associated with biofouling on medical devices such as catheters,

prosthetis and heart valves. The long list of biofilm related diseases includes cystic fibrosis

pneumonia, prosthetic valve endocarditis, childhood ear infections, chronic prostatitis and

dental cavities; see Refs. [8,13,14] for more extensive examples. Biofilms forming on

production surfaces in food processing industry can cause food spoilage and pose hygienic

risks [43,45] that again eventually can lead to disease. As an example, we give the hardy,

harmful, food borne, biofilm forming pathogen Listeria monocytogenes that is found, e.g. in

dairy products [36,44], and causes the often fatal infection listeriosis. Thus, prevention and

eradication of biofilms is also of great food safety, hygienic and public health concern.

Life in biofilm communities offers protection against harmful environmental impacts that

suspended cultures do not have. It was found that biofilm communities are much more

difficult to eradicate with antimicrobial agents and antibiotics than their free swimming

planctonic counterparts. Antibiotics kill the bacteria in the outer layers of the biofilm, i.e.

close to the water/biofilm interface, but they fail to penetrate into the deeper layers of the EPS

matrix. This leaves the cells close to the substratum largely unbothered and gives them time

to develop resistance patterns against the particular antibiotics. Moreover, in many biofilms

the cells in the inner layers are only scantily supplied with essential substrates, such as

nutrients or oxygen (in the case of aerobic biofilms). As a consequence, they slow down their

metabolism. In such a slow or even no-growth mode, the bacteria are also less susceptible to

antibiotics and, hence, have increased chances of surviving such an attack. Once the

environmental conditions become better, e.g. after the antibiotic wave passed and competing

substrate consumers in the outer layers fell victim to the biocide, these dormant cells

re-vitalize and re-populate the biofilm community. Moreover, in order to better facilitate the

community’s response to antibiotics exposure, certain bacteria develop quorum sensing

communication strategies. The best studied example in this category is Pseudomonas

aeruginosa, which plays a major role in cystic fibrosis pneumonia. A more detailed

description of these biofilm defence mechanisms against antibiotics is given, e.g. in Refs.

[8,41]. Furthermore, since the bacteria are immobilized in the sticky EPS network and adhere

to the growth surface they are better protected against mechanical wash-out than free

swimming bacteria. Hence, occurrence and growth of unwanted biofilm communities are

difficult to control.

Mathematical models of biofilm processes traditionally focus on the growth of beneficial

biofilms and the degradation of dissolved substrates [1,11,16,18,19,29,34,47] or on the

disinfection of biofilms with antibiotics, antimicrobials or biocides [2,7,12,17,21,27,35,37–

40,42]; Ref. [2] contains also a model for a novel quorum sensing based biofilm treatment

strategy. In the present paper, we focus on a mathematical model for a different possible

control mechanism of unwanted bacterial pathogens. We consider a facultative anaerobic

bacterial population in a nutrient rich environment. Under these circumstances, neither

oxygen nor nutrient availability is the controlling factor of biofilm formation. Instead, we

investigate biofilm control by pH and protonated lactic acids, both of which can be

detrimental to such bacterial populations. One possible realization of such a bio-control

system is to augment the microbial ecology with harmless bacteria, the presence of which

lowers the pH value until it reaches a value under which the pathogenic bacteria cannot easily

thrive or even survive. An example is control of L. monocytogenes by Lactococcus lactis
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populations, which are frequently developed as probiotics and added to dairy products as

health promoting functional foods, e.g. [33]. Such a microbial system, under planktonic

conditions, was studied experimentally and by mathematical modeling in Ref. [4], where

competitive growth of both species in nutrient rich vegetable broth was considered. While

nutrients are not limited in this system, it is the combined effect of pH and protonated acids

that influences the growth activity. Moreover, the concentration of protonated acids is

increased by the microbes, and higher concentrations of protonated acids, in return, imply

lower pH. Thus, both quantities, pH and the protonated lactic acid concentration are the

limiting substances for bacterial growth. Accordingly, the model that was proposed,

calibrated and studied numerically in Ref. [4] is a nonlinear system of ordinary differential

equations for the dependent variables biomass of pathogen and control agent, protonated

acids and hydrogen ions.

In the present study, we investigate the potential of such a pH based control strategy for

biofilm communities. This requires to consider the spatial organization of the biofilm and the

diffusive transport in the EPS matrix. To this end, we adapt the ordinary differential equation

model of Ref. [4] in the context of a previously introduced double degenerate parabolic

model of biofilm formation [16]. The model of Ref. [4] appears in this density-dependent

diffusion model in form of the reaction terms. The equations describing the limiting

substrates become semi-linear diffusion–reaction equations. The spatial operator for biofilm

spreading shows two non-standard diffusion effects: (i) a power law degeneracy, as in the

case of the porous medium equation, for vanishing biomass densities and (ii) a singularity in

the diffusion coefficient as the biofilm fully compresses. Both effects together lead to the

development of sharp and steep interfaces in the model solution that mark the separation of

the actual biofilm from its liquid environment. Such propagating interface problems in partial

differential equations often are difficult to treat numerically. A promising new numerical

approach for such interface propagation problems was suggested in Ref. [3], based on a weak

formulation of the governing partial differential equation in a moving frame. This method

was applied in Ref. [28] to a biofilm model with unlimited growth. We will adapt a modified

version of this scheme for the biofilm control model.

The paper is organized as follows: In section 2, the mathematical model is formulated

based on the non-linear diffusion model for spatio-temporal biofilm formation that was

suggested in Ref. [16] and the reaction kinetics for pH-controlled bacterial populations that

were established in Ref. [4]. In section 3, a fully adaptive numerical method is devised, based

on a variable transformation that was adapted for the degenerated biofilm equation in Ref.

[15], a weak moving frame formulation of the model that was developed in Ref. [3], and a

time-scale argument, which goes back to Ref. [29] and is routinely used in most biofilm

modeling studies. Simulation results are presented and discussed in section 4.

2. Model formulation

The biofilm model is formulated in terms of the active biomass density N(t, x) in a spatial

domain V; here the independent variable t $ 0 denotes time and the independent variable

x [ V is the spatial location. The actual biofilm is the region in which the biomass is present,

V2ðtÞ ¼ {x [ V : Nðt; xÞ . 0}, while the region V1ðtÞ ¼ {x [ V : Nðt; xÞ ¼ 0} is the liquid

phase surrounding the biofilm. Both regions change as the biofilm grows. The biofilm

structure V2(t) can consist of several sub-regions that are not necessarily connected. We

denote the biofilm/liquid interface by g and have gðtÞ ¼ ðV1ðtÞ> �V2ðtÞÞn›V.
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Following Ref. [16], biofilm formation is described by the nonlinear evolution equation

›tN ¼ 7·ðDðNÞ7NÞ þ gðC;PÞN; ð1Þ

where the density-dependent diffusion coefficient for biofilm spreading has the form

DðNÞ ¼ d
N b

ðNmax 2 NÞa
; a; b $ 1; d . 0: ð2Þ

Thus, the diffusion operator of (1) shows two non-linear effects: (i) a power law

degeneracy as in the porous medium equation such that D(0) ¼ 0 and (ii) a power law

singularity as N approaches to the maximum possible cell density, N ! Nmax (fast diffusion).

The first effect (i) guarantees that the biofilm does not spread notably if the biomass density is

small, N ! Nmax, and it is also responsible for the formation of a sharp interface between

biofilm and surrounding liquid, i.e. initial data with compact support lead to solutions with

compact support. The second effect (ii) ensures that the maximum biomass density is not

exceeded. Both effects together are required to describe biofilm formation (squeezing

property). Biofilm diffusion models of this type have been studied in a small series of papers,

both analytically and numerically in Refs. [15–23,28].

The net growth rate g(C, P) in (1) depends on the local concentration of protonated acids,

C, and hydrogen ions, P. The latter measures the pH value such that increasing P means

decreasing pH and vice versa, more specific we have

pH ¼ 2log10 P;

with P measured in mole. The growth function is positive (growth phase) if both values C, P

are small and negative (decay phase) if at least one of them is large. Between both extrema a

plateau phase is observed. For our study, we use the continuous and piecewise linear growth

function that was suggested and experimentally verified in Ref. [4] for suspended cultures of

L. monocytogenes and L. lactis in vegetable broth

gðC;PÞ ¼ m·min 12
C

H1ðCÞ
; 12

P

H2ðPÞ

� �
; ð3Þ

where the auxiliary functions H1(C) and H2(P) are defined by

H1ðCÞ ¼ k1Hðk1 2 CÞ þ C·HðC 2 k1Þ ·Hðk2 2 CÞ þ k2HðC 2 k2Þ;

and

H2ðPÞ ¼ k3Hðk3 2 PÞ þ P·HðP2 k3Þ ·Hðk4 2 PÞ þ k4HðP2 k4Þ:

Here, the function H is defined by

HðxÞ ¼

1; if x . 0

1
2

if x ¼ 0

0; if x , 0

8>><
>>:

Parameters m, k1,2,3,4 are positive constants with k1 , k2 and k3 , k4. The growth function

g(C, P) of (3) is plotted in figure 1 for a typical set of parameters that were estimated from
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laboratory experiments in Ref. [4]. We note that the function g(C, P) in (3) is Lipschitz

continuous in the positive cone C . 0, P . 0 with respect to both of its arguments. The

Lipschitz constant can be estimated from the model parameters k1 through k4.

Protonated lactic acids C are produced locally in the presence of bacteria until the

concentration reaches a saturation value Cmax with Cmax . k2. Assuming first order kinetics

as proposed in Ref. [4] for suspended cultures and taking diffusive transport of protonated

acids into account one obtains

›tC ¼ 7 · ðDcðNÞ7CÞ þ kN 12
C

Cmax

� �
; ð4Þ

where k is a positive rate constant. Protonated acids lower the pH value, i.e. lead to an

increase of P until a saturation value Pmax is reached with Pmax . k4. Following again, the

first order reaction kinetics identified in Ref. [4] for suspended cultures and considering

diffusive transport, one obtains similar to (4) the diffusion–reaction equation for P,

›tP ¼ 7ðDpðNÞ7PÞ þ rC 12
P

Pmax

� �
; ð5Þ

where again r is a positive rate constant.

Equations (1), (4) and (5) with (2) and (3) represent a nonlinear system of diffusion–

reaction equations for the dependent variables biomass density N, concentration of

protonated acids C and concentration of hydrogen ions P. It is completed by a set of initial

data and appropriate boundary conditions. These will be specified later on.

Figure 1. Piecewise linear, continuous net growth rate g(C, P) using parameters as suggested by Ref. [4]. The
population grows, g . 0, for small values of C and P and decays, g , 0, if either concentration C or P becomes
large; the region in between marks the neutral, stationary phase.
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Note that the diffusion coefficients in (4) and (5) depend on the local biomass density N.

More specifically, we have

DcðNÞ ¼
dc; N ¼ 0

tcdc; N . 0

(
; and DpðNÞ ¼

dp; N ¼ 0

tpdp; N . 0

(
; ð6Þ

where the positive constant dc is the diffusion coefficient of protonated acids in the liquid

phase. In the biofilm matrix, diffusion of dissolved substrates is typically somewhat slower

than in the bulk liquid environment, depending on the size of the diffusing molecules [6]. We

denote the ratio of the diffusion coefficients in biofilm and water by tc and have 0 , tc # 1;

the quantities dp and tp are defined accordingly for the diffusion parameters of P. For the

diffusion coefficient of P, we make similar assumptions. In particular with definition (6),

transport of C and P is due to regular Fickian diffusion in both domains, biofilm and liquid

environment. Across the biofilm/liquid interface g, the concentrations C and P are

continuous but have a crack, i.e. are discontinuous in the normal derivative if 0 , tc , 1 or

0 , tp , 1, respectively. Thus, the solutions of (4) and (5) are to be understood in the weak

sense. Continuity of the diffusive flux mandates

½›nðDcðNÞCÞ�g ¼ 0 and ½›nðDpðNÞPÞ�g ¼ 0; ð7Þ

where [·]g denotes a jump discontinuity at g, and ›n denotes the derivative in normal

direction at the interface g. Interface condition (7) can be derived formally with the

divergence theorem after integrating (4) and (5) over V and separating the domain along g.

Continuity of the concentration across the interface can be expressed in the same notation by

½C�g ¼ 0 and ½P�g ¼ 0: ð8Þ

The numerical method that will be devised in the next section explicitly locates the

position of the biofilm/water interface, which will allow to explicitly enforce the interface

conditions (7) and (8) and to treat (4) and (5) piecewise as semi-linear equations.

In the following, we will use a re-formulation of (1), in terms of the volume fraction u

occupied by biomass, u ¼ N/Nmax. Then, the biofilm equation becomes

ut ¼ 7· 1
ub

ð12 uÞa
7u

� �
þ gðC;PÞu; a; b . 1; 1 . 0; ð9Þ

with

1 ¼ dNb2a
max :

Remark. The specific, piecewise linear growth function (3) was introduced in Ref. [4] to

capture the three main stages of bacterial growth curves, as observed in laboratory

experiments: growth phase, stationary phase and decay phase, as defined, e.g. in Ref. [30]. In

the modeling literature, however, smooth functions are generally preferred, for reasons of

regularity of model solutions. A typical smooth inhibition model for C and P controlled
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bacterial growth is described by the growth rate (all parameters positive)

~gðC;PÞ ¼ m
kC

kC þ C

� �mC kP

kP þ P

� �mP

2d;

which behaves qualitatively similar to (3), albeit without the extended almost stationary

phase that is observed in experiments. The numerical method described below can be applied

to such a model as well without modifications. Nevertheless, we will keep the piecewise

linear reaction rate (3) introduced in Ref. [4], for the remainder of this paper.

Remark. Existence and long-term behavior of solutions of the initial-boundary value problem

of a biofilm model that shows the same degenerate-diffusion behaviour as (9), but with a

Monod reaction term that describes production of new biomass (and accordingly changed

evolution equations for the controlling nutrient) was studied analytically in Ref. [22]. One of

the key results in that paper was the existence of a global attractor, the structure of which was

explored in Ref. [20]. Additional analytical results can be found in Ref. [15] for biofilms with

unlimited growth, where in particular a variable transformation was introduced that will be

utilized in our numerical method in the next section. A generalization of the existence proof

to biofilms formed by more than one particulate substance was developed in Ref. [21].

3. Numerical method

We will derive a weak moving frame form of equation (9), based on which a moving mesh

finite element algorithm will be constructed that explicitly tracks the movement of the

biofilm/liquid interface. This idea follows the concept outlined in Ref. [3] and was applied to

a similar model of a biofilm, albeit with uncontrolled growth, in Ref. [28]. We modify this

approach here by performing a change in the dependent variables, which transforms the

degenerated diffusion operator into the Laplace operator and shifts all non-linear diffusion

effects of (9) into the time derivative. This idea is carried over from Ref. [15] where it was

used for the discretization of the biofilm model on a fixed, non-adaptive grid. The substrate

equations (4) and (5) must be solved in the liquid phase V1(t) as well. Since these are semi-

linear diffusion–reaction equations with no further peculiarities, any standard solver for this

type of equations can be applied. For the time-treatment of the transport-reaction equations,

we invoke a standard argument of biofilm modeling [1,29,34,47]. The characteristic time

scales of the diffusion and reaction processes governing the concentration fields of dissolved

substrates are much smaller than those of biofilm formation and spreading. Therefore, a quasi

steady state assumption is made for (4) and (5). Thus, this system is converted into two

elliptic problems, one for each of C and P, at every time-step of the biofilm growth model.

In fact, due to the special form of the reaction terms, the system for P and C at every time-

step can be solved as two consecutive scalar linear equations.

3.1. Model formulation in the moving frame and computational realization

The normalized biomass equation (9) can be re-written in the form

›tu2 1DFðuÞ ¼ gðC;PÞu; ð10Þ
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with

FðuÞ ¼

ðu
0

sb

ð12 sÞa
ds ¼

ubþ1

bþ 1
F ða; bþ 1; 2þ b; uÞ; ð11Þ

where

F ða; bþ 1; 2þ b; uÞ ¼
X1
k¼0

uk

k!

Gðk þ aÞGðk þ 1þ bÞGð2þ bÞ

GðaÞGðbþ 1ÞGðk þ 2þ bÞ
;

is the hypergeometric function. In all applications of the density-dependent diffusion-

operator to biofilm modeling, the exponents are chosen such that a; b [ N. Then, one obtains

FðuÞ ¼
ubþ1

bþ 1
F ða; bþ 1; bþ 2; uÞ ¼

X1
k¼0

k þ a2 1

k

 !
ukþbþ1

k þ bþ 1
:

For example, the specific choice a ¼ 2 þ b, b [ N leads to the simple expression

FðuÞ ¼
1

a2 1

ua21

ð12 uÞa21
: ð12Þ

For certain other choices of a; b [ N, the integrals in (11) can be found in the literature,

e.g. in Ref. [5]. In any case, for given a, b $ 1, the solution of the integral in (11) can be

represented as an analytical real function. Following Ref. [15], we introduce the new

dependent variable v, defined by

v V FðuÞ: ð13Þ

Since F:[0,1) ! [0,1) is a strictly increasing function, it is also invertible. We introduce

the inverse

bðvÞ U F21ðvÞ ¼ u: ð14Þ

It is easy to show that b : ½0;þ1Þ! ½0; 1Þ is an increasing function as well; e.g. in the case
b ¼ a2 2 [ N, cf. (12), we have u ¼ bðvÞ ¼ ððða2 1ÞvÞ=ð1þ ða2 1ÞvÞÞ1=ða21Þ).

Re-writing (10) in terms of the new dependent variable v we obtain finally

bðvÞt 2 1Dv ¼ gðC;PÞbðvÞ: ð15Þ

In order to derive a moving frame formulation of (15), we denote by j the points in the

initial biofilm domain V2ð0Þ ¼ {j [ V : bðvðj; 0ÞÞ . 0} and by x̂ an invertible map that

describes the trajectories of these points in the moving frame such that

x ¼ x̂ðj; tÞ; ð16Þ

defines the biofilm region, V2ðtÞ ¼ {x [ V : bðvðx; tÞÞ . 0}. For the purpose of explicitly

tracking the interface between biofilm and liquid phase, we require that under x̂ the boundary

of V2(0) is mapped to the boundary of V2(t). More specifically, we require that the interface

g (0) is mapped into g (t) and that the points in ›V2ð0Þ> ›V remain stationary. The map x̂

that satisfies these conditions will be specified below. With the same change of independent

H. Khassehkhan and H. J. Eberl54



variables, v can be presented in moving form as well, i.e.

vðx; tÞ ¼ vðx̂ðj; tÞ; tÞ U v̂ðj; tÞ; ð17Þ

from which

›v̂

›t
¼

›x̂

›t
·7vþ

›v

›t
¼

dv

dt
: ð18Þ

We define also

bðvðx; tÞÞ ¼ bðv̂ðj; tÞÞ U b̂ðvÞ; ð19Þ

and introduce the notation

_bðvÞ ¼
db̂ðvÞ

dt
; _x ¼

dx̂

dt
;

Thus,

_bðvÞ ¼ b 0ðv̂Þ
dv̂

dt
¼ b 0ðvÞ 7v·

dx

dt
þ

›v

›t

� �
¼ b 0ðvÞ7v · _xþ

db

dt
; ð20Þ

where with (14), the derivative b 0(v) with respect to v reads

b 0ðvÞ ¼
1

F0ðuÞ
¼

ð12 bðvÞÞa

bðvÞb
:

We obtain the moving frame formulation of (15)

_bðvÞ2
ð12 bðvÞÞa

bðvÞb
7v · _x2 1Dv ¼ gðC;PÞb ðvÞ: ð21Þ

For the convenience of notation, we abbreviate (15) by

bðvÞt ¼ Lv; ð22Þ

where L is the semi-linear diffusion–reaction operator, i.e.

Lv U 1Dvþ gðC;PÞbðvÞ:

In order to calculate the interface location, we shall derive the weak formulation of (15) in

the moving frame as given by (16) and (21). Taking into account that b(v) ; 0 in V1ðtÞ ¼

VnV2ðtÞ and applying the Divergence Theorem inV2(t), we obtain the integral version of the

governing equation (22)

d

dt

ð
V2ðtÞ

bðvÞdx¼

ð
V2ðtÞ

›bðvÞ

›t
dxþ

þ
›V2ðtÞ

bðvÞ_x ·nds¼

ð
V2ðtÞ

›bðvÞ

›t
þ7·ðbðvÞ_xÞ

� �
dx; ð23Þ
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where n is the outward pointing unit normal vector to ›V2(t). Let us assume that v belongs to

the space of test functions with compact support, satisfying the linear advection equation

›v

›t
þ _x · ð7vÞ ¼ 0: ð24Þ

Then, we obtain finally from (21), the weak form of (22) in the moving frame

d

dt

ð
V2ðtÞ

vbðvÞdx2

ð
V2ðtÞ

v7·ðbðvÞ_xÞdx ¼

ð
V2ðtÞ

v Lv dx: ð25Þ

It remains to determine the mapping (16). Following Ref. [3], this will be based on the

principle of conservation of mass. To this end, we calculate the total (normalized) biomass in

the system u(t) as

uðtÞ ¼

ð
V2ðtÞ

bðvÞdx; ð26Þ

and obtain for the test function v

ð
V2ðtÞ

vbðvÞdx ¼ duðtÞ; ð27Þ

which defines d. From (25) and (27), we derive

d _uðtÞ2

ð
V2ðtÞ

v7·ðbðvÞ_xÞdx ¼

ð
V2ðtÞ

v Lv dx; ð28Þ

and after integration by parts,

d _uðtÞ2

ð
›V2ðtÞ

vbðvÞ_x · n dsþ

ð
V2ðtÞ

bðvÞ_x ·7v dx ¼

ð
V2ðtÞ

v Lv dx: ð29Þ

In order to calculate the velocity of the moving points uniquely, the concept of vorticity is

introduced, which is equal to the curl of the velocity, following Ref. [3]. Therefore, for given

u and u from (29) and for a known point vorticity, a point velocity potential function f is

defined such that _x ¼ 7f. We obtain from (29)

d _uðtÞ2

ð
›V2ðtÞ

vbðvÞ7f · n dsþ

ð
V2ðtÞ

bðvÞ7f ·7v dx ¼

ð
V2ðtÞ

v Lv dx: ð30Þ

In order to compute _x and _u, we obtain with

ð
V2ðtÞ

v · _x dx ¼

ð
V2ðtÞ

v ·7f dx; ð31Þ
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so that

_uðtÞ ¼

ð
V2ðtÞ

ðLvþ 7 · ðbðvÞ_xÞÞdx: ð32Þ

After integration and incorporating the boundary condition, _u simplifies to

_uðtÞ ¼

ð
V2ðtÞ

gðC;PÞbðvÞdx: ð33Þ

Integrating by parts and using the compact support properties of the test functions v, we

derive from (25)

d _uðtÞ ¼ 21

ð
V2ðtÞ

7v·7v dxþ

ð
V2ðtÞ

gðC;PÞbðvÞv dxþ

ð
V2ðtÞ

v7·ðbðvÞ7fÞdx; ð34Þ

where we used the velocity potential function _x ¼ 7f and (27). From this equation, we can

calculate f and, hence, the grid velocity _x from equation (31). Note that by this procedure

points that lie initially on the biofilm/liquid interface g (0) will be mapped on to points on the

biofilm/liquid interface g (t) for all t . 0.

To approximate the continuous weak formulation by a discrete representation, we

introduce a finite set of basis functions vi, i ¼ 1, . . .,M. Conservation of mass mandates that

these are chosen such that
PM

i¼1vi ¼ 1 and thus

XM
i¼1

ð
V2ðtÞ

vibðvÞdx ¼
XM
i¼1

diuðtÞ ¼ uðtÞ; ð35Þ

with

XM
i¼1

di ¼ 1: ð36Þ

For the computational realization of the interface tracking algorithm, we discretize the

equations of the previous section and solve them for a finite number of moving points Xi(t) in

the domain. This is essentially an adaptation of the moving grid technique in Ref. [3] for our

model equation (9) in the transformed form (15). Later on, in the numerical examples, we

shall use piecewise linear basis functions.

We introduce a disjoint finite element segmentation of the initial domain V2(0). Let us

assume that the initial grid points

Xð0Þ ¼ ðX1ð0Þ;X2ð0Þ;X3ð0Þ; . . .;XMð0ÞÞ
T;

Xi(0) [ V are given, not necessarily equidistant over the whole domain V2(0) at time t ¼ 0.

We denote by {Wiðx; tÞ}i¼1;:::;M the set of basis functions. The basis functions change over

time, i.e. they are adapted to the moving grid points XjðtÞ. They satisfy WiðXjðtÞ; tÞ ¼ dij for

all t, satisfy the advection equation (24) and the first of (36). The local weights ci ¼ const

associated with the basis functions can be computed a priori from the initial data and (35)

and (36).
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We approximate the solution u ¼ bðvÞ of (9) in the grid points Xj(t) by

bðvðXjðtÞ; tÞÞ < bðVjðtÞÞ ¼
XM
i¼1

bðViðtÞÞWiðXjðtÞ; tÞ; ð37Þ

where the approximation of the transformed dependent variable ViðtÞ ¼ VðXi; tÞ and the

approximation of the original dependent variable Ui(t) of uðXiðtÞ; tÞ relate like

ViðtÞ ¼

ðUiðtÞ

0

sb

ð12 sÞa
ds: ð38Þ

The discrete velocity potential of the moving grid reads

fjðtÞ U f ðXjðtÞ; tÞ ¼
XM
i¼1

fiðtÞWiðXjðtÞ; tÞ: ð39Þ

With this discretization, we derive from (30), (31) and (33) a system of ordinary

differential equations for the movement of the grid points and the rate of change of mass

d

dt

X

u

 !
¼ F

X

u

 !
: ð40Þ

We have a dynamical system which monitors the location of the moving mesh points and

the total biomass in the system. The solution u ¼ b(v) is obtained by integrating (15) over the

moving domain spanned by (40). The system of ordinary differential equations (40) can be

solved numerically using an appropriate Ordinary Differential Equation (ODE) solver. In our

simulations in the next section, we use a time-adaptive Runge–Kutta–Fehlberg method of

order 4(5) [24]. The right hand side of (40) is evaluated in several steps. To this end, discrete

versions of the equations discussed above must be computed.

3.2. Computation of C and P

When formulating the weak moving frame version of model (1) and its numerical

approximation, we always assumed C(t, x) and P(t, x) as known functions. We comment here

briefly on the computation of these two quantities. First, we note that for the calculation of

the concentration fields in the biofilm region V2(t), also the concentration fields in the liquid

regionV1(t) must be computed, due to the coupling across the interface (7) and (8). Note that

in particular the equation (4) for C simplifies greatly in the liquid region where N ; 0. The

governing equations (4) and (5) are semi-linear diffusion–reaction equations, the spatial

discretizations of which do not pose special difficulties. Since the location of the

biofilm/liquid interface is explicitly known from section 3.1, the interface conditions (7) and

(8) can be enforced. For the time-treatment of the transport-reaction equations, we invoke a

standard argument of biofilm modeling [1,29,34,47]. The diffusion and reaction processes

governing the concentration fields of dissolved substrates are much faster than those

governing biofilm formation and spreading. Therefore, a quasi steady state assumption is

made for (4) and (5). First, a time-step tj21 ! tj of the growth model is calculated based on

the previous values Cðtj21; ·Þ, Pðtj21; ·Þ, Nðtj21; ·Þ, resulting in N(tj, ·) at the new time level.
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Then, the concentration fields C(tj, ·) and P(tj, ·) relax to the equilibrium

0 ¼ 7ðDcðNÞ7CÞ þ kN 12
C

Cmax

� �
; ð41Þ

0 ¼ 7ðDpðNÞ7PÞ þ rC 12
P

Pmax

� �
; ð42Þ

for known biomass density N(tj, ·). Since N(t, ·) is known from section 3.1, equation (41) is a

linear equation for C(tj, ·). After obtaining C(tj, ·), the equation (42) reduces to a linear elliptic

equation for concentration field P(tj, ·).

In recent years, much emphasis in biofilm modeling was placed on the complicated

morphological structure, in which many biofilms develop [1,11,16,31,34], such as

mushroom-shaped or pillar-shaped architectures that are characteristic for many biofilm

systems. It was shown previously that the density-dependent diffusion mechanism is able to

predict such structures [16,18,19,47]. However, the bacterium L. monocytogenes that is the

model species for this study is known to form rather thin, flat biofilms, e.g. [19,26].

Therefore, in the numerical model illustrations in the next section, we will restrict ourselves

to spatially one-dimensional simulations where the biofilm grows perpendicular to the

substratum as a homogeneous layer. The equation (41) reduces then to the ordinary boundary

value problem

tcdcC
00 ¼ 2kbðvÞ 12 C

Cmax

� �
x [ ½0; g ðtjÞ�

C00 ¼ 0 x [ ½g ðtjÞ; L�

Cðtj; LÞ ¼ C1; j;C
0ðtj; 0Þ ¼ 0; ½C�g ¼ 0; ½DCðNÞC

0�g ¼ 0

8>>><
>>>:

; ð43Þ

where C1,j is the Dirichlet value for C at time level tj. Due to absence of biomass in the liquid

region, the concentration field can be solved there analytically. One obtains for g (tj) , x , L

Cðtj; xÞ ¼
C1; j 2 CgðtjÞ

L2 g ðtjÞ
x2

gC1;j 2 CgðtjÞ

L2 g ðtjÞ
; ð44Þ

which can be used to construct a Robin boundary condition for C in V2. Thus, the boundary

condition depends on the interface position which is a function of time. Equation (43) for the

biofilm region 0 , x , g(tj) becomes

C00 ¼ 2
kbðvÞ

tcdc
12

C

Cmax

� �
; ð45Þ

with

C0ð0Þ ¼ 0; ðL2 g ðtjÞÞC
0ðg ðtjÞÞ þ g ðtjÞCðg ðtjÞÞ ¼ ðg ðtjÞ2 LÞC1;j: ð46Þ

In order to avoid interpolation, equation (45) is solved on the mesh that is constructed for

the discretization of u as outlined above in section 3.1. Since this mesh changes adaptively,

appropriate non-equidistant finite difference formula are required. Using the standard second

order compact stencil discretization of the second derivative, e.g. [32], leads to a linear
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system described by a tridiagonal M-matrix. Thus, its inverse exists and is positive, which

ensures the existence of a positive numerical solution of (45) with (46).

Similarly, (42) leads to the piecewise defined linear ordinary boundary value problem

P 00 ¼ 2
r

tpdp
C 12

P

Pmax

� �
; 0 , x , g ðtjÞ; ð47Þ

and

P 00 ¼ 2
r

dp
C 12

P

pmax

� �
g ðtjÞ , x , L; ð48Þ

with the coupling conditions

½DPðNÞP
0�g ¼ 0; ½P�g ¼ 0; ð49Þ

and boundary conditions

P 0ð0Þ ¼ 0; PðLÞ ¼ P1; j: ð50Þ

The concentration C in this problem is determined as the solution of (43) and (44). Again,

standard second order finite differences are used to solve (47)–(50).

4. Numerical simulations

4.1. General system description and model behavior

For our simulations, we consider the following general description of a biofilm reactor that is

frequently made in one dimensional biofilm modeling (figure 2). The physical system is

subdivided into three distinct phases: (i) the actual biofilm, attached to an impermeable

surface, in which the bacterial biomass is concentrated, corresponding to V2 in our notation

above, (ii) a concentration boundary layer in the surrounding liquid phase, in which P and C

undergo gradients (this is V1; see also Ref. [47] for a more detailed description of the

Figure 2. The biofilm system is described by three phases: the actual biofilm V2, the concentration boundary layer
V1, and the bulk liquid, which is described in the model by the boundary conditions. The plotted curve schematically
indicates the profile of concentrations C and P in the system.
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concentration boundary layer concept) and (iii) the bulk liquid, which is assumed to be

completely mixed. In our model, the bulk liquid is described by the boundary conditions for

C and P. We make the usual assumption that the reactor is sufficiently large such that the

concentrations in the bulk liquid are not affected by the bio-chemical reactions in the biofilm.

The biofilm processes are controlled by controlling the concentration in the bulk liquid.

Since pathogenic biofilms like L. monocytogenes can often be found in non- or extremely

slow flowing systems [26] we can assume the concentration boundary layer to be thick

compared to the biofilm, g (0) ! L.

The boundary conditions posed on the bacterial biomass are a homogeneous Neumann

condition at the impermeable substratum and a homogeneous Dirichlet conditions at the

(moving) biofilm/liquid interface, i.e.

›xujx¼0 ¼ 0; uðt; g ðtÞÞ ¼ 0; t . 0: ð51Þ

4.1.1 Implications of the maximum principle. The boundary conditions for C and P were

specified above in section 3.2. The maximum principle for two-point boundary value

problems [46] implies that in every time step, i.e. for a given biomass distribution uðtj; xÞ . 0

for x , gðtjÞ and uðtj; xÞ ¼ 0 in x . g(t), both concentration fields C and P attain their

minimum on the Dirichlet boundary x ¼ L, are monotonous functions for 0 , x , L, and

attain their maximum at the Neumann boundary x ¼ 0, i.e. at the substratum. Physically, this

is due to the interaction of Fickian diffusion and production in the biofilm. The observation of

increasing Pwith increasing penetration depth into the biofilm is equivalent to decreasing pH

with increasing penetration depth. This is consistent with typical pH profile measurements in

biofilms, e.g. [9,48] and with simulation studies in Ref. [10] for the neutral pH range. Note

that the model in Ref. [10] is a more detailed description of pH than the one discussed here,

but does not account for the effect of pH on the biofilm.

From the comparison principle, it follows that the concentrations C and P in the domain

are the higher, the higher the boundary values C1, j and P1, j are. In particular, it is implied

that in every time step the solutions of (41) and (42) are unique and positive, moreover, they

are bounded like 0 # C # Cmax and 0 # P # Pmax iff 0 # C1 # Cmax and 0 # P1 # Pmax.

With this observation, it is clear that biofilm growth is only possible if the boundary

concentrations of C and P are sufficiently small. For values C1 and P1 in the neutral region

g(C1,P1) ¼ 0 or in the region g(C1,P1) , 0 of decay, cf. figure 1, no growth will be

observed but probably local degradation of the viable biomass of the biofilm. If C1 and P1

are small enough to allow for biomass production, we expect the microbial production

activity to be stronger close to the biofilm liquid/interface and to decrease inside the biofilm

toward the substratum. Eventually, due to microbial activity the concentrations C and P in

the biofilm will be high enough to have microbial decay or a neutral zone in the inner layers

while there still might be new biomass produced at the outer layers.

Note that this behaviour is quite different from what is observed in biofilm control with

antibiotics. As pointed out in our introduction, antibiotics are typically successful in killing

the cells in the outer layers but often fail to penetrate the entire biofilm, leaving the cells in

the inner layers unharmed; this was also observed and verified in simulation studies of a

antibiotic disinfection model based on the same density-dependent diffusion description of

biofilm formation and growth [17,21].
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4.1.2 Simulations. Our expectations of model behaviour deduced from qualitative

analytical arguments are confirmed by the simulation results in figure 3, based on the

reaction parameters determined experimentally in Ref. [4] for a culture of L. monocytogenes

in vegetable broth, cf also table 1; the simulations were carried out for small constant values

of C1 and P1 (clearly in the range gðC1;P1Þ . 0) and constant inital data for u in the

biofilm. Initially, the biofilm grows slightly. Due to diffusion and reaction of the controlling

substrates C and P the biomass distribution in the biofilm is non-uniform, i.e. one observes

biomass gradients from the substratum to the interface. Thus, higher microbial activity is

observed close to the biofilm/liquid interface g(t), where new biomass is produced and the

biofilm compresses. In the inner layers, no new biomass is produced. This behaviour is

controlled by C and P. Both increase from the boundary to the substratum. C undergoes a

boost in the biofilm due to the production terms that are active in the presence of biomass.

This boost in C and the subsequent growth of P lead to concentration values high enough to

have g(C, P) # 0 in the biofilm, and thus a stop in production of new bacteria.

4.2. Application to a biocontrol system

In a simple numerical study, we consider the following bio-control system: at time t ¼ 0 a

small suspended population of a harmless bacterium is added to the bulk liquid that promotes

the production of C1 and P1. We denote the density of this population by N2. Such a

bacterium that has been used for the control of the pathogen L. monocytogenes is the gram

positive facultative anaerobic L. lactis, e.g. [4,36], that can be developed as a probiotic and

added as a functional food to dairy products. The fate of the population of L. lactis and its

Figure 3. Simulation of (4), (5) and (9): shown are C(t, x) (top left), P(t, x) (top right), u(t, x) (bottom left). Also
included is the local growth rate inside the biofilm, g(C, P) (bottom right), for selected time steps. The uppermost line
corresponds to t0; for increasing t, g(C, P) decreases due to an increase of C and P.
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effect on the bulk concentrations of protonated acid and proton ion is described by the

following ordinary differential equation, which has the same structure as a corresponding

suspended culture model for L. monocytogenes, albeit with different model parameters

dN2

dt
¼ g2ðC1;P1ÞN2; ð52Þ

dC1

dt
¼ k2N2 12

C1

Cmax;2

� �
; ð53Þ

dP1

dt
¼ r2C1 12

P1

Pmax;2

� �
; ð54Þ

where the growth function g2(C, P) of L. lactis is defined similarly as the growth function

g(C, P) of L. monocytogenes and all parameters are positive. In fact, (52) is the competition

model [4] restricted to the L. lactis population only. The dynamic behaviour of this model is

easily confirmed with standard arguments of qualitative ODE theory. The positive cone (N2,

C, P) $ 0 is positively invariant as can be shown with the usual tangent criterion that can be

found, e.g. in Ref. [46]. Thus, we have in particular N2 $ 0. With the same argument, it can

be shown that C1 # Cmax;2 and P1 # Pmax;2, if 0 # C1ð0Þ # Cmax and 0 # P1ð0Þ # Pmax.

Due to monotonicity of the reaction terms in (53) and (54), we obtain that C1(t) and P1(t) are

monotonously increasing functions such that C1 ! Cmax;2 and P1 ! Pmax;2 as t ! 1.

Table 1. Parameters used in the simulations in section 4. Reaction parameters are taken from Ref. [4], transport
parameters have been adapted from Ref. [16].

Parameters Units Values

m (lab) d21 2.5176
m (Listeria) d21 3.5304
k (Listeria) MmCFU21 d21 7.08 £ 1029

k2 (lab) MmCFU21 d21 4.08 £ 1029

k1 (lab) Mm 5.2
k1 (Listeria) Mm 4.05
k2 (lab) Mm 8.907
k2 (Listeria) Mm 8.907
Cmax (Listeria) Mm 11.65
Cmax,2 (lab) Mm 11.5
k3 (lab) Mm 0.03935
k3 (Listeria) Mm 0.01282
k4 (lab) Mm 0.07129
k4 (Listeria) Mm 0.07063
Pmax (lab) Mm 0.07413
Pmax2

(Listeria) Mm 0.07556
r MmCFU21 d21 2.4 £ 1024.472

r2 MmCFU21 d21 2.4 £ 1024.172

dc m2 d21 4.97 £ 1025

dp m2 d21 8.16 £ 1025

tc – 0.898
tp – 0.9302
1 – 1029

a, b – 4
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The parameter estimation carried out in Ref. [4] showed that Cmax,2 and Pmax,2 are in the

range of decay of N2, i.e. g2ðCmax;2;Pmax;2Þ , 0. This implies that N2 ! 0 as t ! 1.

We use the bulk concentration values C1(t) and P1(t) according to (52)–(54) as Dirichlet

boundary values in our numerical simulation of the L. monocytogenes biofilm model (1), (4)

and (5), recall also figure 2. The effect of this dynamic boundary condition on the

concentration fields of C and P and on the biomass density u in the biofilm system is observed

in figures 4, compared to figures 3. It is obvious that both concentrations are raised in the

concentration boundary layer as well as in the biofilm. Accordingly, the development of the

biofilm is hampered and its decay starts earlier.

Several simulations of this type were carried out with a varying initial population size of

N2 in the bulk liquid. The corresponding solution surfaces u(t, x) of the biofilm model are

superimposed in figure 5 (left panel). It is observed that an increase in the density of

the control population L. lactis in the bulk liquid implies a lower biomass density of L.

monocytogenes in the biofilm and leads to its quicker decay. The total biomass of

L. monocytogenes in the biofilm as a function of time and in dependence of the inital density

of the control agent is plotted in the right panel of figure 5.

5. Conclusion

We formulated a mathematical model that is able to describe the effect of variations in pH

and protonated lactic acids on a bacterial biofilm and used it in an idealized modeling study

to investigate a bio-control mechanism that is based on adding beneficial bacterial cultures to

Figure 4. Simulation of (4), (5) and (9): shown are C(t, x) (top left), P(t, x) (top right), u(t, x) (bottom left). Also
included is the local growth rate inside the biofilm, g(C, P) (bottom right), for selected time steps. The uppermost line
corresponds to t0; for increasing t, g(C, P) decreases due to an increase of C and P. The reaction parameters are the
same as in figure 3 but boundary conditions have been changed to (52)–(54).
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a system that is infested by a harmful pathogenic biofilm. To this end, we combined an ODE

model of the control system for suspended cultures with a degenerate parabolic spatio-

temporal model of biofilm formation and adapted a numerical solver that is suitable for

interface propagation problems in parabolic evolution equations. Quantitative numerical

simulations and qualitative analytical and physical considerations lead to the conclusion that

under this control mechanism the bacteria in the inner layers, close to the substratum, are

affected first. In many instances, they will already be diminished while simultaneously the

growth conditions are still favourable for the bacteria in the outer layers of the biofilm. This

situation is quite different from traditional biofilm disinfection with antibiotics and biocides,

where the bacteria in the inner layers are protected by the outer layer and the antibiotics fail

to fully penetrate the biofilm. It seems, therefore, to be worthwhile to study the potential of a

combined antibiotics/probiotics treatment strategy for biofilms, both experimentally and

theoretically.

Based on this first modeling study, a less simplified model and an extended numerical

experiment can be devised that allows to study the effect of probiotic cultures on pathogenic

biofilms in a less idealized environment. In particular, it will be straightforward, albeit

numerically more expensive, to include further controlling substrates such as nutrients and

oxygen. While the simulations in this paper were carried out in a spatially one-dimensional

set-up, the model has been developed for and is applicable to the general three-dimensional

case as well.
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