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In recent years, total variation (TV) regularization has become a popular and powerful tool for
image restoration and enhancement. In this work, we apply TV minimization to improve the
quality of dynamic magnetic resonance images. Dynamic magnetic resonance imaging is an
increasingly popular clinical technique used to monitor spatio-temporal changes in tissue
structure. Fast data acquisition is necessary in order to capture the dynamic process. Most
commonly, the requirement of high temporal resolution is fulfilled by sacrificing spatial
resolution. Therefore, the numerical methods have to address the issue of images
reconstruction from limited Fourier data. One of the most successful techniques for dynamic
imaging applications is the reduced-encoded imaging by generalized-series reconstruction
method of Liang and Lauterbur. However, even if this method utilizes a priori data for optimal
image reconstruction, the produced dynamic images are degraded by truncation artifacts, most
notably Gibbs ringing, due to the spatial low resolution of the data.We use a TV regularization
strategy in order to reduce these truncation artifacts in the dynamic images. The resulting TV
minimization problem is solved by the fixed point iteration method of Vogel and Oman. The
results of test problemswith simulated and real data are presented to illustrate the effectiveness
of the proposed approach in reducing the truncation artifacts of the reconstructed images.

Keywords: Total variation; Regularization; Magnetic resonance imaging; Image
reconstruction

1. Introduction

Magnetic resonance imaging (MRI) is a valuable non-invasive diagnostic tool used in

medicine for acquiring cross sectional images of the human body. Dynamic MRI is an

emerging application of MRI which allows to study changes over time in the tissue structure.

For example, dynamic MRI is used in dynamic contrast-enhancement or functional brain

studies, cardiac imaging and real-time monitoring of surgical interventions. Typically, in

dynamic applications, a temporal series of Magnetic Resonance (MR) images of the same

slice of the imaged structure is acquired. In order to capture and study the dynamic process

both high temporal and spatial resolutions are required. Unfortunately, the technological and

physiological limits on the MR technique make difficult to simultaneously fulfill these

requirements. In the past years, several methods have been proposed with the common aim to

reduce the data acquisition time. Among others, the so-called reduced encodings methods
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speed up the acquisition time by acquiring a time series of reduced dynamic data sets and one

high resolution reference data set which is collected before the dynamic process. MRI is by

its nature a Fourier encoded modality: the data are collected in the k-space, a frequency 2D

domain whose principal directions are called frequency-encoded direction (kx) and phase-

encoded direction (ky). The dynamic data sets consist of a small and central part (a k-hole) of

the k-space constituted by the low spatial frequencies along the phase-encoded direction.

The rationale for truncating the dynamic data lies in the fact that the morphological details

are mainly encoded by the high frequencies while the dynamic information is mainly

contained in the low frequency part of the k-space. Therefore, assuming that during the

dynamic process no significant changes occur in the underlying morphology, the dynamic

variation can be characterized by repeated sampling of the central k-hole. The reference data

set provides the a priori information concerning the high frequencies uncollected during the

dynamic process. Usually, the MR images are reconstructed by using a 2D discrete inverse

Fourier transform (2DIFT) of the data. In the case of reduced encodings dynamic MRI, the

image reconstruction problem from incomplete Fourier data is a difficult inverse problem,

since the images obtained by a 2DIFT of the dynamic data suffer from the well-known

truncation artifacts including ringing and blurring. In this case, the reconstruction methods

obtain high resolution dynamic images with the use of the high resolution reference image.

One of the most successful reconstruction techniques is the reduced-encoded imaging by

generalized-series reconstruction (RIGR) method of Liang and Lauterbur [10]. In this

method, the unknown dynamic MR images are represented by means of a parametric model

embedding the a priori information deriving from the reference image. However, due to the

partial encode of the data, also the dynamic images obtained with the RIGR technique exhibit

truncation artifacts degrading their quality and compromising their use in clinical

applications. In this work, we propose to include in the RIGR method a total variation (TV)-

based regularization strategy in order to reduce the damaging artifacts and improve the

quality of the reconstructed images. TV regularization is a popular approach used in image

processing for reducing noise and blur in images while preserving sharp edges [11].

Moreover, TV regularization has been successfully used in some medical imaging

applications such as positron emission tomography [4], single photon emission computed

tomography [12] and diffraction ultrasound tomography [2]. In Ref.[5], TV regularization

has been applied to MR images for image enhancement and noise removal. Recently, the

authors have used TV regularization for post-processing the dynamic MR images obtained

with Keyhole method [7,9]. The Keyhole technique belongs to the class of the reduced

encodings methods and differs from the RIGR method in how the a priori information is

incorporated into the imaging process. It has been shown by comparison [10] that the RIGR

method gives improvements in image resolution over the Keyhole technique. The good

performance of TV regularization with the Keyhole method motivates its use for improving

the quality of the RIGR images. TV regularization entails an unconstrained minimization

problem with highly nonlinear Euler–Lagrange equations. We solve these equations by the

fixed point (FP) iteration method of Vogel and Oman [14,15] which is one of the most

efficient and robust methods proposed in the literature for TV minimization. The main

contribution of the paper therefore lies in the application and investigation of the TV

regularization in order to improve the quality of the dynamic MR images obtained with the

RIGR technique. The sequel is organized as follows. A review of the RIGR method is given

in section 2 and the proposed TV-based RIGRmethod is presented in section 3. Experimental

results and implementation details are described in section 4. Finally, conclusions are given

in section 5.
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2. The classical RIGR method

2.1 Data acquisition and image formation

In spin-echo MR experiments, the k-space is built-up row-wise and the raw data are sampled

on a 2D rectangular trajectory as shown in figure 1. LetV be the grid of points fully covering

the k-space:

V ¼ {ðnDkx;mDkyÞjn ¼ 2N=2; . . .;N=22 1;m ¼ 2M=2; . . .; M=22 1}

where Dkx and Dky are sampling intervals. Let D(nDkx, mDky) be the k-space datum acquired

at the grid point (nDkx,mDky); the detected data form a N £ Mmatrix D(kx, ky). Let I(x, y) be

the N £ M image reconstructed by a 2DIFT of the data matrix D(kx, ky):

Iðx; yÞ ¼ 2DIFTðDðkx; kyÞÞ:

The final MR image that is represented is the magnitude of I(x, y).

In a fast dynamic spin-echo MRI experiment a fully encoded N £ M reference data set

DR(kx, ky) is acquired before the dynamic process to provide the information on the outer

k-space region uncollected during the dynamic process. The reference image IR(x, y) is

reconstructed by a 2DIFT from DR(kx, ky).
During the dynamic process the imaging time is decreased by collecting only the low

spatial frequencies in the phase-encoded direction. Let Vlow be the grid points of the low

sampled k-space:

Vlow ¼ {ðnDkx;mDkyÞjn ¼ 2N low=2; . . .;N low=22 1;

m ¼ 2M=2; . . .;M=22 1;N low ,, N}:

A sequence of low sampled Nlow £ M data matrices ~Dtðkx; kyÞ defined as

ð ~Dtðkx; kyÞÞn;m ¼ ~DtðnDkx;mDkyÞ; ðnDkx;mDkyÞ [ Vlow; t ¼ 1; . . .; T;

is acquired at T successive time instants.

The acquired dynamic data sets ~Dtðkx; kyÞ, t ¼ 1, . . ., T, are inverse Fourier transformed

along the fully encoded horizontal direction in order to obtain ~Dtðkx; yÞ. Since, the number of

phase-encodings is reduced from N to Nlow, performing a DIFT along the vertical direction

produces images with evident truncation artifacts. A reconstruction method should provide

Figure 1. k-space sampling; (a) sampling trajectory; (b) raw data matrix.
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good quality high-resolution images. A crucial point is that the high resolution dynamic

image can be obtained column-wise from ~Dtðkx; yÞ by independently reconstructing each

column. In this way, the problem is reduced to the reconstruction of M signals of size N.

Therefore, in the sequel, we will present the RIGR method only in the 1D case. For easier

notation, in the following we omit the temporal index t and we call k ¼ ð2ðN low=2ÞDk; . . .;
ðN low=22 1ÞDkÞ and x ¼ ð0;Dx; . . .; ðN 2 1ÞDxÞ the point vectors in the data and in the

image domain, respectively.

2.2 The reconstruction method

The RIGR method [10] belongs to the class of the model-based reduced encodings method

which are described by a common equation [6,8]. According to this common equation, the

unknown dynamic signal I(x) can be factorized as:

IðxÞ ¼ I*ðxÞ:*IdðxÞ ð1Þ

where I*(x) is the multiplicative factor built into the model (1) for dynamic MRI and .* is the

element-wise product. The dynamic factor Id(x) represents the dynamic features of I(x)

lacking in I*(x). This function is represented by a parametric model as

IdðxÞ ¼
XNlow=221

‘¼2N low=2

a‘f‘ðxÞ: ð2Þ

The number of terms of the sum is determined by the number of available information on the

desired dynamic signal, i.e. the number of acquired k-space dynamic data. By substituting the

representation (2) for I(x), the equation (1) becomes:

IðxÞ ¼ I*ðxÞ:*
XN low=221

‘¼2N low=2

a‘f‘ðxÞ: ð3Þ

Equation (3) describes the wide class of the model-based reduced encodings methods where

every dynamic signal I(x) is uniquely determined by the model parameters a‘, ‘ ¼ 2N low=
2; . . .;N low=22 1.

In this way, the problem of reconstructing the high resolution dynamic signal I(x) from the

low resolution dynamic data set ~DðkÞ is converted to a coefficients estimation problem.

Specifically, let us consider the low resolution version ~IðxÞ of I(x) computed at the points

ð0;D~x; . . .ðN low 2 1ÞD~xÞ; for the signal ~IðxÞ the equation (1) becomes:

~IðxÞ ¼ ~I*ðxÞ:*~IdðxÞ ð4Þ

where ~I*ðxÞ is the low resolution version of the multiplicative factor. By applying the DFT to

both the terms of (4), we obtain the expression

~DðkÞ ¼ ~D*ðkÞ^ ~DdðkÞ; ð5Þ

where ^ represents the convolution product. The convolution product in (5) can be

represented in matrix form
~D*ðkÞ^ ~DdðkÞ ¼ H ~DdðkÞ; ð6Þ
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where H is a Nlow £ Nlow matrix with a block Toeplitz structure. Hence:

H ~DdðkÞ ¼ ~DðkÞ: ð7Þ

Since, the matrixH is ill-conditioned, a regularized solution of the linear system is computed

by means of the Lavrent’ev regularization method, i.e. the following linear system is solved:

ðHþ g1Þ ~DdðkÞ ¼ ~DðkÞ; ð8Þ

where g . 0 is the regularization parameter and 1 is the identity matrix.

The RIGR method uses a set of Nlow complex exponential basis functions defined as

f‘ðxÞ ¼ e2p
ffiffiffiffiffi
21

p
ðk‘xÞ; ‘ ¼ 2N low=2; . . .;N low=22 1 ð9Þ

and the multiplicative factor is the reference image: I*ðxÞ ¼ IRðxÞ. In this case, the coefficient

vector a ¼ ða2N low=2; . . .;aN low=221Þ
t is simply computed from (2) by:

a ¼ DFTðIdð~xÞÞ ¼ ~DdðkÞ ð10Þ

and Id(x) is obtained by applying a DIFT to the zero-filled spectrum:

IdðxÞ ¼ DIFTðZPð ~DdðkÞÞÞ; ð11Þ

where ZPð ~DdðkÞÞ indicates the zero-padded N £ 1 data vector.

The described procedure is applied for the reconstruction of each column of each dynamic

image of the sequence. The algorithm of the RIGR method for the reconstruction of a

sequence of dynamic images is described in a Matlab-like language as follows.

Algorithm 2.01.

Input: Dynamic under-sampled data ~Dð:; :; tÞ; t ¼ 1; . . .; T of size Nlow £ M.

Reference image IR of size N £ M.

Output: Dynamic RIGR images Ið:; :; tÞ; t ¼ 1; . . .;T of size N £ M.

for t ¼ 1:T

for j ¼ 1:M

Step 1: Compute the spectra ~D*ð:; j; tÞ and the matrix H.

Step 2: Compute ~Ddð:; j; tÞ by solving the linear system

ðHþ g1Þ ~Ddð:; j; tÞ ¼ ~Dð:; j; tÞ:

Step 3: Compute the high resolution dynamic factor Idð:; j; tÞ:

Idð:; j; tÞ ¼ DIFTðZPð ~Ddð:; j; tÞÞ:

Step 4: Compute the high resolution dynamic signal Ið:; j; tÞ:

Ið:; j; tÞ ¼ IRð:; jÞ:*Idð:; j; tÞ:
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3. The TV-regularized RIGR method

Here, we propose a TV regularization approach to reduce the truncation artifacts arising from

the RIGR method and to obtain images of improved quality. Let Id be the RIGR dynamic

factor obtained by (2). It is a 2D array of size N £ M, but it suffers from ringing artifacts due

to the zero padding operation in (11). The RIGR dynamic factor Id is regularized by solving

the following unconstrained minimization problem:

minF ðIÞ; F ðIÞ ¼
1

2
kI 2 Idk

2
2 þ lTVðIÞ; l . 0; ð12Þ

where TV(I) is the discrete TV functional

TVðIÞ ¼
1

NM

XN
i¼1

XM
j¼1

j7i; j Ij ð13Þ

and the discrete gradient 7i; jI is expressed by means of the forward difference operator as:

7i; j I ¼
Iiþ1; j 2 Ii; j

hx
;
Ii; jþ1 2 Ii; j

hy

� �
; hx ¼

1

N
; hy ¼

1

M
; ð14Þ

j7i; j Ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iiþ1; j 2 Ii; j

hx

� �2

þ
Ii; jþ1 2 Ii; j

hy

� �2
s

: ð15Þ

The scalar l is the regularization parameter controlling the tradeoff between the fit to the data

and the regularization of the solution. To overcome the difficulties due to the non-

differentiability of the Euclidean norm, TV(I) is usually replaced by the slightly modified

functional

TVðIÞ ¼
1

NM

XN
i¼1

XM
j¼1

j7i; j Ijb; ð16Þ

where

j7i; j Ijb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j7i; j Ij

2
þ b2

q
: ð17Þ

Problem (12) is a strictly convex problem whose well-posedness is proved in Ref. [1]. Its

Euler–Lagrange equation, assuming homogeneous Neumann boundary conditions, is

gðIÞ ¼ 7F ðIÞ ¼ I 2 IdðxÞ þ lLI;bðIÞ ¼ 0; ð18Þ

where the symmetric positive semidefinite operator LI;b is defined as

LI;bðRÞ ¼
XN
i¼1

XM
j¼1

7t
i; j

7i; jR

j7i; j Ijb

� �
; ð19Þ

with 7t
i; j the transpose of 7i; j.
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The hessian of the objective functional in (12) is given by

HðIÞ ¼ 1þ lLI;b þ lL0I;bðIÞ; ð20Þ

where 1 is the identity matrix. Further, details on the derivation of the gradient and the

hessian of F(I) can be found in Ref. [13].

To find the solution ITV of the problem (12) the nonlinear equation (18) is solved by the

lagged diffusivity FP algorithm [14,15]. Let A(I) be the positive definite [3,14] operator

defined as:

AðIÞ ¼ 1þ lLI;b: ð21Þ

The FP method can be described by the iterative procedure:

I ðkþ1Þ ¼ I ðkÞ 2 A I ðkÞ
� �� �21

g I ðkÞ
� �

: ð22Þ

The TV-regularized RIGR algorithm applied to the images of the time sequence is outlined

as follows.

In our implementation, each linear subproblem in step 2.1 is solved by the conjugate

gradient (CG) method. These linear systems are highly ill-conditioned because their

coefficient matrix A(I) is related to the diffusion coefficient j7i; jIj
21

that can be close to zero,

especially when b is small, if adjacent pixels have only few differences. For this reason, we

use the CG method as a regularization method, by stopping it after few iterations.

The iterative procedure in Step 2 is terminated when one of the following stopping criteria

is satisfied:

i) k $ maxit

ii) kgðI ðkÞÞk2 # tolkgðI ð0ÞÞk

where maxit is a maximum number of iterations and tol is a given tolerance.

Algorithm 3.02.

Input: RIGR dynamic factors Idð:; :; tÞ; t ¼ 1; . . .; T of size Nlow £ M.

Reference image IR of size N £ M.

Output: TVRIGR images ITVRð:; :; tÞ; t ¼ 1; . . .; T of size N £ M

for t ¼ 1:T

Step 1: I ð0Þ ¼ Idð:; :; tÞ
Step 2: Repeat

Step 2.1: Solve with CG method: AðI ðkÞÞd ðkÞ ¼ 2gðI ðkÞÞ

Step 2.2: Set I ðkþ1Þ ¼ I ðkÞ þ d ðkÞ

Until stopping criteria are satisfied

Step 3: IdTVð:; :; tÞ ¼ I ðkþ1Þ

Step 4: ITVRð:; :; tÞ ¼ IRð:; :Þ:*IdTVð:; :; tÞ
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4. Numerical experiments

In this section, we report the results obtained with the TV-regularized RIGR method

(TVRIGR) applied to simulated and real dynamic MR data. The numerical tests show how

the TV regularization acts on dynamic MR images, its effectiveness on noise and artifacts

removal. In all the presented test problems, the values of the tolerances of the stopping

criteria of algorithm 3.02 are fixed as follows: maximum number of outer FP iterations

maxit ¼ 15; tolerance FP iterations: tol ¼ 0.5; maximum number of inner CG iteration: 30

(Step 2.1). The quality of the reconstructions is compared by means of the root mean square

error (RMSE) defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
i¼1

XN
j¼1

Iij 2 IðexactÞij

� �2

vuut

where the M £ N images I and I (exact) are the reconstructed and the original images,

respectively. Table 1 reports the RMSE parameter obtained by the RIGR and the TVRIGR

methods. In all the experiments TVRIGR have always smaller RMSE values. We report

the results obtained in the reconstruction of one-dimensional signals (Signal_1 and

Signal_2) and in the reconstruction of two images (circle, brain). All the tests

require only a few CG and FP iterations. The regularization parameters (g and a), reported in

the figures, are relative to the best reconstructions.

4.1 Signal_1 test problem

The first test problem is a 1D simulation consisting of a reference signal IR(x); (figure 2(a))

and an exact dynamic signal I exact(x); (figure 2(b)), both of N ¼ 256 samples. The noisy

under-sampled dynamic data are obtained by adding Gaussian white noise to the exact

dynamic signal and considering only a subset ~DðkÞ with the Nlow ¼ 64 symmetric lowest

frequencies. The amount of noise measured in this test problem is signal to noise ratio

(SNR ¼ 78 dB). The dynamic signals, reconstructed with the RIGR and the TVRIGR

methods, are depicted in figure 2(c) and (d), respectively. As we expected the TVRIGR

greatly reduces the oscillations in the reconstructed signal.

4.2 Signal_2 test problem

This test problem consists of a reference signal IR(x); (figure 3(a)) and an exact dynamic

signal I exact(x); (figure 3(b)), both of N ¼ 256 samples. The under-sampled dynamic data are

Table 1. Error parameters for test problems with simulated MR data.

Test problem Method RMSE

Signal_1 RIGR 1.171224 £ 1022

TVRIGR 1.134237 £ 1022

Signal_2 RIGR 2.639253 £ 1022

TVRIGR 2.456414 £ 1022

Circle RIGR 1.880189 £ 1022

TVRIGR 1.807084 £ 1022
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obtained by considering only a subset ~DðkÞwith the Nlow ¼ 64 symmetric lowest frequencies

of the spectrum of I exact(x).

The dynamic signals reconstructed with the RIGR and the TVRIGR methods are depicted

in figure 3(c) and (d), respectively. The TV reconstruction is optimal for this test problem,

and the values of RMSE reported in table 1 confirm the analysis. For this test problem

g ¼ 5 £ 1025.

4.3 Circle test problem

This test problem is the so-called circle test problem and it is used in the literature to

represent the action of a contrast agent in the examined organ through the variations of gray

levels in the dynamic image. Two images of size 256 £ 256 represent the reference image

IR(x, y) and the exact dynamic image I exact(x, y), respectively (figure 4). After Fourier

transforming I exact(x, y), a reduced scan spin-echo acquisition is simulated by considering

the 64 £ 256 (Nlow ¼ 64) dynamic lowest frequencies. White noise with SNR . 61 dB has

been added to the Nlow £ 256 available dynamic frequencies. Figure 5(a) and (b) show the

reconstructions obtained with the RIGR and the TVTIGR methods, respectively. The Gibbs

artifacts in the RIGR reconstruction are clearly shown in figure 6(a) where the error image

I exactðx; yÞ2 I RIGRðx; yÞ is represented. We can observe from figure 6(b) that represents the

error image I exactðx; yÞ2 I TVRIGRðx; yÞ that the artifacts are considerably reduced. The RMSE

measures (table 1) confirm these considerations.

Figure 2. Test problem: signal_1; (a) reference signal; (b) dynamic signal; (c) RIGR (g ¼ 1022); (d) TVRIGR
(a ¼ 1024).
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Figure 3. Test problem: signal_2; (a) reference signal; (b) dynamic signal; (c) RIGR (g ¼ 1022); (d) TVRIGR
(a ¼ 5 £ 1024).

Figure 4. Test problem: circle; (a) reference image; (b) dynamic image.

Figure 5. Test problem circle with noise; RIGR (g ¼ 5 £ 1022); (b) TVRIGR (a ¼ 5).

G. Landi et al.78



4.4 Brain test problem: real MR data

The real MR data of the brain test problem are constituted of 58 data sets from a human

brain: a baseline reference data set DR(kx, ky) and 57 low-sampled dynamic data sets of

19 £ 128 samples, acquired by a MR spin-echo technique after injecting a contrast agent.

The reference image IR(x, y) is shown in figure 7(a). Figure 7(b) and (c) show the

reconstructions of slice 26 obtained with the RIGR and the TVTIGR methods, respectively.

The differences between the RIGR and TVRIGR reconstructions become more evident in the

representation of the dynamic multiplicative factors (figure 8). Comparing the images

reported in figure 8(a) and (b) it is evident in the attenuation of the Gibbs artifacts in the

TVRIGR reconstruction.

Figure 6. Test problem circle with noise, error images; (a) RIGR; (b) TVRIGR.

Figure 7. Test problem: brain; (a) reference image; (b) RIGR (g ¼ 0); (c) TVRIGR (a ¼ 5).

Figure 8. Test problem brain, reconstructions of the dynamic factor with the RIGR and TVRIGR methods;
(a) RIGR dynamic; (b) TVRIGR dynamic factor.
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5. Conclusions

In this paper, we have applied the TV method for regularizing the reconstruction of limited

resolution data in the Fourier domain. The ringing artifacts that affect the image

reconstructed with the generalized series approach (RIGR method) are considerably reduced

by the TV regularization.
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