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The process of platelet activation and blood coagulation is quite complex and not yet
completely understood. Recently, a phenomenological meaningful model of blood
coagulation and clot formation in flowing blood that extends existing models to
integrate biochemical, physiological and rheological factors, has been developed. The
aim of this paper is to present results from a computational study of a simplified version
of this coupled fluid-biochemistry model. A generalized Newtonian model with shear-
thinning viscosity has been adopted to describe the flow of blood. To simulate the
biochemical changes and transport of various enzymes, proteins and platelets involved
in the coagulation process, a set of coupled advection–diffusion–reaction equations is
used. Three-dimensional numerical simulations are carried out for the whole model in a
straight vessel with circular cross-section, using a finite volume semi-discretization in
space, on structured grids, and a multistage scheme for time integration. Clot formation
and growth are investigated in the vicinity of an injured region of the vessel wall. These
are preliminary results aimed at showing the validation of the model and of the
numerical code.
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1. Introduction

Haemostasis is a complex physiological process involving an interaction between blood

vessels, platelets, coagulation factors, coagulation inhibitors and fibrinolytic proteins.

When blood coagulates in a blood vessel during life, the process is called thrombosis.

Haemostasis keeps blood flowing while allowing solid clot formation, or thrombosis, to

prevent blood loss from sites of vascular damage. The haemostatic system preserves

intravascular integrity by achieving a balance between haemorrhage and thrombosis.

Blood platelets participate in both haemostasis and thrombosis. The first stage of

thrombogenesis is platelets activation, followed by platelets aggregation, adhesion and

blood coagulation, with the formation of clots. Blood platelets can be activated by

prolonged exposure to high or rapid increase in shear stress that lead to erythrocytes and

platelets damage [10,15]. This is due to mechanical vascular injuries or endothelial

disturbance, alterations in the blood composition, fissuring of atherosclerotic plaques as

well as to the contact of blood with the surfaces of medical devices. Numerous

experimental studies recognize that clot formation rarely occurs in regions of parallel flow,
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but primarily in regions of stagnation point flows, within blood vessel bifurcations,

branching and curvatures.

Following endothelial disruption, there is an immediate reaction that promotes

vasoconstriction, minimizing vessel diameter and diminishing blood loss. Vasoconstric-

tion slows blood flow, enhancing platelet adhesion and activation. During activation,

platelets undergo intrinsic and extrinsic mechanisms leading to a series of chemical and

morphological changes. Organelles contained in the platelet cytoplasm bind to collagen

(exposed by arterial damage), release their contents of cytoplasmic granules containing

serotonin, adenosine diphosphate (ADP) and platelet-activating factors and platelets

become spheroids in shape. Additional platelets attracted by ADP are activated, interact

with plasma proteins like fibrinogen and fibrin and promote platelet aggregation and

adhesion to sub-endothelial tissue. This results in the formation of haemostatic plugs and

concludes the primary step in haemostasis. However, when the concentration of activators

exceeds a threshold value, platelet aggregates that are formed by this process can break up,

damaging the platelets and causing aggregation at locations other than at the site of

damage.

The final haemostatic mechanism or secondary haemostasis is coagulation (clot

formation) which involves a very complex cascade of enzymatic reactions (Figure 1).

Thrombin is the bottom enzyme of the coagulation cascade. Prothrombin activator

converts prothrombin to thrombin. Thrombin activates platelets that release ADP which

Figure 1. Schematic of the cascade of events during clot formation and lysis.
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lead in turn to the activation of other platelets. The primary role of thrombin is to convert

fibrinogen, a blood protein, into polymerized fibrin, stabilizing the adhered platelets and

forming a viscoelastic blood clot (or thrombus) (e.g. [21,24]).

The clot attracts and stimulates the growth of fibroplasts and smooth muscle cells

within the vessel wall, and begins the repair process which ultimately results in fibrinolysis

and in the dissolution of the clot (clot lysis). Clot dissolution can also occur due to

mechanical factors such as high shear stress. In practice, a blood clot can be continuously

formed and dissolved. Generally, many factors affect its structure, including the

concentration of fibrinogen, thrombin, albumin, platelets and red bloodcells, and other not

specified factors which determine cross-linked structure of the fibrin network. At the end

of the haemostatic process, normal blood flow conditions are restored. However, some

abnormal haemodynamic and biochemical conditions of flowing blood, related to

inadequate levels or dysfunction of the haemostatic system, can lead to pathologies like

thromboembolic or bleeding disorders which are of great clinical importance.

The mechanism of platelet activation and blood coagulation is quite complex. Recent

reviews detailing the structure of the blood coagulation system are available for example

in Refs. [3,24].

Whole blood is a concentrated suspension of formed cellular elements that includes

red blood cells (RBCs) or erythrocytes, white blood cells or leukocytes and platelets or

thrombocytes, representing approximately 45% of the volume in human blood. These

cellular elements are suspended in plasma, an aqueous ionic solution of low viscosity.

Plasma behaves as a Newtonian fluid but whole blood has non-Newtonian properties. In the

large vessels where shear rates are high enough, it is also reasonable to assume that blood

has a constant viscosity and a Newtonian behaviour. However, in smaller vessels, or in

some disease conditions, the presence of the cells induces low shear rate and whole blood

exhibits remarkable non-Newtonian characteristics, like shear-thinning viscosity,

thixotropy, viscoelasticity and possibly a yield stress. This is largely due to erythrocytes

behaviour, namely their ability to aggregate into microstructures (rouleaux) at low shear

rates, their deformability into an infinite variety of shapes without changing volume and

their tendency to align with the flow field at high shear rates [8,25].

The most well-known non-Newtonian characteristic of blood is its shear-thinning

behaviour [7,9]: at low shear rates, blood seems to have a high apparent viscosity (due to

RBCs aggregation) while at high shear rates there is a reduction in the blood’s viscosity

(due to RBCs deformability). Stress relaxation properties of blood arise from its ability to

store and release elastic energy from RBC networks and are mainly related to the

viscoelastic nature of the RBC membrane. The viscoelastic behaviour of blood is less

important at higher shear rates [27]. An understanding of the coupling between the blood

composition and its physical properties is essential for developing suitable constitutive

models to describe blood behaviour (see the recent reviews [22,23]).

While there has been a considerable research effort in blood rheology, the constitutive

models have thus far focused on the aggregation and deformability of the RBCs, ignoring

the role of platelets in the flow characteristics. However, platelets, which are much smaller

than erythrocytes (approximately 6mm3 in size as compared to 90mm3) and form a small

fraction of the particulate matter in human blood (around 3% in volume) are among the

most sensitive of all the components of blood to chemical and physical agents and play an

important role in coagulation, as already discussed. In the last two decades, mathematical

modelling and computer simulation research have emerged as useful tools, supplementing

experimental data and analysis and giving new insights in the studies of the regulation of

the coagulation cascade in clinical applications and device design. Reliable
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phenomenological models that can predict regions of platelet activation and deposition

(either in artificial devices or in arteries) have the potential to help optimize design of such

devices and also identify regions of the arterial tree susceptible to the formation of

thrombotic plaques and possible rupture in stenosed arteries. Most of the models that are

currently in use neglect some of the biochemical or mechanical aspects involved in the

complex phenomena of blood coagulation and must be considered as first approaches to

address this oversight, see, for example [5,6,12,16,18,29,31,32]. Other relevant

biochemistry related references can be found in the recent review paper by Rajagopal

and Lawson [20]. Anand et al. [2–4] recently developed a phenomenological

comprehensive model for clot formation and lysis in flowing blood that extends existing

models to integrate biochemical, physiological and rheological factors. In what follows,

we present some preliminary computational results for a simplified version of this model

where the viscoelasticity of blood is not considered. Section 2 is devoted to a description

of the coupled blood flow-biochemistry mathematical model. The numerical methods and

adopted stabilization techniques are briefly outlined in Section 3. Preliminary results of the

three-dimensional simulations predicted by the simpler model are presented in Section 4.

Finally, some comments on the limitations and extensions of the model are also included.

2. Mathematical model

2.1 Blood flow equations

An incompressible generalized Newtonian model with shear-thinning viscosity has been

adopted to describe the flow of blood. We denote by u(x, t) and p(x, t) the blood velocity

and pressure defined in the domain V, the vascular lumen, with t $ 0. The application of

the physical principles of momentum and mass conservation leads to the equations defined

in V

r
›u

›t
þ u ·7u

� �
¼ 27p þ div t ðuÞ divu ¼ 0; ð1Þ

completed with appropriate initial and boundary conditions. Here, r is the fluid density and

t (u) is the deviatoric stress tensor, proportional to the symmetric part of the velocity

gradient, given by

t ðuÞ ¼ 2mð _gÞD; ð2Þ

where D ¼ ð7uþ 7uTÞ=2 is the stretching tensor, _g ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
D : D

p
is the shear rate

(a measure of the rate of shear deformation) and mð _gÞ is the shear dependent viscosity

function which decreases with increasing shear rate and can be written in the following

general form

mð _gÞ ¼ m1 þ ðm0 2 m1ÞFð _gÞ; ð3Þ

or, in non-dimensional form as

mð _gÞ2 m1

m0 2 m1

¼ Fð _gÞ:

Here, m0 ¼ lim _g!0mð _gÞ and m1 ¼ lim _g!1mð _gÞ are the asymptotic viscosity values at low

and high shear rates and Fð _gÞ is a shear dependent function satisfying the following natural

limit conditions lim _g!0Fð _gÞ ¼ 1 and lim _g!1Fð _gÞ ¼ 0. The generalized Cross model has
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frequently been used for blood and has been adopted here. The corresponding viscosity

function is written as

mð _gÞ2 m1

m0 2 m1

¼
1

ð1 þ ðl _gÞbÞa
: ð4Þ

Using nonlinear regression analysis, it is possible to fit viscosity functions against

blood viscosity experimental data and obtain the corresponding parameters l, a and b.

However, blood viscosity is quite sensitive to a number of factors including haematocrit,

temperature, plasma viscosity, age of RBCs, exercise level, gender or disease state, and

care must be taken in selecting blood parameters for blood flow simulations. Here, we

have adopted the following values of the material constants (see Ref. [17]):

m0 ¼ 1:6 · 1021 Pa · s m1 ¼ 3:6 · 1023 Pa · s a ¼ 1:23 b ¼ 0:64 l ¼ 8:2 s: ð5Þ

The viscosity function (4) with these values is represented in Figure 2.

2.2 Equations governing the cascade of biochemical reactions

The model includes not only rheological factors but also biochemical indicators that are

essential to describe coagulation and fibrinolysis dynamics and consequently the

formation, growth and dissolution of clots. It is based on the model introduced in Ref. [3]

and further developed and refined in Ref. [2]. A set of twenty-three coupled advection–

diffusion–reaction equations, describing the evolution in time and space of various

enzymes and zymogenes, proteins, inhibitors, tissue plasminogen activator and

fibrin/fibrinogen (Table 1) involved in the extrinsic pathway of the blood coagulation

process and fibrinolysis in quiescent plasma, takes the following form

›Ci

›t
þ divðCiuÞ ¼ divðDi7CiÞ þ Ri i ¼ 1; . . . ; 23: ð6Þ

In these equations, Ci stands for the concentration of ith reactant, Di denotes the

corresponding diffusion coefficient (which could be a function of the shear rate) and u is

the velocity field. Ri are the nonlinear reaction terms that represent the production or

depletion of Ci due to the enzymatic cascade of reactions. The specific form of the reaction

terms, the diffusion coefficients and corresponding parameters for each of the 23-model

Figure 2. Variation of the apparent viscosity of blood as a function of the shear rate for the
generalized Cross model with physiological parameters given by (5).
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Equations (6) is shown in Tables 2 and 3. In order to keep the model readable, symbol [·] is

used to denote the concentration of a reactant and to distinguish it from its name (e.g.

[ATIII ] denotes the concentration of AntiThrombin III (ATIII)).

Equations (6) are complemented with appropriate initial and flux boundary conditions

involving the concentration of various species at an injured site of the vascular wall (see

Section 4.1.2). A schematic representation of these reactions, including boundary

conditions is given in Figure 3. This figure also includes interactions with two other

chemical species Z (tenase) and W (prothrombinase), see Table 6. Separate convection–

diffusion reactions are not written for the corresponding concentrations, since they are

embedded in the equations for VIIIa, IXa, Va and Xa. Their values can be obtained through

the relations [Z ] ¼ [VIIIa ][IXa ]/KdZ, [W ] ¼ [Va ][Xa ]/KdW [2], respectively.

2.3 Clot modeling

Under normal conditions, no clot exists and we assume that the presence of all these

constituents does not affect the velocity of the bulk flow. Clot formation occurs when an

activation threshold in the flux boundary conditions, related to the concentration of tissue

factor (TF–VIIa complex released from sub-endothelium) is exceeded and the clotting

cascade is initiated, which results in the increase of fibrin concentration [Ia ] in the clotting

area (see Section 4.1.2). Clot growth is determined by tracking in time the extent of the

flow region where fibrin concentration CF equals or exceeds a specific critical value CClot.

The clot region can thus be defined as a region where the fibrin concentration is higher than

in the normal blood. The main features of the modelling approach are schematically shown

in Figure 4.

Table 1. Constituents involved in the coagulation cascade and fibrinolysis.

Species Names

IXa ?Enzym?
IX Zymogen IX
VIIIa Enzym VIIIa
VIII Zymogen VIII
Va Enzym Va
V Zymogen V
Xa Enzym Xa
X Zymogen X
IIa Thrombin
II Prothrombin
Ia Fibrin
I Fibrinogen
XIa Enzym XIa
XI Zymogen XI
ATIII AntiThrombin-III
TFPI Tissue factor pathway inhibitor
APC Active protein C
PC Protein C
L1AT a1-AntiTrypsin
tPA Tissue plasminogen activator
PLA Plasmin
PLS Plasminogen
L2AP a2-AntiPlasmin
Z Tenase
W Prothrombinase
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An important assumption of the coupling strategy for blood and clot is to assume that

the corresponding constitutive models are similar, but their viscosities have different

values. This can be done introducing a viscosity factor related to the fibrin concentration

around the injured vessel wall region. More precisely, when fibrin concentration is close to

zero, the local viscosity is equal to the viscosity of blood (thus the viscosity factor is equal

to 1). As the fibrin concentration grows, the viscosity increases linearly up to a certain

threshold CClot and the viscosity factor is equal to m* (Figure 5). The parameters m* and

CClot should be chosen to mimic the clot properties. In our study, we have used m* ¼ 100

and CClot ¼ 1000 nM corresponding to a viscosity of the clot region 100 times higher than

that of the blood.

This model function of the viscosity factor based on fibrin concentration as well as the

values used to simulate the clot growth look reasonable, but can easily been improved if

experimental data are available.

3. Numerical methods

The numerical solution of the coupled fluid-biochemistry model given by Equations (1)–

(2)–(6) is obtained using a three-dimensional code based on a finite-volume semi-

discretization in space, on structured grids, where both inviscid and viscous flux integrals

are evaluated using centred cell numerical fluxes. An explicit multistage Runge–Kutta

scheme is used for time integration. The same method is applied for both the flow and the

biochemical solutions of the coupled model. The coupling is carried out by means of an

iterative process at each time step. The flow field is first computed using Equations (1)–(2)

Table 2. Reaction terms and diffusion coefficients.

Species Reaction terms (Ri)
Diffusion coefficients

Di (cm2/s)

IXa ðk9½XIa�½IX�Þ=ðK9M þ ½IX�Þ2 h9½IXa�½ATIII� 6:27 £ 1027

IX 2ðk9½XIa�½IX�Þ=ðK9M þ ½IX�Þ 5:63 £ 1027

VIIIa ðk8½IIa�½VIII�Þ=ðK8M þ ½VIII�Þ2 h8½VIIIa�
2ðhC8½APC�½VIIIa�Þ=ðHC8 þ ½VIIIa�Þ

3:92 £ 1027

VIII 2ðk8½IIa�½VIII�Þ=ðK8M þ ½VIII�Þ 3:12 £ 1027

Va ðk5½IIa�½V�Þ=ðK5M þ ½V�Þ2 h5½Va�
2ðhC5½APC�½Va�Þ=ðHC5M þ ½Va�Þ

3:82 £ 1027

V 2ðk5½IIa�½V�Þ=ðK5M þ ½V�Þ 5:63 £ 1027

Xa ðk10½Z�½X�Þ=ðK10M þ ½X�Þ2 h10½Xa�½ATIII�2 hTFPI½TFPI�½Xa� 7:37 £ 1027

X 2ðk10½Z�½X�Þ=ðK10M þ ½X�Þ 5:63 £ 1027

IIa ðk2½W�½II�Þ=ðK2M þ ½II�Þ2 h2½IIa�½ATIII� 6:47 £ 1027

II 2ðk2½W�½II�Þ=ðK2M þ ½II�Þ 5:21 £ 1027

Ia ðk1½IIa�½I�Þ=ðK1M þ ½I�Þ2 ðh1½PLA�½Ia�Þ=ðH1M þ ½Ia�Þ 2:47 £ 1027

I 2ðk1½IIa�½I�Þ=ðK1M þ ½I�Þ 3:10 £ 1027

XIa ðk11½IIa�½XI�Þ=ðK11M þ ½XI�Þ2 hA3
11 ½XIa�½ATIII�2 hL1

11½XIa�½L1AT� 5:00 £ 1027

XI 2ðk11½IIa�½XI�Þ=ðK11M þ ½XI�Þ 3:97 £ 1027

ATIII 2ðh9½IXa� þ h10½Xa� þ h2½IIa� þ hA3
11 ½XIa�Þ½ATIII� 5:57 £ 1027

TFPI 2hTFPI½TFPI�½Xa� 6:30 £ 1027

APC ðkPC½IIa�½PC�Þ=ðKPCM þ ½PC�Þ2 hPC½APC�½L1AT� 5:50 £ 1027

PC 2ðkPC½IIa�½PC�Þ=ðKPCM þ ½PC�Þ 5:44 £ 1027

L1AT 2hPC½APC�½L1AT�2 hL1
11½XIa�½L1AT� 5:82 £ 1027

tPA 0 5:28 £ 1027

PLA ðkPLA½tPA�½PLS�Þ=ðKPLAM þ ½PLS�Þ2 hPLA½PLA�½L2AP� 4:93 £ 1027

PLS 2ðkPLA½tPA�½PLS�Þ=ðKPLAM þ ½PLS�Þ 4:81 £ 1027

L2AP 2hPLA½PLA�½L2AP� 5:25 £ 1027
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with a given viscosity, and next inserted into (6) to obtain the concentrations (including

that of fibrin). The local viscosity is updated by a factor which depends on the calculated

fibrin concentration in the clotting area and the flow field is recomputed in the next time

step using the updated viscosity.

An artificial compressibility formulation (see, e.g. [28]) is used to calculate the

pressure and to enforce the divergence-free constraint. Continuity Equation (1)2 is

modified by adding the time-derivative of pressure properly scaled by the artificial speed

of sound c, as follows:

1

c2

›p

›t
þ div u ¼ 0: ð7Þ

Table 3. Reaction kinetics parameters.

Parameters Values Units

k9 11.0 min21

K9M 160 nM
hA3

9 0.0162 nM21 min21

k8 194.4 min21

K8M 112,000 nM
h8 0.222 min21

hC8 10.2 min21

HC8M 14.6 nM
k5 27.0 min21

K5M 140.5 nM
h5 0.17 min21

hC5 10.5 min21

HC5M 14.6 nM
k10 2391 min21

K10M 160.0 nM
h10 0.347 nM21 min21

hTFPI 0.48 nM21 min21

k2 1344.0 min21

K2M 1060.0 nM
h2 0.714 nM21 min21

k1 3540 min21

K1M 3160 nM
h1 1500 min21

H1M 250,000 nM
k11 0.0078 min21

K11M 50.0 nM
hA3

11 1.6 £ 1023 nM21 min21

hL1
11 1.3 £ 1025 nM21 min21

kPC 39.0 min21

KPCM 3190.0 nM
hPC 6.6 £ 1027 nM21 min21

kPLA 12.0 min21

KPLAM 18.0 nM
hPLA 0.096 nM21 min21

kAP
AP 18.0 nM21 min21

hIIa
AP 30.0 min21

KdZ 0.56 nM
KdW 0.1 nM
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This non-physical modification of the continuity equation is often used in steady flow

simulations. In the present case, the sub-iterative procedure based on the artificial

compressibility method is only used to enforce the divergence-free constraint before

simulating the biochemical concentrations. This could be justified by the quasi-steady

nature of the flow, due to the slow evolution in time of the local viscosity. Thus, it looks

acceptable to assume the flow to be described by a steady generalized Newtonian system at

each time step.

Figure 3. Schematic of the selected reactions involved in the extrinsic pathway of the blood
coagulation process.

Figure 4. Clot modeling.

Computational and Mathematical Methods in Medicine 91



3.1 Space discretization

The computational mesh is structured and consists of hexahedral primary control

volumes. To evaluate the viscous fluxes also, dual finite volumes are needed. They have

octahedral shape and are centred around the corresponding primary cell faces. Figure 6

shows a schematic representation of this configuration. The same grid is used for the

calculation of both flow field and biochemical concentrations. Thus, it is natural to use

the same method for solving both problems simultaneously. The algorithm described

below for the flow variables W, can thus be directly applied to the calculation of the

concentrations Ci.

The system of generalized NS Equations (1)–(2) can be rewritten in the vector form.

Here, we use W to denote the vector of unknowns (including pressure). Vectors F, G and

H denote the inviscid fluxes in x, y, z directions, while R, S and T stand for their viscous

counterparts. Using this notation, the spatial finite-volume semi-discretization in the

computational cell D ; Di,j,k can be written in the following form:

›W

›t
¼

21

jDj

þ
›D

½ðF2 RÞ; ðG2 SÞ; ðH2 TÞ�·n̂ dS: ð8Þ

Here, n̂ denotes the outer unit normal vector of the cell boundary and dS is the surface

element of this boundary. Equation (8) can be rewritten in operator form:

›Wijk

›t
¼ 2LWi;j;k; ð9Þ

Figure 5. Clot viscosity behaviour.

Figure 6. Finite-volume grid in 3D.
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where L stands for the finite-volume discretization operator. This operator is still exact at

this stage and must be properly discretized.

The inviscid flux integral can be approximated using centred cell fluxes, e.g. the value

of the flux F on the cell face with index ‘ ¼ 1 is computed as the average of cell-centred

values from both sides of this face:

Fn
1 ¼

1

2
F Wn

i;j;k

� �
þ F Wn

iþ1;j;k

� �h i
: ð10Þ

The contribution of inviscid fluxes is finally summed up over the cell faces

‘ ¼ 1, . . . ,6. In this way, we can write the inviscid flux approximation:

þ
›D

Fn xdy dz <
X6

‘¼1

F‘n
x
‘S‘: ð11Þ

The discretization of viscous fluxes is more complicated since vectors R, S, T involve

the derivatives of the velocity components that need to be approximated at cell faces. This

can be done using a dual finite-volume grid, with octahedral cells, centred around the

corresponding faces (Figure 7). The evaluation of the velocity gradient components is then

replaced by the evaluation of the surface integral over the dual volume boundary. Finally,

this surface integral is approximated by a discrete sum over the dual cell faces (with

indices m ¼ 1, . . . ,8). For example, if we want to evaluate the first component of the

viscous flux R1 (i.e. to approximate ux) at the cell face l ¼ 1, we must proceed in the

following way:

ux <
þ
› ~D

un xdy dz <
X8

m¼1

umn
x
mSm: ð12Þ

The outer normal to the dual cell faces must be properly approximated n x < nx
m.

The values of the velocity components in the middle nodes of these faces are taken as an

average of the values in the corresponding vertices.

3.2 Time integration

After space discretization, the problem is now in the semi-discrete form:

dWijk

dt
¼ 2LWi;j;k; ð13Þ

where L is the approximate space discretization operator.

Figure 7. Inviscid flux (left) and viscous flux (right) discretizations.
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This system of ordinary differential equations for W (or concentration Ci) can be

solved, e.g. by the Runge–Kutta multistage method. For simplicity, we use the same time

integration method for both, flow field and concentrations. One of the simplest Runge–

Kutta methods can be written in the form:

Wð0Þ
i;j;k ¼ Wn

i;j;k

Wðrþ1Þ
i;j;k ¼ Wð0Þ

i;j;k 2 aðrÞDtLWðrÞ
i;j;k

Wnþ1
i;j;k ¼ WðmÞ

i;j;k:

ð14Þ

Here, r ¼ 1; . . . ;m is related to the m-stage method. The three-stage explicit RK

scheme has coefficients: a(1) ¼ 1/2, a(2) ¼ 1/2 and a(3) ¼ 1. This method is useful and

efficient with minimum requirements on the storage space associated with intermediate

stages.

The efficiency and robustness of the method could be further increased modifying the

above algoritm. The modification used in the numerical simulations presented in this paper

follows the Runge–Kutta time integration procedures outlined in Ref. [14] and further

refined in Ref. [13]. The idea behind this modified approach lies in splitting the space

discretization operator into its inviscid and viscous parts. The inviscid operator is

evaluated at each Runge–Kutta stage, while the viscous operator is evaluated in just a few

more stages. This corresponds to the use of different Runge–Kutta coefficients for time

integration of inviscid and viscous fluxes. The modified algorithm can thus be written in

the form:

Wð0Þ
i;j;k ¼ Wn

i;j;k

Wðrþ1Þ
i;j;k ¼ Wð0Þ

i;j;k 2 aðrÞDtðQðrÞ þDðrÞÞ

Wnþ1
i;j;k ¼ WðmÞ

i;j;k:

ð15Þ

Here, the space discretization operator at stage (r) is split as:

LWðrÞ
i;j;k ¼ QðrÞ þDðrÞ: ð16Þ

The inviscid flux Q is evaluated in the usual way at each stage

QðrÞ ¼ QWðrÞ
i;j;k with Qð0Þ ¼ QWn

i;j;k: ð17Þ

The viscous flux D uses a blended value from the previous and the actual stages

according to the following rule:

DðrÞ ¼ bðrÞDWðrÞ
i;j;k þ ð1 2 bðrÞÞDðr21Þ with Dð0Þ ¼ DWn

i;j;k: ð18Þ
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The coefficients a(r) and b(r) are chosen to guarantee a large enough stability region for

the Runge–Kutta method. The following set of coefficients was used in this study:

að1Þ ¼ 1=3 bð1Þ ¼ 1

að2Þ ¼ 4=15 bð2Þ ¼ 1=2

að3Þ ¼ 5=9 bð3Þ ¼ 0

að4Þ ¼ 1 bð4Þ ¼ 0

:

We realize that only two evaluations of the dissipative terms are needed when this

four-stage method is used. This characteristic of the method significantly saves the amount

of calculations while retaining the advantage of a large stability region. Further admissible

sets of coefficients together with comments on the increase of the efficiency and

robustness of the corresponding methods can be found in Refs. [13,14] and the references

therein.

3.3 Numerical stabilization

A well-known property of central schemes is that, in the presence of strong gradients, non-

physical oscillations appear in the solution. Procedures aiming at stabilizing the discrete

solution and to avoid spurious pressure modes can be accomplished according to several

criteria.

In the present simulations, we use a pressure stabilization method that consists in

adding a pressure dissipation term (Laplacian) on the right-hand side of the modified

continuity Equation (7). This term takes the form:

Qi;j;k ¼
1

jDi;j;kj

X2N

‘¼1

p‘ 2 pi;j;k

b‘

S‘: ð19Þ

Here, ‘ denotes the control volume cell face index, p‘ is the pressure in the

corresponding neighbouring cell and S‘ is the cell face area. The value b‘ has the

dimension of velocity and represents the maximal convective velocity in the domain and

local diffusive velocity.

b‘ ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ u2

3

q� �
þ

2n

L‘

: ð20Þ

Symbol L‘ corresponds to a distance between the current and the neighbouring cell

centres.

It is possible to show that on the uniform cartesian mesh with cells of size dx, this term

is given by:

Q ¼
dx

2b
Dp: ð21Þ

This stabilization method has some advantages over the classical artificial diffusion

applied to the velocity components. The artificial effects induced by the pressure dissipation

term do not interfere with the physical shear dependent viscosity. Moreover, this stabili-

zation term contains only second derivatives of the pressure and will vanish if pressure is a

linear function of space coordinates. See also Ref. [19] for other stabilization approaches.

Finally, it is important to observe that since the diffusion coefficients in the advection–

diffusion–reaction equations of the biochemistry model are extremely small, the use of a

central space-discretization, with no internal numerical diffusion, seems to be a natural
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choice. To prevent the appearance of numerical oscillations typically associated to central

schemes, a special non-linear filter was also used at each iteration to postprocess the

concentration fields. This filtering technique described in Ref. [11] was further studied in

Ref. [26].

4. Numerical simulations and preliminary results

The computational domain consists of a segment of a rigid-walled cylindrical vessel with

diameter D ¼ 2R ¼ 6.2 mm and length L ¼ 10R ¼ 31 mm. The whole domain is

discretized using a structured multiblock mesh with hexahedral cells as shown in Figure 8.

The grid is fitted to the vessel wall in order to capture the near-wall gradients of the

velocity and concentration fields. The grid has 10 £ 10 £ 60 cells in the core block,

while there are 40 £ 20 £ 60 cells in the outer, near-wall block.

4.1 Boundary and initial conditions

4.1.1 Velocity and pressure

A fully developed velocity profile, with mean velocity U ¼ 3.1 cm/s (related to the vessel

length by U ¼ L/s ¼ 10R/s), is prescribed at the inlet (Dirichlet condition) and, at the

outlet, homogeneous Neumann conditions for the velocity components, are imposed.

Pressure is fixed only at the outlet and is extrapolated at the other boundaries. On the vessel

wall, no-slip Dirichlet conditions for the velocity field are prescribed. Since at time t ¼ 0

no clot exists, an undisturbed fully developed non-Newtonian flow is conveniently

computed and imposed as initial condition. This undisturbed flow is also used as initial

condition for the biochemistry simulations.

4.1.2 Concentrations

The vessel wall is impermeable and the boundary conditions for the concentrations of all the

twenty-three chemical species, at the healthy vessel wall, are homogeneous of Neumann

type (i.e. no-flux). In the injured wall region, no-flux boundary conditions are prescribed

for all constituents except for seven selected chemical species which are directly involved

in the initiation of the coagulation cascade [2–4]. Figure 9 represents this configuration.

The simulated vessel wall injury is considered to be a region which is the intersection

of the outer surface of the vessel with a sphere of radius R, centered on the vessel wall

Figure 8. Computational geometry and grid.
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at one third of the length of the vessel segment. This means the clotting surface on the

vessel wall is elliptical-shaped. In this region, non-homogeneous boundary conditions of

the Neumann type ›Ci=›n ¼ Bi are prescribed for the following seven chemicals: IXa, IX,

Xa, X, XIa, XI and tPa. These flux terms are summarized in Table 4, where [C]w denotes

the value of C on the wall.

Diffusion coefficients D have already been listed in Table 2. The length scale L is

chosen to be equal to the vessel radius R. The other parameters appearing in the

formulation of boundary fluxes are summarized in Table 5.

Along with these constant type parameters, another three free parameters describing

the level of the blood vessel wall injury appear and should be specified. These values are

the TF–VIIa complex concentration ([TF–VIIa ]), the number of intact endothelial cells

per unit area [ENDO ], and the XIIa enzyme concentration ([XIIa ]). These values should

be prescribed separately for injured and healthy vessel wall as shown in Figure 10 (using

??? and ??, respectively).

In addition, we require normal human physiological values as initial conditions for the

concentrations of all chemical species (see Refs. [2–4]). These values are listed in Table 6.

To avoid instabilities in the numerical simulations here, we assume that the initial

concentrations of the enzymes originally set to zero (IXa, VIIIa, Va, Xa, IIa and Ia) are

replaced by suitable very small (but non-zero) values, set to be 0.1% of the initial values

for the corresponding zymogens (IX, VIII, V, X, II and I). These free parameters are chosen

to be equal to zero on the healthy part of the vessel wall, while on the injured area their

prescribed values are shown in Table 7.

4.2 Numerical results

In this section, we present some of the results obtained with the three-dimensional

numerical simulations of the coupled fluid-biochemistry model described above for the

prediction of clot formation and growth around an injured vessel wall region, under

physiological conditions. As already mentioned (Section 2.3), the initiation of the clotting

cascade is associated to the extent of injury in the vessel wall, reflected in a threshold

concentration of the TF–VIIa complex (tissue factor) imposed in the flux boundary

conditions. The clot is formed when fibrin concentration [Ia ] equals or exceeds a specific

value (1000 nM in our case) and clot growth is determined by tracking in time the

evolution of fibrin concentration in the clot region.

All the twenty-three chemical species involved in the advection–reaction–diffusion

Equations (6) play an important role in the clotting process. Their concentrations are

computed pointwise in the whole computational domain and can be visualized during

Figure 9. Concentration boundary conditions.
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aselected simulation time. Figure 11 illustrates the evolution in time (300 s) of the

concentrations of the six most important species involved in the blood coagulation, namely

[IIa ] (Thrombin), [Ia ] (Fibrin), [ATIII ] (Anti-Thrombin III), [APC ] (Active Protein C),

[tPA ] (Tissue Plasminogen Activator) and [PLA ] (Plasmin). The concentrations versus

time history are shown at the centre of the simulated vessel wall injured region.

During the simulation time period of 300 s the concentrations of these chemicals

undergo a profound evolution. The most relevant is the jump in all concentrations that

occurs approximately 20 s after the initiation of the clotting cascade. At this time, the

system response becomes stronger and the concentration of fibrin increases rapidly and

reaches its maximum value at approximately 120 s, remaining relatively stable after that

time, Figure 11(b). Observing the different graphs shown in Figure 11, we also conclude

that the time evolution is not similar for the various chemical species.

Table 4. Flux boundary conditions at the injured vessel wall region.

Species Expressions of the boundary flux terms Bi

IXa ððk7;9½IX�
w½TF 2 VIIa�wÞ=ðK7;9M þ ½IX�wÞÞðL=DIXaÞ

IX 2ððk7;9½IX�
w½TF 2 VIIa�wÞ=ðK7;9M þ ½IX�wÞÞðL=DIXÞ

Xa ððk7;10½X�
w½TF –VIIa�wÞ=ðK7;10M þ ½X�wÞÞðL=DXaÞ

X 2ððk7;10½X�
w½TF 2 VIIa�wÞ=ðK7;10M þ ½X�wÞÞðL=DXÞ

XIa ððf11½XI�w½XIIa�w=ðF11M þ ½XI�wÞÞðL=DXIaÞ

XI 2ððf11½XI�w½XIIa�wÞ=ðF11M þ ½XI�wÞÞðL=DXIÞ

tPa ððkC
tPA þ kIIa

tPA½IIa�
w þ kIa

tPA½Ia�
wÞ½ENDO�wÞðL=DtPaÞ

Table 5. Boundary flux parameters.

Parameters Values Units

f11 0.034 min21

F11M 2000 nM
k7;9 32.4 nM
K7;9M 24 nM
k7,10 103 min21 m
K7,10M 240 nM

kC
tPA 6.52 £ 10213 nM m2 min21

kIIa
tPA 9:27 £ 10212e2134:8ðt2t0Þ m2 min21

kIa
tPA 5.059 £ 10218 m2 min21

Figure 10. Free parameters in flux boundary conditions.
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Clot growth can be better observed in Figure 12, which shows the contours of fibrin

concentration on the vessel wall after 60 s. The simulations suggest that fibrin

concentration has significantly increased in the clotting area. Moreover, due to advection,

fibrin is transported downstream in the injured vessel wall region, as expected and the

clot’s shape changes its form during the clotting process.

These phenomena become more evident in Figure 13, where the variations of surface

fibrin concentration contours during the initial 60 s of clotting are displayed. The length

scales of both axes correspond to the axial and tangential coordinates, normalized by the

vessel cross-section radius R. The blood flow direction is from left to right. In the first 20 s,

simulations do not show any change in the fibrin concentration and therefore only results

for the time period 30–60 s are shown in Figure 13. Due to advection, fibrin is transported

downstream in the injured vessel wall region, as already referred, and the clot’s shape

changes its form during the clotting process.

Advection effects are better captured with a longer simulation time of clot growth.

This is shown in Figure 14 for the time period 0–300 s. It is clear that the clot evolution

process is not yet finished, as the clot shape is still changing. Also, clot dissolution that

Table 6. Initial concentrations.

Species Initial values (nM)

IXa 0.0*

IX 90.0
VIIIa 0.0*

VIII 0.7
Va 0.0*

V 20.0
Xa 0.0*

X 170.0
IIa 0.0*

II 1400.0
Ia 0.0*

I 7000.0
XIa 0.0*

XI 30.0
ATIII 2410.0
TFPI 2.5
APC 0.0*

PC 60.0
L1AT 45000.0
tPA 0.08
PLA 0.0*

PLS 2180.0
L2AP 105.0

Table 7. Free parameters in boundary fluxes.

Concentrations Values

[TF–VIIa ] 0.25 nM
[ENDO ] 2.0 £ 109 cells/m2

[XIIa ] 375 nM
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occurs in regions where fibrin concentration drops below CClot, after initially exceeding it,

or when the shear stress exceeds a critical value forcing the clot’s rupture, has not been

captured in the present simulations. A longer time clot growth and dissolution needs more

computational time and is beyond the purpose of the preliminary numerical simulations

performed in this study.

5. Conclusion and remarks

Preliminary numerical results of three-dimensional simulations for a simplified version of

an advanced comprehensive model of clot growth and lysis, introduced and discussed in

Refs. [2–4], have been presented here to emphasize its effectiveness.

Figure 11. Time evolution of the concentrations of selected chemical species in the centre of the
clotting surface. (a) Thrombin [IIa]; (b) Fibrin [Ia]; (c) Anti-Thrombin III [ATIII]; (d) Active Protein
C [APC]; (e) Tissue Plasminogen [tPA]; (f) Plasmin [PLA].
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The blood flow model used in the simulations only captures its shear-thinning viscosity

and could be improved with more complex rheological models including viscoelasticity,

as studied by Yeleswarapu [30], or the thermodynamically based model derived by Anand

and Rajagopal [1] (with deformation dependent relaxation times) and used in Refs. [2–4].

Moreover, it would be interesting to incorporate in the solvers additional chemical

constituents and their interactions, as in those involved in platelets activation and

aggregation, to obtain numerical results for a more realistic coagulation model that fits

physiological experimental data and may be used in clinical applications. Results can also

Figure 12. Fibrin concentration on the vessel surface after 60 s.

Figure 13. Evolution of fibrin concentrations on the vessel wall during the first minute of clotting.
(a) 30 s; (b) 40 s; (c) 50 s; (d) 60 s.
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Figure 14. Evolution of fibrin concentrations on the vessel wall during the first 5 min of
clotting. (a) 30 s; (b) 60 s; (c) 90 s; (d) 120 s; (e) 150 s; (f) 180 s; (g) 210 s; (h) 240 s; (i) 270 s; (j) 300 s.
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be improved using more efficient and robust space and time semi-discretization solvers

that allow for the simulation of clot growth and dissolution with affordable computational

costs. This is the object of our current research.
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