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A new intra-host model of malaria that describes the dynamics of the blood stages of
the parasite and its interaction with red blood cells and immune effectors is proposed.
Local and global stability of the disease free equilibrium are investigated. Conditions
for existence and uniqueness of the endemic equilibrium are derived. An intra-host
basic reproductive number is identified. We deduce that drugs based on inhibiting
parasite production are more effective than those based on inhibiting merozoite
invasion of erythrocytes. We extend the model to incorporate, in addition to immune
response, drug therapy, following treatment with antimalarial drugs. Using stability
analysis of the model, it is shown that infection can be eradicated within the host if the
drug efficacy level exceeds a certain threshold value. It will persist if the efficacy is
below this threshold. Numerical simulations are done to verify the analytic results and
illustrate possible behaviour of the models.
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1. Introduction

Plasmodium falciparum malaria is a major cause of morbidity and mortality, largely

attributable to asexual parasitaemia [33]. Transmission begins when an infected female

Anopheles mosquito takes a blood meal. As the blood meal is ingested the mosquito

simultaneously injects saliva containing plasmodial sporozoites into the human host. About

30minutes later, the motile, threadlike sporozoites migrate to the liver where they infect the

liver cells [39,31,3]. They develop into schizonts (a developmental structure that contains

merozoites) which rupture and the merozoites are released, then enter the blood stream.

These merozoites infect red blood cells (RBCs) and undergo asexual reproduction, which is

similar to but quicker and less prolific than that in the liver cells. This occurs within the

parasitophorous vacuole in theRBC [14].After about 48 hours forP. falciparum the infected

erythrocyte ruptures releasing daughter parasites that quickly invade fresh erythrocytes to

renew the cycle [7,22]. This (erythrocytic) cycle maintains infection and directly generates

disease symptoms [17]. Some of the merozoites that invade RBCs, instead of developing

asexually, differentiate into sexual forms called gametocytes [7]. They develop through
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morphologically distinct stages, designated I–V,within thehostRBC[38].Mature (stageV)

gametocytes circulate in the host’s bloodstream, available to feedingAnophelesmosquitoes.

Successive erythrocytic cycles result in an increase in parasitaemia and disease

unless they are brought under control by the host’s protective immune responses, drug

therapy or until the host dies. The human immune system is a remarkably sophisticated

defender of the body. It has an array of protective cells that can be mobilized to tackle an

invader, with cells of the innate immune system forming the first line of defence and

those of the adaptive immune system arriving later, but with extremely specific

weaponry. During asexual reproduction in the RBC, the intracellular parasite, which is

not free within the erythrocyte cytoplasm but resides in a parasitophorous vacuole [14],

then begins to modify both the biochemical and physiological processes of the cell [24].

In the process it digests the haemoglobin which makes up around 95% of the erythrocyte

cytosol. The rapid increase in the parasite biomass then activates innate immune

mechanisms [14]. When the infected erythrocyte bursts, the foreign materials also

activate monocytes and macrophages, releasing cytokines that stimulate other cells of

the immune system and presenting foreign antigens to the rest of the immune system

[5,26].

Because RBCs do not express the critical molecule major histocompatibility complex

class 1 (MHC-1) on their surface, the blood stage malaria parasites cannot induce the

cluster of differentiation 8 (CD8þ) T cell response and, even though the response is

induced by other infected tissue such as the liver, are probably not vulnerable to its

cytotoxic action [40,37]. However, CD4þ T cells are essential for immune protection

against asexual blood stages in human malaria. CD4þ T cells respond to malaria antigens

by proliferation and/or secretion of cytokines, e.g. interferon-gamma (INF-g) or

interleukin-4 (IL-4) [37]. On reinfection, the malaria primed T cells produce greatly

increased amounts of INF-g which synergize with malaria glycosyphosphatidylinositol

(GPI) to upregulate the production of tumour necrosis factor-alpha (TNF-a). Immunity is

therefore associated with the ability to regulate the production of pro-inflammatory

cytokines to an intermediate level, which mediates parasite clearance while

simultaneously avoiding severe pathology. Falling antigen concentration leads to a

switch in the predominant T cell phenotype from Th1 (INF-g producing) to a regulatory T

cell phenotype (IL-10 and transforming growth factor-beta (TGF-b) producing). These

cytokines mediate anti-inflammatory response. A dynamic equilibrium is required with a

pro-inflammatory effector mechanism targeting and controlling the parasite, and anti-

inflammatory cytokines suppressing immunopathology.

Considerable work has been done on mathematical modelling of Plasmodium

falciparum infection [33,7,22,8,40,15,16,21,30,43,18,29,19]. Some of the intra-host

models have been reviewed byMolineaux and Dietz [32]. These models do not incorporate

the effect of the immune response and treatment explicitly. That is, they do not show the

effect of immune effectors on merozoite invasion of erythrocytes and suppression of

parasite production by antibodies. Another drawback in these models is that they do not

take into account the accelerated rate of production of RBCs during a malaria infection and

the loss of uninfected RBCs. From the evidence of the effects of the immune system on

disease progression [43,9,12,13,42,45,4], we formulate an intra-host model of malaria

infection with immune response and drug therapy. The rest of the paper is organized as

follows: in the following subsection we start by restating the basic intra-host model of

malaria infection [16,1], which is the foundation of our model. In Section 2, we extend the

basic intra-host model to incorporate the effects of immune response and further show the

positivity of solutions from this new model. The intra-host basic reproductive number
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is derived in Section 3 where local and global stability analysis of the disease free

equilibrium is also considered. We show the form of the endemic equilibrium and

determine its stability numerically in Section 3. We further extend the model to include

treatment with an antimalarial drug in Section 4. We perform the analysis of the model in

Section 4 and show that the disease reproduction number of the system, when the infection

is subject to both immune response and drug pressure (Rg), reduces R0 by some factor.

Implications for control of the infection, basing our arguments on the basic reproduction

number, are also discussed. Numerical simulations are performed in Section 5. A brief

discussion of the results concludes the paper.

1.1 Intra-host model without immunity

Intra-host models of malaria infection describe the dynamics of the blood stages of the

parasite and their interaction with host cells which are RBCs and immune effectors [32].

One of the earliest models used to describe intra-host dynamics of malaria infection is that

of Anderson et al. [1]. The mathematical model is given as

dXðtÞ
dt

¼ lX 2 bXðtÞMðtÞ2 mXXðtÞ;

dYðtÞ
dt

¼ bXðtÞMðtÞ2 mYYðtÞ;

dMðtÞ
dt

¼ rmYYðtÞ2 mMMðtÞ2 bXðtÞMðtÞ;

ð1Þ

where X(t) and Y(t) are the concentrations of uninfected RBCs and infected red blood cells

(IRBCs) respectively.M(t) are the merozoites (parasites) that infect RBCs. lX is the source

of RBCs from the bone marrow, b is rate of infection of RBCs, mX is the death rate of

RBCs, mY is the death rate of IRBCs, r is the average number of merozoites produced per

each bursting IRBC and mM is the death rate of merozoites.

This model does not take into account the effect of the immune system and therefore

describes the worst case scenario. The intra-host basic reproductive number for a simple

malaria model is defined as the number of merozoites (r), released per IRBC £ the initial

fraction of successful merozoites [32]. This definition gives the basic reproductive number

for model (1) as R0 ¼ rbXN=ðmM þ bXNÞ. The reproductive number considers the fate of

a single productively infected cell in an otherwise healthy individual with normal target

cell levels XN ¼ lX=mX [6]. In a healthy individual the target cell population is regulated

according to the equation dXðtÞ=dt ¼ lX 2 mXXðtÞ and homeostasis is maintained at some

steady state XN ¼ lX=mX . 0. The disease free equilibrium of model system (1) can

easily be shown to be globally stable. We will show in Appendix A that the endemic

equilibrium of system (1) is globally asymptotically stable. We note from Appendix A that

the endemic equilibrium of (1) is globally stable when blX , minðmX;mY ÞmY . This

condition is possible for a model without immune response such as (1), where the death

rate of IRBCs can be very high.

2. Intra-host model with immune response

We build our model from the model system (1) by including the response of the

immune system. In developing the model, we also make the following assumptions:

(1) The model assumes five interacting populations at any given time (t). These

are RBCs X(t), IRBCs Y(t), merozoites M(t), immune cells B(t) and antibodies

A(t).
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(2) Due to the many different types of immune cells elicited by the presence of

malaria parasites, the model assumes them to be lumped together in one

population for simplicity.

(3) The RBCs are supplied from the bone marrow at a constant rate. We assume

that the supply rate is accelerated by the presence of IRBCs. However, the

particular mechanisms involved in the acceleration of RBCs during a malaria

infection are still poorly understood [46]. They are reduced through infection

by merozoites and natural death at a constant rate. The RBCs are also

destroyed through phagocytosis of erythrocytes bound to merozoites.

(4) IRBCs die at a constant rate and are also killed by the presence of immune

effectors. They produce free merozoites by bursting.

(5) Production rate of merozoites is reduced by immune cells. These free parasites

suffer a natural death, are eliminated from circulation by immune cells and are

also reduced through infecting RBCs.

(6) Immune cells are assumed to have a per capita rate of production and their

production is stimulated by the presence of IRBCs and merozoites. They are

reduced (deactivated) at a constant rate.

(7) Antibodies that block invasion of RBCs proliferate in the presence of

merozoites. Proliferation of antibodies is dependent only on merozoites since

we assume only antibodies that block infection. Antibodies decay at a constant

rate.

(8) All parameters are positive.

These assumptions lead to the following system of differential equations which

describe the interaction between uninfected RBCs, IRBCs, merozoites, immune cells

(which include CD4þ T cells, dendritic cells, macrophages, etc.), and antibodies:

dXðtÞ

dt
¼ lX þ sYðtÞ2

bXðtÞMðtÞ

1þ c0AðtÞ
2 mXXðtÞ2 vXðtÞMðtÞBðtÞ; ð2:1Þ

dYðtÞ

dt
¼

bXðtÞMðtÞ

1þ c0AðtÞ
2 mYYðtÞ2 kYBðtÞYðtÞ; ð2:2Þ

dMðtÞ

dt
¼

rmYYðtÞ

1þ c1BðtÞ
2 mMMðtÞ2 kMBðtÞMðtÞ2

bXðtÞMðtÞ

1þ c0AðtÞ
; ð2:3Þ

dBðtÞ

dt
¼ lB þ BðtÞ rY

YðtÞ

k0 þ YðtÞ
þ rM

MðtÞ

k1 þMðtÞ

� �
2 mBBðtÞ; ð2:4Þ

dAðtÞ

dt
¼ hBðtÞ

MðtÞ

k1 þMðtÞ
2 mAAðtÞ: ð2:5Þ

The dynamics of RBCs, X(t) is described by Equation (2.1). The first term on the right

side of Equation (2.1) represents the rate of supply of RBCs from the bone marrow [31].

The second term represents the recruitment of RBCs at a rate s proportional to IRBCs

where 0 # s , 1. RBC production is accelerated during a malaria infection, but the

particular mechanisms involved are still poorly understood [46]. One analysis reported
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an average of 37% increase in RBC production in adult first-time P. falciparum patients

[23]. The third term represents infection of RBCs by merozoites. bXðtÞMðtÞ models the

rate at which free merozoites infect RBCs where b is rate of infection. Antibodies specific

to malaria parasites (merozoites) inhibit invasion of erythrocytes by merozoites [42,2].

The term f ðAðtÞ; c0Þ ¼ 1=ð1 þ c0AðtÞÞ represents the role of antibodies in controlling

parasitaemia, where c0 is the efficiency of antibodies in reducing erythrocytic invasion.

Antibodies bind to the epitopes on the Plasmodium parasite, thereby disabling the parasite,

making its entry into the RBC difficult. As the antibody level increases (A(t) ! 1),

f ðAðtÞ; c0Þ! 0. This means that an increase in the number of antibodies reduces the rate of

infection of RBCs by merozoites. Conversely, low numbers of antibodies increase the rate

of infection of RBCs by merozoites. That is as AðtÞ! 0, f ðAðtÞ; c0Þ! 1. The fourth term in

Equation (2.1) is the natural death rate of RBCs, since their average life span is 1=mX .

The last term describes the destruction of RBCs through phagocytosis of erythrocytes

bound to merozoites [23]. Equation (2.2) models the dynamics of infected (parasitized)

RBCs, Y(t). The first term on the right hand side of Equation (2.2) is a gain term for IRBCs

from the loss term in Equation (2.1). The second term is the rate at which IRBCs are lost

through death. The last term represents the rate at which IRBCs are killed directly by

immune cells [12,42]. The parameter kY represents immunosensitivity of IRBCs [32].

The rate of change ofmerozoites is described byEquation (2.3). Thefirst termon the right

hand side of Equation (2.3) is the source of free merozoites which are released when IRBCs

burst [7,22]. Their source is the second term in Equation (2.2). IRBCs burst during death,

hence thenumberofmerozoites produceddependson thedeath rateof IRBCs.Anaverageof r

merozoites are released per each bursting IRBC. Rate of parasite production (multiplication)

by infected cells is suppressed by immune cells with a factor f ðBðtÞ; c1Þ ¼ 1=ð1 þ c1BðtÞÞ.

Immunecells such asgd þTcells expandduring the early stages of infection byP. falciparum

[10]. The expanded or activated T-cell populations express mRNA for TNF and IFN-g [43]

and can inhibit parasite growth [43,10]. c1 is the efficiency of immune cells in suppressing

parasite production. So as B(t) ! 1, f ðBðtÞ; c1Þ! 0 meaning as immune cells increase, rate

of parasite production is reduced. Conversely, as immune cells decrease, parasite production

by IRBCs increases, thus as B(t) ! 0, f ðBðtÞ; c1Þ! 1. We note however that for malaria, a

dynamic equilibrium is required between pro-inflammatory and anti-inflammatory cytokines

to suppress immunopathology. The second term is the loss of merozoites through natural

death and the third term is the rate at which merozoites are removed by immune cells. IFN-g

and CD4þ T cells activate macrophages to phagocytose intra-erythrocytic parasites and free

merozoites [42]. kM is immunosensitivity of merozoites. The last term is the loss of

merozoites through infection of RBCs.

Equation (2.4) models the population of the immune cells (e.g. macrophages, natural

killer cells, CD4þ T cells). The first term on the right hand side of Equation (2.4) is the

source term for immune cells (combined term for different immune cells). This is followed

by the stimulation term for immune cells in the presence of IRBCs and merozoites. rY and

rM represent the immunogenicity of IRBCs and merozoites respectively [32]. k0 is the

density of IRBCs at which immune cells grow at rate rY/2, that is half their maximum rate

[13] in the absence of merozoites and k1 is the density of merozoites [25] at which immune

cells grow at rate rM/2 in the absence of IRBCs. mB is the natural death rate of the immune

cells. The population of antibodies is described by Equation (2.5). The first term on the

right hand side of Equation (2.5) is the stimulation term for antibodies. Antibodies that

inhibit invasion of RBCs by merozoites are secreted by immune cells in the presence

of merozoites. These antibodies against the merozoite surface proteins (MSPs) are a major

component of the invasion inhibitory response in humans [36]. h is the maximum rate
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of increase of antibodies, k1 is the density of merozoites at which antibodies reach half

their maximum value (h/2) and mA is the rate at which the antibodies decay.

Unlike Equation (2.4) where we include a natural source term, lB for immune cells, we

do not include a source term for antibodies because we assume that the only source of

antibodies against merozoites in a non-immune human (a human who has no previous

exposure to malaria infection) are immune cells.

The solutions of the model (2) are shown to be always positive, which means that the

model is biologically feasible. Positivity of solutions is shown in Appendix B. It can easily

be shown that all solutions of system (2) initiating in IR5
þ are bounded and eventually enter

the attracting set

F ¼ {ðX; Y;M;B;AÞ [ IR5
þ : X; Y;M;B;A , Q}:

3. Analysis of the model

In model system (2), some parameters have biological meaning and can be well estimated

and others are mathematical constructs imposed by our understanding of the immune

system. To examine such a model for its qualitative behaviour and estimate predicted

outcome we examine the following:

(a) the system’s equilibria and/or conditions for equilibria,

(b) the stability of the equilibrium points,

(c) the effect of treatment.

3.1 Intra-host basic reproductive number and stability analysis

The intra-host basic reproductive number R0 of the malaria parasite is defined as the

number of secondary IRBCs produced per primary IRBC in a host at the onset of infection

[32]. If R0 , 1, then on average an IRBC produces less than one new IRBC and the

infection cannot grow. If however R0 . 1, then on average each IRBC produces more than

one new IRBC and infection is maintained. Following the method of the next generator

approach [44], the matrices F and V 21 are given as:

F ¼
0 b lX

mX

0 0

 !
;

V 21 ¼

1
mYþkY ðlB=mBÞ

0

rmY

ð1þc1ðlB=mBÞÞðmYþkY ðlB=mBÞÞðmMþkMðlB=mBÞþbðlX=mXÞÞ
1

ðmMþkMðlB=mBÞþbðlX=mX ÞÞ

0
@

1
A:

The product FV 21 is called the next generation matrix [8]. The reproductive number

R0, is the dominant eigenvalue of FV 21. For the model system (2), we get

R0 ¼
rmYblXm

3
B

ðmB þ c1lBÞðmBmY þ kYlBÞðmBmMmX þ mXkMlB þ mBblXÞ
: ð3:1Þ
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The expression for R0 in (3.1) can be written as

b �X

1þ c0 �A
£

rmY

1þ c1 �B
£ ðmM þ kM �Bþ

b �X

1þ c0 �A
Þ21 £ ðmY þ kY �BÞ

21; ð3:2Þ

where the first term in (3.2) is the rate at which a merozoite introduced into a completely

susceptible RBC population (where X ¼ �X, B ¼ �B, A ¼ �A) infects a RBC. The second

term is the number of merozoites produced by the IRBC when it bursts. The third term is

the life span of each produced merozoite and the last term is the life span of the IRBC.

The model system given by Equation (2) has two steady states, the disease-free state

denoted by

E0 ¼ ð �X; �Y; �M; �B; �AÞ ¼
lX

mX

; 0; 0;
lB

mB

; 0

� �

and the endemic state denoted by

Ee ¼ ðX *; Y *;M *;B*;A*Þ:

To bring the infection (parasitaemia) under control we seek conditions on the

parameters of the transmission process that will guarantee the existence of a stable disease-

free state. These conditions are summarized in Appendix C and Appendix D.

3.2 The endemic equilibrium and its stability

When R0 . 1, the condition for the stability of the disease-free equilibrium is violated and

besides the disease-free equilibrium, the system of Equation (2) has an endemic

equilibrium point, Ee ¼ ðX *; Y *;M *;B*;A*Þ. The explicit form of the endemic

equilibrium is quite cumbersome to be produced here, therefore we shall only show its

existence numerically for a certain range of parameter values and perform its stability

analysis. Numerical simulations in Section 5 also confirm the existence of an endemic

equilibrium for the parameters used. We show numerically that when R0 , 1, the disease

free state is stable and when R0 . 1, the system attains an endemic equilibrium which is

stable and the disease-free state becomes unstable. The bifurcation diagram from

numerical simulations to illustrate this is shown in Figure 1 and it was produced by using

the fourth order Runge Kutta method coded in the C þþ programming language. It is

obtained by varying r, the average number of merozoites produced per each bursting

IRBC, while the other parameters are fixed. This shows that there exists a critical value,

r c ¼
ðmB þ c1lBÞðmBmY þ kYlBÞðmBmMmX þ mXkMlB þ mBblXÞ

blXmYm
3
B

above which the infection will persist. This is obtained when R0 ¼ 1 in Equation (3.1).

Therefore the uninfected steady state is stable if r , r c.

4. Intra-host model with immune response and drug therapy

We extend the model to incorporate effects of the drug. Antimalarial drugs taken

prophylactically or during infection (blood schizonticides) concentrate particularly in

parasitized erythrocytes. The drug diffuses into parasite lysosomal compartments and

becomes protonated in the acidic environment within, so it cannot pass out through the
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membrane. It raises the pH of lysosome, inhibiting the polymerase that converts toxic free

haem to a harmless by-product. It prevents digestion of haemoglobin by parasites,

reducing its supply of amino acids and therefore makes the parasite survival and

development difficult. If the drug is administered, then the burst size r becomes (1 2 g)r

where g is drug efficacy and is assumed to lie between zero, meaning totally ineffective,

and one, meaning 100% effectiveness. The drug efficacy in this context is the probability

with which chloroquine inhibits parasite growth inside IRBCs. The model system then

becomes

dXðtÞ

dt
¼ lX þ sYðtÞ2

bXðtÞMðtÞ

1þ c0AðtÞ
2 mXXðtÞ2 vXðtÞMðtÞBðtÞ; ð4:1Þ

dYðtÞ

dt
¼

bXðtÞMðtÞ

1þ c0AðtÞ
2 mYYðtÞ2 kYBðtÞYðtÞ; ð4:2Þ

Figure 1. Bifurcation diagram showing the variation in Y with R0 as bifurcation parameter.
Stability is shown by bold lines and dashed lines indicate unstable equilibrium. The disease free
equilibrium is stable when R0 , 1 and unstable otherwise. The endemic equilibrium exists and is
stable when R0 . 1. The bifurcation diagram was obtained by varying r, the average number of
merozoites produced per IRBC while keeping all the other parameters fixed at numerical values
given as lX ¼ 41664, s ¼ 0.009, b ¼ 7, c0 ¼ 0.6, mX ¼ 0.008, mY ¼ 1.0, kY ¼ 0.9, kM ¼ 0.3,
c1 ¼ 0.85, mM ¼ 3.0, lB ¼ 30, rY ¼ 0.05, rM ¼ 0.07, k0 ¼ 2000, k1 ¼ 1500, mB ¼ 0.08, mA ¼ 0.06,
h ¼ 0.8 and v ¼ 0.0025.
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dMðtÞ

dt
¼

ð12 gÞrmYYðtÞ

1þ c1BðtÞ
2 mMMðtÞ2 kMBðtÞMðtÞ2

bXðtÞMðtÞ

1þ c0AðtÞ
; ð4:3Þ

dBðtÞ

dt
¼ lB þ BðtÞ rY

YðtÞ

k0 þ YðtÞ
þ rM

MðtÞ

k1 þMðtÞ

� �
2 mBBðtÞ; ð4:4Þ

dAðtÞ

dt
¼ hBðtÞ

MðtÞ

k1 þMðtÞ
2 mAAðtÞ: ð4:5Þ

The Equations (4.1), (4.2), (4.4) and (4.5) are the same as (2.1), (2.2), (2.4) and (2.5)

respectively. Equation (4.3) is a modification of Equation (2.3) to incorporate the effects of

antimalarial drugs.

The model system (4) has two equilibrium states, the disease free state

E 0 ¼ ðX; Y;M;B;AÞ ¼
lX

mX

; 0; 0;
lB

mB

; 0

� �
;

and the endemic equilibrium E e ¼ ð ~X; ~Y; ~M; ~B; ~AÞ; and due to the complexity of our model,

the endemic equilibrium is shown numerically so that it exists for the parameter values

used.

For the disease-free equilibrium to be locally stable all the eigenvalues of the Jacobean

matrix evaluated at the disease-free state should be negative. The eigenvalues correspond

to the roots of the characteristic Equation jJ2 zIj ¼ 0, where J is the Jacobian matrix, z is

the eigenvalue and I is a 5 £ 5 identity matrix. The characteristic equation is:

z2 þ mM þ mY þ kY
lB

mB

þ kM
lB

mB

þ b
lX

mX

� �
zþ mM þ kM

lB

mB

þ b
lX

mX

� �
mY þ kY

lB

mB

� ��

2
ð12 gÞrmYblX

mXð1þ c1ðlB=mBÞÞ

�
£ ð2mX 2 zÞð2mB 2 zÞð2mA 2 zÞ ¼ 0:

Clearly three of the roots,2mX , 2mB and2mA, are negative. We use Routh–Hurwitz

condition to establish that all roots are negative if the condition

mM þ kM
lB

mB

þ b
lX

mX

� �
mY þ kY

lB

mB

� �
2

ð12 gÞrmYblX

mXð1þ c1
lB
mB
Þ

. 0;

is satisfied. We then deduce the reproductive number Rg when antimalarial drugs are

administered to be

Rg ¼
ð12 gÞrmYblXm

3
B

ðmB þ c1lBÞðmBmY þ kYlBÞðmBmMmX þ mXkMlB þ mBblXÞ
¼ R0ð12 gÞ:

Furthermore, it can be seen that at least one of these eigenvalues has a positive real part

if Rg . 1. Thus we have established the following result:

Lemma. The disease free equilibrium E 0 of (4) is locally asymptotically stable if Rg , 1

and unstable if Rg . 1.
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4.1 Implications for control

Knowledge of factors that limit parasite numbers offers hope of better-designed treatment

and intervention strategies [15,30,32], as well as providing information on selective forces

that have moulded parasite life-history strategies [20]. The intra-host basic reproductive

number R0 is a key parameter of asexual parasitaemia, crucial to calculations concerning

its control by any mechanism, natural or artificial. From the formula of R0 in (3.1), we

deduce the following: (a) reduction in the transmission rate b reduces the reproductive

number. (b) Increasing the rate at which immune cells suppress parasite production is

more effective in the control of the disease than increasing the rate at which antibodies

inhibit invasion of parasites into erythrocytes, since the parameter c1, efficiency of

immune cells appears in R0 and c0, efficiency of antibodies does not. (c) Since mB is a

cubed term in the expression for R0, increasing mB greatly increases R0.

Biologically speaking, Rg measures the number of secondary infections generated by a

single parasitized RBC in an environment where antimalarial drugs are used as a control

strategy. The primary focus of drug therapy is on the possibility of clearing the parasites.

If Rg , 1, then parasites are cleared. Using the critical point Rg ¼ 1, we find the critical

drug efficacy g c that is required for parasite clearance to be

g c ¼ 12
1

R0

:

R0 is the reproductive number when there is immune response only. If immune

response fails to clear the parasites (R0 . 1), the drug is then administered, with the aim of

reducing R0. Rg is always less than R0 for all values of g in the range 0 , g , 1. Rg ¼ R0

only when g ¼ 0. This implies that the drug is completely ineffective. Rg , 1 whenever

g . g c, thus malaria parasites can be eradicated from an infected individual if g . g c.

5. Numerical simulation

To observe the dynamics of the model over time we integrated the system of equations,

using the fourth order Runge–Kutta methods in the C þþ programming language. For

computer runs we set the initial densities of RBCs, IRBCs, merozoites, immune cells and

antibodies at 500, 5, 50, 30, and 10 respectively. Time is in days. The fixed parameters

used are shown in Table 1. The value of the reproductive number R0 ¼ 22.8.

Choosing parameter values characteristics of the in vivo situation is difficult. Many of

the parameters in our model, as shown in Table 1, are estimated. Even those that have been

quoted may not be as accurate as we need for quantitative predictions. However, our main

thrust is on the overall effect they have on the basic reproductive number, which is the

basis for an infection to persist or be eradicated.

The graphs in Figure 2 show the behaviour of model system (2). It shows that the

populations of uninfected RBCs, IRBCs and merozoites reach a steady endemic state since

R0 . 1. Figure 3 shows the behaviour of model system (4) where g ¼ 0.97. The graphs

show that the infection can be eradicated if the efficacy of the drug g . g c. If the immune

system alone fails to clear the infection then a drug of suitable efficacy can accomplish the

task of bringing the infection to disease-free levels. Figure 4 shows that as the death rate of

immune cells, mB, increases there is an increase in the number of IRBCs and merozoites,

while the uninfected RBCs decrease.

Figure 5 shows the behaviour of (a) RBCs (b) uninfected RBCs and (c) merozoites of

model system (4.1)–(4.5) as the rate at which RBCs are eliminated due to the effect
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of involvement v is varied from 0.0 to 0.08 in steps of 0.02. The arrows show the direction

of increase of v. The graphs show that as v increases, there is a corresponding decrease in

the populations of RBCs, IRBCs and antibodies. A decrease in RBC population gives a

corresponding decrease in the number of IRBCs which makes the number of immune cells

and antibodies stimulated decrease as well.

6. Discussion

A model of the immune response to Plasmodium falciparum infection was developed and

extended to include treatment with antimalarial drugs. As a first step towards more realistic

modelling of immune regulation, we introduce the terms for the effects of immune effectors

onmerozoite invasion of RBCs and parasite productionwithin a RBC. In addition ,we allow

the RBCs to be eliminated through the effect of involvement [35]. Our mathematical

analysis yielded a generalization of the intra-host basic reproductive number fromwhich the

most effective control strategies that should aid in assessing interventions (drugs and

vaccines) are deduced.Our results show thatwithout any treatment themost effective part of

the immune response in itsmission to clear parasites is its ability to inhibit parasite growth in

erythrocytes. It is also more effective to increase the death rate of IRBCs than the death rate

of merozoites by immune cells. This is because one IRBC is capable of producing about 16

merozoites, so killing it will prevent the survival of 16 merozoites. Most of the available

malaria drugs act by retarding development of parasites. Drugs that kill IRBCs directly,

together with those that retard the development of parasites, should also be made available

to make the treatment more effective. For the extended model, with treatment, we have

Table 1. Table showing numerical values of parameters used in the simulations performed where c
are cells, d are days and m are merozoites.

Parameter Symbol Value Units Source

Supply rate of RBC lX 41664 c ml21 d21 [1]
Rate of recruitment of RBC s 0.009 c d21 Estimated
Rate of infection b 0.08 M ml21 d21 Estimated
Efficiency of antibodies c0 0.6 ml Estimated
Death rate of RBCs mX 0.8 d21 Estimated
Death rate of IRBCs mY 1.0 d21 Estimated
Immunosensitivity of IRBC kY 0.9 c ml d21 Estimated
Rate at which RBCs are eliminated v 1.2 £ 1025 c d21 Estimated
Merozoites released per each bursting
IRBC

r 16 m ml21 [5,21,9,46]

Rate at which parasite production
is suppressed

c1 0.85 c ml Estimated

Death rate of merozoites mM 3.0 d21 Estimated
Supply rate of immune cells lB 30 c ml d21 Estimated
Immunogenicity of IRBCs rY 0.05 d21 Estimated
Immunogenecity of merozoites rM 0.05 d21 Estimated
Stimulation constant for immune cells
due to IRBCs

k0 2000 c ml21 Estimated

Stimulation constant for immune cells
due to merozoites

k1 1500 m ml21 Estimated

Death rate of immune cells mB 1.53 d21 Estimated
Immunosensitivity of merozoites kM 0.3 m ml d21 Estimated
Deterioration rate of antibodies mA 0.4 ml21 Estimated
Maximum rate of increase of antibodies h 0.6 ml21 Estimated
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Figure 2. Graphs that show the behaviour of the model with immune response only. The dynamics
of (a) uninfected RBCs, (b) IRBCs, (c) merozoites, (d) immune cells and (e) antibodies.
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Figure 3. Graphs that show the behaviour of the model with immune response and drug therapy.
The dynamics of (a) uninfected RBCs, (b) IRBCs, (c) merozoites, (d) immune cells and (e)
antibodies.
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shown that parasites can only be cleared from an infected individual if g . g c. This implies

that for a very large reproductive number, a drugwith an efficacy ofg < 1 is required to treat

the infection. This might be one of the reasons why for a person from a non endemic area the

infection is more virulent and, if treatment is delayed, then death might be inevitable.

We have also observed that if there are mechanisms in the body that increase the death

rate of immune cells then there is an increase in the severity of the infection. This shows that

for a person infected by pathogens that kill some of the immune cells, like the human

immunodeficiency virus which kills the CD4þ T cells [41], orMycobacterium tuberculosis

which kills the macrophages, then that person is infected by P. falciparum parasite, the

immune system is compromised and the person suffers severe malaria if not treated in time.

People who suffer from diseases such as acquired immunodeficiency syndrome or

tuberculosis should not delay in seeking medical attention when symptoms of malaria start

to appear.Analysis also yielded awell-known result that the effect of involvement decreases

the number of RBCs, which is believed to be one of the causes of anaemia in malaria.

Our mathematical analysis is useful in explaining some of the observed patterns during

a malaria infection. This gives our model the ability to provide a basic representation of

the complex web that accompanies an intruding malaria parasite during the erythrocytic

stages. For people moving to endemic areas, prophylactic drugs should be taken a week

before departure so that an adequate concentration is attained in the blood before exposure

to parasites and continued a month after return to kill any parasites incubating in the liver

as they emerge.

Drug resistance has been a major cause of resurgence of the disease and will be

considered elsewhere. The complexity of the parasite, the different forms it assumes in the

body and the possibility of the patient being infected by several strains concurrently make

model predictions more difficult. Sporozoites are a target for vaccine development but are

able to replace their coats, varying the antigens they present. Relevant data should be made

available to be used in model validation. Thus one role of modelling is to point out where

further quantitative measurements can improve our understanding of the malaria disease

process.

Figure 4. Graphs that show the behaviour of (a) uninfected RBCs and (b) merozoites. They were
obtained by varying the death rate of immune cells mB from 0.5 to 2.5 in steps of 0.5, while keeping
the other parameters constant. The arrows show the direction of increase of mB.
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Appendix A: Global asymptotic stability of the endemic equilibrium state

Let the endemic equilibrium state of model system (1) be denoted by E e ¼ X e; Y e;M e.

Lemma A.1. Suppose that R0 . 1 and blX 2minðmX ;mY ÞmY , 0, then E e is a globally
asymptotically stable steady state for system (1) with respect to initial conditions not on the
boundary.

The key to verifying the global stability of E e is to rule out the existence of periodic solutions
[11]. This is achieved by showing that any periodic solution to (1) is orbitally asymptotically stable.
Let pðtÞ ; ðp1ðtÞ; p2ðtÞ; p3ðtÞÞ

T denote the periodic solution and suppose that its minimal period is
v . 0.

Theorem A.2. A sufficient condition for a periodic orbit q ¼ {pðtÞ : 0 # t , v} of (1) to be
asymptotically stable with asymptotic phase is that the periodic linear system

z
0

¼
›f ½2�

›x
ðpðtÞÞzðtÞ;

is asymptotically stable.

›f ½2�=›x is the second compound matrix of system (1). (For detailed discussions of compound
matrices we refer the reader to [34]). We will show that

Vðz1; z2; z3; pðtÞÞ ¼ sup z1ðtÞj j;
p2ðtÞ

p3ðtÞ
ðjz2ðtÞj þ jz3ðtÞjÞ

� �
ðA1Þ

is a Lyapunov function for system (1). The right-hand derivative of VðtÞ, DþV , exists. Direct
calculations lead to the following differential inequalities

Computational and Mathematical Methods in Medicine 159



Dþð z1ðtÞj jÞ # 2ðbp3ðtÞ þ mX þ mY Þ z1ðtÞj j þ b
p1ðtÞp3ðtÞ

p2ðtÞ
:
p2ðtÞ

p3ðtÞ
ð z2ðtÞj j þ z3ðtÞj jÞ ðA2Þ

and

Dþ

p2ðtÞ

p3ðtÞ
ðjz2ðtÞjþjz3ðtÞjÞ

� �
¼

p
0

2ðtÞ

p2ðtÞ
2
p
0

3ðtÞ

p3ðtÞ

� �
:
p2ðtÞ

p3ðtÞ
ðjz2ðtÞjþjz3ðtÞjÞþ

p2ðtÞ

p3ðtÞ
Dþðjz2ðtÞjþjz3ðtÞjÞ

#
p2ðtÞ

p3ðtÞ
ðrmYþbp3ðtÞÞ

� �
jz1ðtÞj2

p2ðtÞ

p3ðtÞ
ðmXjz2ðtÞjþmY jz3ðtÞjÞ

þ
p
0

2ðtÞ

p2ðtÞ
2
p
0

3ðtÞ

p3ðtÞ
2mM2bp1ðtÞ

� �
:
p2ðtÞ

p3ðtÞ
ðjz2ðtÞjþjz3ðtÞjÞ

#
p2ðtÞ

p3ðtÞ
ðrmYþbp3ðtÞÞ

� �
jz1ðtÞj

þ
p
0

2ðtÞ

p2ðtÞ
2
p
0

3ðtÞ

p3ðtÞ
2mM2bp1ðtÞ2minðmX ;mY Þ

� �
:
p2ðtÞ

p3ðtÞ
ðjz2ðtÞjþjz3ðtÞjÞ:

ðA3Þ

Relations (A2) and (A3) lead to

DþV # sup {g1ðtÞ; g2ðtÞ}; ðA4Þ

where

g1ðtÞ ¼ 2ðmX þ bp3ðtÞÞ þ
p
0

2ðtÞ

p2ðtÞ
; g2ðtÞ ¼ bp2ðtÞ þ

p
0

2ðtÞ

p2ðtÞ
2minðmX ;mY Þ: ðA5Þ

It follows from (A5) that g1ðtÞ # 2mX þ p
0

2=p2ðtÞ, and that g1ðtÞ # g2ðtÞ, then we have

DþVðtÞ # g2ðtÞ: ðA6Þ

If ðv
0

g2ðtÞdt , 0; ðA7Þ

then it will follow from (A6) that V is a Lyapunov function for system (1) and this will conclude the
proof of the theorem. Since pðtÞ is a solution of (1), we see thatðv

0

mYp2ðtÞdt ¼

ðv
0

bp1ðtÞp3ðtÞdt ¼

ðv
0

ðlX 2 mXp1ðtÞÞdt # lXv:

Consequently

ðv
0

g2ðtÞdt ¼

ðv
0

ðbp2ðtÞ2 min ðmX ;mY ÞÞdt # b
lX

mY

2minðmX ;mY Þ

� �
v: ðA8Þ

It follows that (A7) holds under the assumption that blX 2minðmX ;mY ÞmY , 0 holds.
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Appendix B: Positivity of solutions

Theorem B.1. Let the initial data be Xð0Þ ¼ X0 . 0, Yð0Þ ¼ Y0 . 0, Mð0Þ ¼ M0 . 0, Bð0Þ ¼
B0 . 0 and Að0Þ ¼ A0 . 0. Then solutions ðXðtÞ; YðtÞ;MðtÞ;BðtÞ;AðtÞÞ of (2) are always positive for
any t . 0.

Proof. We will perform the proof following ideas by [28]. It is easy to see that XðtÞ . 0 for all t . 0.
If not, we assume that there exists a first time tu such that XðtuÞ ¼ 0, X

0

ðtuÞ # 0 and XðtÞ . 0,
YðtÞ . 0, MðtÞ . 0, BðtÞ . 0, AðtÞ . 0 for 0 , t , tu. It follows from Equation (2.1) that we have

X
0

ðtuÞ ¼ lX þ sYðtuÞ2
bXðtuÞMðtuÞ

1þ c0AðtuÞ
2 mXXðtuÞ2 vXðtuÞMðtuÞBðtuÞ . 0;

which is a contradiction. Similarly we can also prove by contradiction from Equation (2.4) that
dBðtÞ=dt ¼ lB . 0 ; t . 0 when there exists a first time tv such that BðtvÞ ¼ 0.

Therefore XðtÞ and BðtÞ are always positive.

Assume that there exists some time t1 . 0 such that Yðt1Þ ¼ 0, other variables are positive and
YðtÞ . 0 for t [ ½0; t1Þ. Integrating Equation (2.2) from 0 to t1 we have

Yðt1Þ ¼ Yð0Þ exp 2

ðt1
0

ðmY þ kYBðtÞÞdt

� �
þ exp 2

ðt1
0

ðmY þ kYBðtÞÞdt

� �

£

ðt1
0

bXðtÞMðtÞ

1þ c0AðtÞ
exp

ðt
0

ðmY þ kYBðuÞÞdu

� �
dt . 0:

which contradicts Yðt1Þ ¼ 0.

Assume there is some time t2 . 0 such that Aðt2Þ ¼ 0 and AðtÞ . 0. Then integrating Equation
(2.5) from 0 to t2, we have

Aðt2Þ ¼ Að0Þe2mAt2 þ e2mAt2

ðt2
0

hBðtÞMðtÞ

k1 þMðtÞ
dt . 0;

which contradicts Aðt2Þ ¼ 0. Similarly for MðtÞ, assume that there is some time t3 . 0 such that
Mðt3Þ ¼ 0 and MðtÞ . 0. Then integrating Equation (2.3) from 0 to t3, we see that

Mðt3Þ ¼ Mð0Þ exp 2

ðt3
0

mM þ kMBðtÞ þ
bXðtÞ

1þ c0AðtÞ

� �
dt

� �

þ exp 2

ðt3
0

mM þ kMBðtÞ þ
bXðtÞ

1þ c0AðtÞ

� �
dt

� �

£

ðt3
0

rmYYðtÞ

1þ c0AðtÞ
exp

ðt
0

mM þ kMBðuÞ þ
bXðuÞ

1þ c0AðuÞ

� �
du

� �
dt . 0:

which contradicts Mðt3Þ ¼ 0. A

This implies that the solution ðXðtÞ; YðtÞ;MðtÞ;BðtÞ;AðtÞÞ is always positive for t $ 0.

Appendix C: Local stability of the disease-free equilibrium

Theorem C.1. If R0 , 1, then the disease free state E0 is a locally asymptotically stable state of
system (2); if R0 . 1, then it is unstable.
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Proof. To prove local stability of the disease-free equilibrium we need to show that all the
eigenvalues of the Jacobian matrix of the system evaluated at the disease-free equilibrium are
negative. We linearize the system of Equations (2) at the disease-free state E0, and find the Jacobian
matrix. By inspection, three of the eigenvalues 2mX ;2mB;2mA are easily deduced and the
remaining two eigenvalues are obtained from the remaining 2 £ 2 submatrix

2mY 2 kY
lB
mB

b lX
mX

rmY

1þc1
lB
mB

2mM 2 kM
lB
mB

2 b lX
mX

0
B@

1
CA: ðC1Þ

Expanding the characteristic equation of this submatrix we get the following characteristic
polynomial

l 2 þ mM þ mY þ kY
lB

mB

þ kM
lB

mB

þ b
lX

mX

� �
lþ mM þ kM

lB

mB

þ b
lX

mX

� �
£ mY þ kY

lB

mB

� �

2
rbmYlX

mX 1þ c1
lB
mB

� � ¼ 0:

ðC2Þ

Using the Routh-Hurwitz stability criterion we determine that the two eigenvalues of the
submatrix (C1) which correspond to the roots of the characteristic Equation (C2) are negative if

mM þ kM
lB

mB

þ b
lX

mX

� �
mY þ kY

lB

mB

� �
2

rbmYlX

mX 1þ c1
lB
mB

� � . 0: ðC3Þ

Condition (C3) reduces to R0 , 1. Therefore if R0 , 1, then all the eigenvalues are negative
which implies that the disease free state is stable if R0 , 1. A

Appendix D Global stability of the disease-free equilibrium

Theorem D.1. The disease-free equilibrium lX=mX ; 0; 0; lB=mB; 0
� �

of system (2) is globally
asymptotically stable, whenever R0 , 1.

Proof. Consider the following Lyapunov function:

L ¼ mM þ b
lX

mX

þ k
lB

mB

� �
Y þ b

lX

mX

M: ðD1Þ

We note from system of Equations (2) that the minimum values of A and B are 0 and lB=mB

respectively and since 0 # s , 1, the maximum value of X ¼ lX=mX .
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Therefore the Lyapunov derivative is given by

L0

¼ mM þ b
lX

mX

þ kM
lB

mB

� �
Y

0

þ b
lX

mX

M
0

¼ mM þ b
lX

mX

þ kM
lB

mB

� �
bXM

1þ c0A
2 mYY 2 kYBY

� �

þ
rmYY

1þ c1B
2 mMM 2 kMBM 2

bXM

1þ c0A

� �
£ b

lX

mX

¼
rbmYlX

mXð1þ c1BÞ
2 ðmY þ kYBÞ b

lX

mX

þ mM þ kM
lB

mB

� �� �
Y

þ b
X

1þ c0A
mM þ kM

lB

mB

� �
2

lX

mX

ðmM þ kMBÞ

� �
M

, mY þ kY
lB

mB

� �
b
lX

mX

þ mM þ kM
lB

mB

� �
ðR0 2 1ÞY þ b mM þ kM

lB

mB

� �
X 2

lX

mX

� �
M

, 0 forR0 , 1 sinceX #
lX

mX

:

Since all the parameters of the model are non-negative, it follows that L , 0 for R0 , 1 with
L0

¼ 0 if Y ¼ M ¼ 0. IfM ¼ 0 ) A ¼ 0. Hence L is a Lyapunov function onF. SinceF is invariant
and attracting, it follows that the largest compact invariant set in ððX; Y ;M;B;AÞ [ F : L0

¼ 0Þ is
the singleton {E0}. LaSalle’s Invariance Principle [27] then implies that E0 is globally
asymptotically stable in F. A
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