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We present a top-down approach to the study of the dynamics of icosahedral virus capsids, in
which each protein is approximated by a point mass. Although this represents a rather crude
coarse-graining, we argue that it highlights several generic features of vibrational spectra
which have been overlooked so far. We furthermore discuss the consequences of approximate
inversion symmetry as well as the role played by viral tiling theory in the study of virus capsid
vibrations.
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1. Introduction

It has been experimentally observed that viruses can alter their shape to fulfill specific functions.

In particular, they may swell during maturation [2,5,10,11,13,28], twist to release their genetic

material during infection, or morph during assembly. Such large scale conformational changes

are consistent with the widespread hypothesis that viruses do vibrate, and it is therefore of

interest to study their dynamics with the help of mathematical and computational techniques

which have been tried and tested in the context of biomacromolecule vibrations (see Ref. [4] for

a review).

Normal mode analysis is one such method [1,9,15,16], which has been successfully applied

to the study of proteins and a variety of viruses to date [14,21,22,26]. A major challenge is the

huge number of degrees of freedom involved in such systems. Several degrees of coarse-

graining, as well as group theoretical methods (inspired by their successful application to small

molecules and fullerenes [27,29,30]), have been implemented in computer simulations in order

to extract information on the low-frequency modes of vibration which are thought to be

relevant for protein and virus function [20,25]. Although such theoretical data become

increasingly available for icosahedral systems [8,22,26] thanks to advances in computer

power, a clear and insightful vibrational pattern across icosahedral viruses has not emerged yet.

The art of coarse-graining is a delicate one, as it is often argued that excessive coarse-

graining produces a dynamical picture that has little to do with reality. We actually need a

hierarchy of coarse-grained calculations, which hopefully reveal complementary aspects of the

dynamical jigsaw.

We argue here that even the crudest approximation, where each capsid protein is treated as a

point mass located at its centre of mass, is helpful in highlighting dynamical features that are

present in more sophisticated normal mode analyses, but have been overlooked so far. Our initial
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mathematical motivation was to assess to which extent viral tiling theory, a recently proposed

model for icosahedral viral capsids which solves a classification puzzle in the Caspar–Klug

nomenclature [23,24], provides a new insight in the dynamics of viruses. In particular, we ask

whether there is a correlation between the vibrational patterns of viruses with a given number of

coat proteins and their viral tiling.

The paper is organized as follows. In Section 2, we briefly describe viral tiling theory in the

context of the viral capsids rice yellow mottle virus (RYMV; T ¼ 3), Hong-Kong 97 (HK97;

T ¼ 7‘) and Simian virus 40 (SV40; pseudo T ¼ 7d), with emphasis on how the underlying

icosahedral symmetry manifests itself in different subtle ways for these three cases. In particular,

it has implications for the group theoretical analysis of normal modes of vibrations. An expanded

version of these remarks, applicable to viruses and phages of all T numbers, is available in

Ref. [7]. Section 3, provides a simple normal mode analysis for the three capsids above, where

group theoretical techniques reminiscent of those used in calculations of vibrational modes of

small molecules are implemented. This paves the way for the more extensive study performed in

Ref. [17], which reveals an intriguing universal pattern of low frequency normal modes.

We conclude with some open questions prompted by our investigations.

2. Tilings of rice yellow mottle, Hong-Kong 97 and Simian virus 40

Viral tiling theory provides an elegant way of encoding the icosahedral symmetry of viral

capsids by keeping track of the locations of coat proteins and the orientations of capsomers on

the viral shell, while also keying in the dominant2 bond structure between those proteins.

The RYMV belongs to the Sobemovirus genus. It is classified as a T ¼ 3 virus in the Caspar–

Klug labelling system [3], and its icosahedral capsid accommodates 180 coat proteins or

subunits which are clustered in 12 pentamers around the 5-fold axes and 20 hexamers about the

3-fold global symmetry axes of the icosahedron. The locations of the proteins are consistent with

a triangular tiling à la Caspar–Klug, and each triangular tile encodes trimer interactions between

coat proteins, as represented in Figure 1. The HK97 bacteriophage on the other hand has a

T ¼ 7‘ capsid made of 420 proteins arranged in 12 pentamers and 60 hexamers, with four types

Figure 1. In the above picture, the locations of the T ¼ 3 RYMV capsid proteins coincide with the
locations of the centres of mass of each of them, calculated from the experimental data collected in the file
1f2n.vdb. A triangular tiling (dashed lines) is superimposed on the icosahedral structure, and the colour
coding is faithful to that of the Viper website: the A chain is blue, the B chain, red and the C chain, green.
The grey shaded triangular prototiles highlight trimer interactions between capsid proteins, while the blue
shaded region corresponds to the fundamental domain of the proper rotation subgroup I of the full
icosahedral group H3.
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of dimer interactions modelled by rhomb prototiles; see Figure 2. The SV40 virus is a member of

the polyomaviridae family and has a pseudo T ¼ 7d capsid which accommodates 360 coat

proteins organized in pentamers through two types of spherical prototiles, namely rhombs,

encoding two types of dimer interactions and kites encoding trimer interactions, as represented

in Figure 2 of Ref. [12]. SV40 is an example of an all-pentamer capsid, for which the Caspar–

Klug classification is not applicable, and whose symmetries are captured by viral tiling theory.

In order to extract qualitative features of vibrational patterns from viral capsids, we restrict

ourselves to a coarse-grained approximation where each capsid protein is replaced by a point

mass whose location coincides with the centre of mass of the protein considered. This centre of

mass is calculated by taking into consideration all crystallographically identified atoms of the

protein, according to data stored in the Protein Data Bank or equivalently the Viper website.

We then assess how much deviation there is between the above distribution of point masses and

a theoretical distribution exhibiting a centre of inversion. On the basis of the experimental data

available to us, we argued in Ref. [7] that the SV40 capsid has an approximate centre of

inversion, while RYMV3 and HK97 do not. This has subtle consequences for the group-

theoretical properties of normal modes of vibrations: when the capsid exhibits an effective

centre of inversion, the group involved is the full icosahedral group H3 with 120 elements

(usually called Ih in the science literature), while it is reduced to its subgroup I of 60 proper

rotations in the absence of a centre of inversion.

A viral capsid with N ‘point mass’ coat proteins has 3N degrees of freedom, and hence 3N

modes of vibrations, of which six are associated with three rotations and three translations of the

capsid as a whole. These are therefore not genuine normal modes of vibration. Group theory

accounts for the degeneracies of these vibrational modes, and provides a mean to organize the

normal mode spectrum of a given capsid [6]. A key ingredient in this exercise is the construction

of the displacement representation of the given capsid, which is a reducible representation of H3

or I according to whether the distribution of capsid proteins exhibits a centre of inversion or not.

Such a representation consists of 120 (resp. 60) matrices G
displ
3N ðgÞ, g [ H3(resp. I) of size

3N £ 3N, which encode how proteins are interchanged under the action of each element g, as

well as how the displacements of each protein from the equilibrium position are rotated under

Figure 2. The locations of the T ¼ 7‘ HK97 capsid proteins coincide with the locations of the centres of
mass of each of them, calculated from the experimental data collected in the file 2fte.vdb. A rhomb tiling
(dashed lines) is superimposed on the icosahedral structure, and the colour coding is faithful to that of the
Viper website: A chain (blue), B chain (red), C chain (green), D chain (yellow), E chain (cyan), F chain
(purple) and G chain (pink). The rhomb prototiles highlight four types of dimer interactions between capsid
proteins, while the blue shaded region corresponds to the fundamental domain of the proper rotation
subgroup I of the full icosahedral group H3. Available in colour online.
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the action of g. The latter information is gathered in 3 £ 3 rotation matrices R(g) which form an

irreducible representation of H3 (resp. I), while the former is encoded in permutation matrices

P(g) of size N £ N, so that we have

G
displ
3N ðgÞ ¼ PðgÞ^RðgÞ; ;g [ H3ðresp: I Þ: ð2:1Þ

The permutation matrices P(g) act on vectors whose components are the vector positions ~r
0
i ,

i ¼ 1, . . . , N of the N proteins at equilibrium. The entry Pij(g) of the permutation matrix is 1 if ~r
0
j

is mapped on ~r
0
i by g, and is zero otherwise.

Once the displacement representation is constructed, it remains to invoke the well-known

property that it can be written in block diagonal form with the help of a (3N £ 3N) matrix U4

with

UG
displ
3N ðgÞU21 ¼ G

displ0

3N ðgÞ ¼ %pnpG
pðgÞ; ð2:2Þ

where the multiplicities np are obtained via the following character formula

np ¼
1

dimH3

X
g[H3

xdisplðgÞxpðgÞ* or np ¼
1

dim I
X
g[I

xdisplðgÞxpðgÞ*; ð2:3Þ

where * denotes complex conjugation. The characters x p(g) of irreducible representations of the

icosahedral group are real and can be found in Ref. [7], while the characters of the displacement

representations x displ(g) are obtained by inspection of the displacement representation

considered. Note that, in view of the very definition of the permutation matrices P(g) given in the

previous subsection, and the fact that the characters of a representation are the traces of its

constituent matrices, one has

xdisplðgÞ ¼ TrðPðgÞÞTrðRðgÞÞ ¼ ^ ðnumber of proteins unmoved by gÞ · ð1 þ 2 cos uÞ; ð2:4Þ

where u is the angle of the proper rotation associated with g, and the minus sign is taken when

g [ H3nI. So x displ(g) is zero when u ¼ 2p/3 or whenever g is such that no protein of a given

capsid is kept fixed under its action.

The decomposition of the displacement representation of a given capsid boils down to the

knowledge of the coefficients np in (2.3) which, in view of the expression (2.4), are non-zero

whenever at least one capsid protein is unmoved under the action of an element g (and

u – 2p/3).

It can be shown that distributions of capsid proteins with no centre of inversion are such that

the only group element which keeps any ‘point mass’ protein unmoved is the identity element

g ¼ e (and under its action, all N proteins are obviously fixed). The second expression in (2.3)

thus yields

np ¼
1

dim I xdisplðeÞxpðeÞ ¼
3N

60
xpðeÞ; ð2:5Þ

where we used dim I ¼ 60 and x displ(e) ¼ 3N (taking the plus sign and u ¼ 0 in (2.4)).

Recalling that x p(e) ¼ p, we arrive at the following decomposition formula,

G
displ0

3N ¼
3N

60
G1
þ þ 3G3

þ þ 3G30

þ þ 4G4
þ þ 5G5

þ

n o
: ð2:6Þ
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The number N of capsid proteins is always a multiple of 60, N ¼ 60 k. In the many cases,

where the proteins are organized in 12 pentamers and a number of hexamers, k is the T-number

of the Caspar–Klug nomenclature. Then, the number of non-degenerate (singlet) normal modes

corresponding to the symmetric representation G1
þ is 3T, while the number of p-fold degenerate

normal modes (corresponding to the p-dimensional representation Gp
þ) is 3p2T, for p ¼ 3,4,5.

In particular, N ¼ 180 for RYMV and the displacement representation decomposes into

G
displ0

540;RYMV ¼ 9G1
þ þ 27G3

þ þ 27G30

þ þ 36G4
þ þ 45G5

þ: ð2:7Þ

The six non-genuine modes belong to two copies of the G3
þ irreducible representation. There

are nine non-degenerate and 45 5-fold degenerate Raman active modes, as well as 25 3-fold

degenerate infrared active modes.

Since N ¼ 420 for HK97, the displacement representation decomposes into

G
displ0

1260;HK97 ¼ 21G1
þ þ 63G3

þ þ 63G30

þ þ 84G4
þ þ 105G5

þ; ð2:8Þ

and by the same argument as above, one arrives at 21 non-degenerate and 105 5-fold degenerate

Raman active modes, as well as 61 3-fold degenerate infrared active modes.

The normal modes of the SV40 capsid would be organized according to the decomposition

(2.6) with N ¼ 360 if, we were not taking into account that the protein distribution on the capsid

exhibits an approximate centre of inversion. We would have

G
displ0

1080; SV40 ¼ 18G1
þ þ 54G3

þ þ 54G30

þ þ 72G4
þ þ 90G5

þ: ð2:9Þ

Instead, we use the first expression in (2.3) and note that the distribution of ‘point-mass’

proteins on the capsid is such that, besides the identity element g ¼ e in H3 which leaves all

N proteins unmoved, the 15 rotations gðiÞ2 , i ¼ 1, . . . , 15 about the 2-fold axes of the icosahedron,

when combined with the inversion g0, produce 15 further elements g0g
ðiÞ
2 which altogether leave

24 capsid proteins unmoved. Those 15 group elements are in the same conjugacy class and

therefore have the same character xpðg0g
ðiÞ
2 Þ ¼ 1 for p ¼ 1,5, xpðg0g

ðiÞ
2 Þ ¼ 21 for p ¼

3,30 and x4ðg0g
ðiÞ
2 Þ ¼ 0. Taking into account that for these group elements, TrðRðg0g

ðiÞ
2 ÞÞ ¼

2ð1 þ 2 cospÞ ¼ 1, we arrive at the following decomposition of the displacement

representation,

G
displ0

1080;SV40¼12G1
þþ24G3

þþ24G30

þþ36G4
þþ48G5

þþ6G1
2þ30G3

2þ30G30

2þ36G4
2þ42G5

2: ð2:10Þ

The six non-genuine modes of vibrations are confined to one copy of the 3D irreducible

representation G3
þ, and one copy of the 3D irreducible representation G3

2. There are 12

non-degenerate and 48 5-fold degenerate Raman active modes, and 52 3-fold degenerate

infrared active modes.

3. Low frequency modes

Our calculation of the low frequency normal modes is based on a spring-mass model, where the

N ‘point-mass’ proteins are connected by a network of elastic forces described by a harmonic
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potential which is manifestly rotation and translation invariant

V ¼
XN
m,n
m;n¼1

1

2
kmn j~rm 2 ~rnj2 ~r

0
m 2 ~r

0
n

�� ��� �2

: ð3:11Þ

The associated force matrix or ‘Hessian’ is given by

Fij
mn ¼

›2V

›rim›r
j
n

�����
x¼x0

¼

P
p–m

kmp
ðrm2rpÞ

iðrm2rpÞ
j

ðrm2rpÞ
2

���
r¼r0

if m ¼ n;

2kmn
ðrm2rnÞ

iðrm2rnÞ
j

ðrm2rnÞ
2

���
r¼r0

otherwise:

8>>><
>>>:

ð3:12Þ

In the above formulae, the vector ~r
0
m refers to the equilibrium position of protein m and the

vector ~rm of components rim, to its position after elastic displacement, all vectors originating at

the centre of the capsid. The masses of the proteins are all set to unity (reflecting the fact that the

various protein chains in a capsid have masses which are, to a good approximation, identical)

and kmn is the spring constant of the spring connecting protein m to protein n. The set of non-zero

spring constants we choose, i.e. the topology of the elastic network we adopt, is dictated by the

information derived from the association energies listed in Viper for RYMV (1f2n.vdb), HK97

Figure 3. Inter-protein bonds are given for (a) RYMV, (b) HK97 and (c) SV40. The relative strengths are
represented by line segments of varying thickness, from the strongest bonds (thick lines) to the weakest
(thin lines). The above diagrams should be read in conjunction with the figures of Section 2. Available in
colour online.
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(2fte.vdb) and SV40 (1sva.vdb). Figure 3 encodes the bonds provided by Viper before acting on

them with the icosahedral group in order to generate the complete spring network.

We have used the relative values of these energies, and therefore, we are left with one

parameter k in the force matrix, which sets the overall scale of the vibration frequencies. We are

not aware of any experimental measurements of association energies between capsid proteins for

the viruses and phages that we are considering, and the absolute theoretical values calculated in

Ref. [19] must be taken with extreme caution.

The force matrices Fij
mn that we consider here have size 3N £ 3N with N ¼ 180 for RYMV,

N ¼ 420 for HK97 and N ¼ 360 for SV40. Although computers can handle a brute force

diagonalization of such matrices and provide eigenvalues which are the square of the sought

frequencies of vibration of normal modes, a group theoretical approach reduces considerably the

Figure 4. Spectrum of low frequency normal modes for the RYMV capsid (a) and the HK97 capsid
(b). The triangular-shape modes M belong to 3D irreducible representations G3

þ of the icosahedral group,
while the triangular-shape modes D belong to 3D irreducible representations G30

þ. Accordingly, the
diamond-shape modes belong to 4D irreducible representations and the pentagon-shape modes to 5D
irreducible representations. The x-axis labels the normal modes while the y-axis gives the wave numbers in
cm21 (up to an overall normalization which cannot be fixed from Viper data). Available in colour online.
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size of the matrices to be diagonalized and above all, yields information on the distribution of

normal modes within irreducible representations of the icosahedral group. This proves to be

useful in an analysis of universal features of such vibrations.

We have calculated the lowest frequency modes of vibration for the RYMV, HK97 and

SV40 capsids using well-known group theoretical methods. The association energies listed in

Viper for RYMV allow for a stable capsid. Crucial to the stability are the C-arms linking

together distant proteins of the C chain in Figure 3(a). The spectrum of the first 40 low frequency

modes is presented in Figure 4(a). Apart from the six zero modes associated with the rotations

and translations of the capsid as a whole, and which belong to two copies of the irreducible

representation G3
þ of I, one notices a cluster of 24 normal modes of very low and similar

frequencies organized in a sum of irreducible representations according to G5
þ þ G30

þþ

G5
þ þ G4

þ þ G30

þ þ G4
þ. This low plateau is disrupted by a significant jump in wave number.

A similar analysis was performed for HK97. The association energies listed in Viper for

HK97 allow for a nearly-stable capsid, with nine strictly zero modes instead of the six expected.

The 21 subsequent modes have similar frequencies, as can be seen from Figure 4(b). They are

organized in the following sum of irreducible representations of I: G4
þ þ G4

þ þ G5
þ þ G30

þ þ G5
þ.

If the spurious triplet of zero modes were lifted by the addition of extra bonds in the spring-mass

model of HK97, one would again observe a cluster of 24 low frequency normal modes forming a

plateau disrupted by a jump of the same scale as that appearing in RYMV. We have observed

this phenomenon in a large number of viral capsids, and we will detail our findings in Ref. [17].

The SV40 case is particularly interesting because it does not quite fit with the above

observations. As mentioned in Section 2, the viral capsid has a near centre of inversion, and one

might want to explore the implications of treating the normal mode analysis with a symmetry-

corrected ‘point-mass’ protein distribution. This, however, destabilizes the capsid, as the vertices of

some triangular cells in the network become collinear. We will therefore refrain from considering a

capsid with a centre of inversion, and perform the normal mode analysis as in the two previous

cases (RYMV and HK97). Once more, we have plotted the low frequency spectrum in Figure 5.

Apart from the six zero modes associated with the rotations and translations of the capsid as a

whole, one could argue that the next 23 modes should be considered as a cluster since their

frequencies are very similar. However, the plateau in this case is not disrupted by a spectacular

Figure 5. Low frequency normal modes for the SV40 capsid. Symbol conventions as in Figure 4.
Available in colour online.

K. Peeters and A. Taormina218



jump in frequency, as the seven subsequent frequencies are roughly 1.6 times larger than the

average of the first 23 non-zero modes. Early comparison with Murine Polyomavirus vibrational

patterns does not shed light on the significance of these all-pentamer viral capsids spectra, and

more investigations are needed.

4. Conclusion

We have discussed the vibration spectrum of icosahedral virus capsids, obtained from a coarse-

grained model in which protein chains and their interactions are replaced by a spring-mass

model. The goal of this programme is to understand, in a top-down approach, how properties of

the capsid structure, such as an approximate inversion symmetry or a particular tiling type,

reflect themselves in the vibrational spectrum. We believe this a useful complement to existing

bottom-up approaches, which are rooted in all-atom computations.

A comparison of our results with the spectra obtained in earlier all-atom computations reveals

some interesting similarities. The most striking one is the existence of a low-frequency plateau of

24 modes, separated by a rather large gap from the remainder of the spectrum. This plateau is

present for RYM as well as HK’97 and a large number of other virus capsids. It has been seen

before in isolated examples [18,21,22], but the simplicity of our model offers a better chance to

understand the general reason behind its existence (more details will be provided in Ref. [17]).

While viral tiling theory provides a beautiful classification of the structure of virus capsids,

its role in understanding the vibration spectra is at present less clear. Besides the bonds which

bind together proteins on the same tile, many other bonds are required in order to obtain a stable

capsid. These other, inter-tile bonds are often of a similar strength as the bonds on a single tile.

In fact, it is an interesting mathematical problem to understand the best network topology

(in terms of the optimal number of bonds) required for stability of a capsid.

The present analysis focuses exclusively on the viral capsid, ignoring in particular the

interaction of the virion with its environment and the presence of matter within the shell, which

are undoubtedly worth considering in more elaborated models. Large-scale simulations have

revealed that some virus capsids are unstable without RNA content [8]. It would be interesting to

understand this instability, as well as the effect of RNA content, for larger classes of capsids.
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Notes

1. Email: kasper.peeters@aei.mpg.de
2. In some cases, there exist stronger bonds between proteins pertaining to different tiles; RYMV is an

example.
3. The argument for RYMV is similar to the argument given for TBSV in Ref. [7].
4. The explicit form of the matrix U is not needed at this stage, but rather when the force matrix is

partially diagonalized to obtain the frequencies of vibration.
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