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Polyomaviridae assemble in vitro into different aggregates depending on experimental
conditions. We use an energy landscape approach using empirical energy calculations to
quantify how the formation of these different aggregates depends on pH, the presence of
bound calcium ions and disulfide linkages. Computations are carried out for SV40, a member
of the Polyomaviridae family and are based on the binding free energy landscape of three
distinct trimers of pentamers that correspond to the different bonding configurations between
the capsid proteins observed in its crystal structure. Our computational analysis shows that the
energetics of one of these environments is pivotal for the polymorphic assembly behaviour of
SV40, whilst the binding energy landscapes of the other two environments are broadly funnel-
shaped and thus contribute little to the formation of particles other than virus-like particles
(VLP). We have quantified how the existence of bound calcium ions in the absence of
disulfide linkages enhances the binding free energies of all three environments and hence,
favours the assembly of VLPs. Moreover, estimation of the relative binding free energies of
the three environments at pH 5 and pH 8 reveals that they are destabilized at pH 5 relative to
pH 8. The extent of this destabilization is dependent on the presence of disulfide linkages and
bound calcium ions and accounts for the experimentally observed polymorphic behaviour of
VP1 proteins at pH 5. Interestingly, concurrent existence of bound calcium ions and disulfide
linkages is found to be destabilizing and thus may disrupt the assembly of VLPs at pH 8.
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1. Introduction

The assembly of the protein containers called viral capsids, that encapsulate and hence, provide

protection for the viral genome has attracted considerable attention, and models have been

proposed for the thermodynamic and kinetic [9,15,25] aspects of assembly. A common

challenge in the modelling of capsid assembly is the large number of transient intermediate

structures [14] and strategies have been devised to reduce the number of assembly pathways that

need to be considered [15,20]. Since a full atomistic model is difficult to implement given the

size of the viral capsids, assembly models have been discussed at various levels of coarse-

graining [3,25,28,39]. In this work, we present a full atomistic approach to the early stages of the

viral assembly process. We show that the energy landscapes associated with aggregates at the

early stages of assembly provide valuable information on the spectrum of the final products and

hence, permit the study of assembly polymorphism.

We focus on simian virus 40 (SV40), a member of the Polyomaviridae, which include a

number of cancer-causing viruses. A distinguishing feature of viruses in this family is the
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unusual organization of their capsid proteins: They occur uniquely in clusters of five called

pentamers, as opposed to the commonly observed mix of 12 pentamers and otherwise, hexamers

(clusters of six) predicted by Caspar–Klug theory [5]. In particular, the viral capsid of SV40 is

composed of 72 pentamers of the VP1 protein that are arranged with icosahedral symmetry [29].

The assembly of the viral capsid of SV40 from its protein building blocks has been studied from

both a theoretical [4,5,20,38] and an experimental [2,10,18,40] point of view. It has been shown

that the recombinant VP1 protein assembles in insect cells into VLPs in the absence of other

virion constituents [23], and that such VLPs are morphologically indistinguishable from the

wild-type SV40. SV40 is hence a useful system for studying virus (dis-)assembly [30].

It has been shown that the pentamers self-assemble in vitro into a variety of polymorphic

aggregates of spherical or tubular particles depending on experimental conditions such as pH,

calcium ion concentration or ionic strength [19,31]. Moreover, reducing agents have been found

to disrupt the assembly of SV40 [6] leading to the proposal that disulfide linkages stabilize

the viral capsids. Notably, no disulfide linkages exist within SV40 pentamers. However, X-ray

diffraction experiments of mercury-labelled SV40 crystals suggested that VP1 cysteines at

positions 9, 104 and 207 may be involved in inter-pentamer disulfide linkage formation [24], and

a systematic mutagenesis of cysteine to serine codons in the SV40 virion moreover suggests that

the formation of post-pentameric complexes is stabilized by the formation of inter-pentamer

disulfide linkages [18]. Currently, the formation of disulfide linkages is believed to take place

after completion of capsid assembly [34] and we are interested in quantifying via an energy

landscape approach, whether this is indeed the favourable scenario.

Therefore, we study here the dependence of the early stages of assembly on pH, calcium ion

concentration and the presence of disulfide bridges. In particular, we use an energy landscape

approach to investigate the role of disulfide linkages and bound calcium ions in the assembly

process of VLPs under near physiological conditions (pH 8, T ¼ 298K and salt concentration of

0.15M). Conditions favouring the formation of tubular and medium-size particles are inferred

and the stabilizing/destabilizing effect of pH on the aggregates is discussed.

2. Estimating the relative free energy landscape of virus pentamer packing

in different possible trimer configurations

The size and shape of the assembled particles depends largely on the packing angles between the

pentamers which are fairly rigid and flat. Based on the assumption that the decision between

different final products of assembly is made at the early stages of assembly when, for example

for spherical particles, the radius and curvature of the particles are fixed, we choose to focus our

analysis on a trimer of pentamers. These are aggregates formed from 15 VP1 capsid proteins,

later referred to as trimers for brevity. Viral Tiling Theory (VTT) shows that there are three

different bonding environments (configurations) between such trimers in the capsid of SV40

[20,22] as shown in Figure 1(a)–(c). Experimental data on the structures of each of these three

trimers were extracted from the coordinate (PDB) file of the X-ray crystal structure of SV40

[34]. The conformational space of each of the three trimers was represented via the packing

angles g1 and g2, that represent the relative orientations of these pentamers as shown in Figure

1(d) and serve as collective degrees of freedom.

The variation of the binding free energy between pentamers in the trimer units within this

space gives rise to the binding free landscape, which can be utilized for studying the relative

stabilities of the assembled particles. The potential energy surface (PES) of each of the three

trimers is computed relative to a grid in the (g1, g2) space with grid resolution of 58 over the

range 0–608 for both angles. These search limits were chosen so as to encompass the range of

observed structures at experimental conditions. The coordinates of the atomic positions of the
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proteins at each grid point were obtained by rotation around the lines of intersection of the partial

least square regression planes passing through neighbouring pentamers. The PESs for each

trimer were computed at two pH values (5 and 8) by adjusting the protonation states of ionizable

residues using the PROPKA algorithm [16]. For each pH value, the potential energy of the

structures was calculated using the CHARMM22 force field [3]. A relative dielectric constant of

12 was used for the electrostatic term, consistent with experimental pKa measurement of buried

residues [11] and subsequent continuum model calculation of solvation energies [32] in

analogous protein systems. In order to relieve the steric contacts, introduced at the pentamer–

pentamer interface by the search procedure, the system was subjected to three consecutive

rounds of steepest descent energy minimization whilst the backbone atoms were under harmonic

restraint using an initial force constant of 30 kcal mol21 Å22. The force constant was decreased

by 10 kcal mol21 Å22 after each round. After this minimization step the root mean square

difference (RMSD) of the backbone atoms was about 0.3 Å relative to the initial structure. In

order to capture the effect of disulfide linkage formation and bound calcium ions, the above

Figure 1. The three distinct molecular aggregates within SV40 X-ray structure superposed on the tiling
scheme proposed by the virus tiling theory (a–c) and the definition of g1 and g2 packing angles (d). (a)
Trimer interaction (trimer 1), (b) trimer–dimer interaction (trimer 2) while, (c) dimer interaction (trimer 3).
The lower panel corresponds to a close-up view of the trimers from inside SV40 capsid. The 5-fold
symmetry axis is shown as a red sphere while the 3-fold axis is shown in black. Available in colour online.
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minimization protocol was repeated for possible combinations of ‘with/without calcium ions’

and ‘with/without disulfide linkages’. The presence of a disulfide linkage was determined on the

basis of a distance threshold of 2.05 ^ 0.03 Å for the SZS distance of inter-pentamer cystein

residues [36]. According to this criterion, no disulfide linkage can form in trimer 1 (Figure 1),

whilst they are possible for the other two trimers. The positions of the calcium ions were

determined according to [34] based on a maximum distance of 4 Å from Glu216 in one pentamer

to Glu330 for the first binding site and to Asp345 for the second binding site in neighbouring

pentamers. Distance restraints were applied to these distances during the minimization stage

described above.

The binding free energy DG binding was calculated for each of the three trimers at every point

in the (g1 and g2) conformational space based on the following thermodynamic expression:

DGbinding ¼ DGtrimer 2 ðDGpentamer 1 þ DGpentamer 2 þ DGpentamer 3Þ þ DEvdw

DG ¼ DGtotal:solv ¼ DGelec þ DGapolar:

The total solvation free energy DGtotal.solv can be expressed as a sum of electrostatic DGelec and

non polar DGapolar components [33]. The electrostatic component was calculated based on a

finite difference solution of the linearized Poisson-Boltzmann equation [27] using the APBS

package [1]. A final grid spacing of 0.5 Å was used throughout the study. The solvent and

protein relative dielectric constants were set to 78.54 and 12 respectively, while the salt

concentration was set to 0.15M. The non-polar component was calculated as a solvent-

accessible surface area (SASA) dependent term where each Å2 of SASA contributes

5 cal mol21 Å22 to the solvation free energy [35]. The change in the van der Waals component

of the potential energy DEvdw was extracted from the potential energy landscape computed

using the CHARMM22 force field [3].

We note that this study of the viral assembly process in terms of the binding free energy

landscape differs from other approaches such as the molecular dynamics simulations in Refs.

[14,25], which are inherently dependent on the conformational sampling generated in the time

domain. In the method adopted in this study, the search procedure explicitly defines the limits of

the conformational space to be explored and circumvents timescale issues. Such an approach has

proved useful in studying DNA [8] and protein [12] energy landscapes.

Estimation of the absolute binding free energies of protein–protein association (DG) is

recognized to be very difficult, requiring careful attention to issues such as parameterization of

SASA potential, estimation of conformational entropy [13]. In this initial study, we do not place

emphasis on the estimates of the absolute free energies (DG), but use the relative binding free

energies (DDG) as a guide to the relative stability of the configurations and conformations of the

systems under consideration. Specifically, we examine the general features of the topology of

the free energy landscapes, defined in terms of the connectivity of the energy valleys. The

energy landscape approach provides a powerful framework for understanding the formation,

transformation or decomposition of transient intermediates during the viral assembly process.

3. Implications for SV40 assembly

The topologies of the binding free energy landscapes of the three trimers differ significantly in

terms of the depth and breadth of their energy valleys (see Figures 2–4). The energy landscapes of

trimers 1 and 3 show a broad energy valley in contrast to trimer 2. Such broad energy valleys

indicate that the formation of trimers 1 and 3 from their constituent pentamers is quite flexible in

terms of the packing angles g1 and g2. Thus, different possible packing arrangements of pentamers

are channelled to virtually the same end state, which is very close to the experimentally observed
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structure of SV40 irrespective of pH or binding of bound calcium ions (Figure 2 and 4). The breadth

of these energy valleys hence enhances the contribution of the conformational entropy to the

binding free energy in each case, which shows that these two trimers do not act as limiting factors

on the assembly of the VLPs.

By contrast, the binding free energy landscapes of trimer 2 do not show such a simple

topology (Figure 3). The topology of the energy landscape in this case is very much dependent

on the pH, existence of calcium ions and disulphide linkages. This is reflected in the varying

positions and numbers of the energy minima in each case, see also Table 1. The narrowness of

the energy valleys implies that the binding conformation of trimer 2 is more restrictive in terms

of the packing angles g1 and g2. This suggests that trimer 2 is a major factor in SV40 assembly

and controls its polymorphic assembly behaviour. This is consistent with the predictions of

VTT, which states that the bonding environment represented by the second trimer occurs in the

surface structures of tubular or sheet structures (see also Figure 1(b) lower panel; [21,37]),

whilst the environments of trimers 1 and 3 contribute only to the formation of VLPs.

Figure 2. The binding free energy landscapes of trimer 1 at (a) pH 5 and (b) pH 8 within the conformational
space defined by the g1 and g2 packing angles. Each panel corresponds to two different cases, row-wise;
(without calcium ions) and (with calcium ions). Lowest energy minima are labelled in yellow. The location
of SV40 X-ray structure is indicated by a green dot. The colour ramp for the contour lines ranges from deep
blue (most stable) to dark red (least stable , 2 5 kcalmol21). Contours corresponding to positive binding
free energy change (unstable configurations) are shown as grey lines. Available in colour online.
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Figure 3. The binding free energy landscapes of trimer 2 at (a) pH5 and (b) pH 8. Each panel corresponds to
four different cases, row-wise: without calcium ions, without disulphide linkages; without calcium ions, with
disulphide linkages; with calcium ions, without disulphide linkages; and with calcium ions with disulphide
linkages. Lowest energy minima are labelled in yellow while SV40 X-ray structure is in green. Available in
colour online.
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Figure 4. The binding free energy landscapes of trimer 3 at (a) pH 5 and (b) pH 8. Each panel corresponds to
four different cases, row-wise: without calcium ions, without disulphide linkages; without calcium ions, with
disulphide linkages; with calcium ions, without disulphide linkages; and with calcium ions with disulphide
linkages. Available in colour online.
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In the following, we study the dependence of the topologies of the energy landscapes for all

three trimers on pH, calcium ions and disulfide linkages, and discuss the implications of these

results on the stability of VLPs and other polymorphic aggregates.

3.1 The role of disulfide linkages in stabilizing VLPs

The packing angles (g1 and g2) corresponding to the local minima on the binding free energy

landscapes in Figures 2–4 are directly related to the curvatures of the trimers that are associated

with these minima. Based on the crystal structure of SV40 [34], we determined the g angles

corresponding to the three trimer environments as follows: (g1, g2) , (318, 318) in trimer 1, (g1,

g2) , (218, 358) in trimer 2 and (g1, g2) , (218, 218) in trimer 3. The positions of these pairs on

our energy landscape are shown as green dots in Figures 2–4; they are located very close to the

bottom of the energy valley. An exception occurs at pH 8 for the case where disulphide linkages

are formed while calcium ions are bound (see trimer 2, Figure 3 bottom right corner). This

suggests that the (218, 358) conformation is thermodynamically unstable under these conditions.

Interestingly, this conformation is stable in the absence of calcium ions while disulfide linkages

are present (Figure 3 bottom left corner). This implies that at pH 8 the existence of bound calcium

ions and disulfide linkages is counter-productive. Since all three trimers are required for the

formation of the VLPs, the formation of disulphide linkages in the early stages of the assembly

process, in the presence of calcium ions, would be disruptive since it destabilizes trimer 2 at the

required packing angles. This is consistent with the observation that disulfide linkages are not

essential for the formation of VLPs in vivo, however, their formation is critical for maintenance of

VLPs at low calcium ion concentrations [17].

Table 1. Characteristics of the lowest energy minima on the energy landscape of trimer 2 at pH 5 and pH 8
in the presence and/or absence of calcium ions and disulphide linkages.

pH 5 pH 8

Calcium ions
Disulfide
linkage

DG
(kcalmol21)

g1
(8)

g2
(8)

DG
(kcal mol21)

g1
(8)

g2
(8)

No No 2173.3 18.6 31.9 2158.6 19.5 36.3
2111.8 16.8 38.5 2112.6 23.2 41.5
297.3 23.2 47.2 272.1 18.9 48.4
237.3 39.8 39.1

3.3 14.5 27.5

No Yes 2131.6 19.5 35.1 2176.3 18.6 32.8
274.1 23.4 41.1 2104.3 23.2 41.4
243.6 35.1 29.3 28.8 18.6 44.4
214.1 19.7 55.4
25.6 17.0 48.4
24.6 21.0 53.1

Yes No 2274.3 19.1 34.9 2335.3 19.0 34.8
2211.3 23.5 41.2 2195.3 23.2 43.6
2135.3 22.0 47.3 2114.8 25.8 39.1
258.8 14.5 27.5 261.8 26.1 35.7

Yes Yes 2227.8 19.4 35.2 2269.1 23.5 40.7
2139.3 21.8 47.5 2217.1 23.9 49.6
2121.8 23.2 41.4 252.6 18.6 28.1
214.8 28.0 50.7
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3.2 The role of calcium ions at pH 8

In order to assess quantitatively the major factors affecting the assembly process at pH 8, we

focus on the binding free energies (DG) of the most stable trimers in each of the computed

energy landscapes, i.e. the conformations corresponding to the lowest binding free energy

minima in Figures 2–4 bottom panels (Table 2). The binding free energies of these trimers

reveal the importance of calcium ions for the assembly process. For example, the binding

free energy of trimer 2 in the presence of calcium ions and absence of disulfide linkages is

about2335.8 kcalmol21, which is almost twice that of its counterpart in the absence of calcium

ions (about 2158 kcalmol21). Consistent with our analysis in the previous subsections, this

implies that the most stable trimers correspond to states where bound calcium ions are present in

the absence of disulfide linkages and the packing angles distinguished by the energy surface

are in good agreement with those in the crystal structure of SV40. By contrast, the most stable

conformations in the presence of bound calcium ions and disulphide linkages deviates from

the angles in the observed SV40 structure for the case of trimer 2, further corroborating that

the disulphide linkages are not formed during the early stages of the assembly process of

SV40 [19,31].

3.3 Binding affinities at pH 5 relative to pH 8

A change of pH has significant consequences on the assembly process [19,31]. Variations in the

relative stabilities of the three trimers upon changing the pH from pH 8 to pH 5 are indicated by

the DDG values in Table 2. These values indicate that at pH 5, in the absence of calcium ions and

disulfide linkages, the three trimers are not equally stabilized relative to their counterparts at

pH 8. Trimer 1 is affected the most by this change in pH (DDG ¼ 2105.5 kcalmol21), whereas

trimer 2 is only slightly affected (DDG ¼ 214.7 kcalmol21). Changes in the pH have more

dramatic effects under other conditions: For example, in the presence of calcium ions and the

absence of disulphide linkages, all three trimers are destabilized. Such a destabilization of one or

all of the three trimers is expected to alter the assembly pathway from the production of VLPs to

the formation of other aggregates. This is consistent with the observation of tubular particles at

pH 5 rather than VLPs [19]. An analysis of the specific morphologies of these tubular aggregates

via our energy landscape approach will be published elsewhere [7].

Table 2. Relative free energies of binding (DDG) at pH 5 vs. pH 8 for the most stable conformations
(g1 and g2) of the three trimer configurations. The significance of the reported energies is indicative and for
purposes of comparison. A statistical estimate of the precision requires a more extensive sampling of the
conformational space which is the subject of ongoing work.

Trimer
Calcium
ions Disulfides

DGpH 8

(kcal
mol21)

DGpH 5

(kcal
mol21)

*DDG
(kcal
mol21)

(g1,g2)pH 8

(8)
(g1, g2)pH 5

(8)

1 No No 2245.6 2351.1 2105.5 33.7 26.8 33.6 31.4

2 2158.6 2173.3 214.7 19.5 36.3 18.6 31.9
3 2204.7 2281.3 276.6 21.5 21.3 22.4 21.9

2 No Yes 2176.3 2131.6 44.6 18.6 32.8 19.5 35.1
3 2267.7 2352.6 284.9 22.9 21.9 20.5 19.1

1 Yes No 2383.5 2322.2 61.3 30.0 31.1 33.6 30.8
2 2335.3 2274.3 60.9 19.0 34.8 19.1 34.9
3 2364.4 2343.0 21.4 19.8 20.0 20.4 19.8

2 Yes Yes 2269.1 2227.8 41.3 23.4 40.7 19.4 35.2
3 2323.3 2376.8 253.5 21.1 21.3 19.9 19.7
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3.4 Assembly of non VLPs

Different particle shapes have been observed for SV40 depending on experimental conditions.

Besides the VLPs which are 400–600 Å in diameter (g angles of ,258), medium-size particles

with a diameter of 320 Å (g angles of 43.78), small-size particles with a diameter of 260 Å

(g angles of 63.48), as well as tubular structures and sheets have been reported [19,31].

According to VTT, trimer 2 is instrumental in the formation of these non-VLP aggregates. For

example, VTT suggests that the bonding environment of trimer 2 is the only one required

for the formation of the medium-size particles. We therefore investigate the topology of its

energy landscape in more detail. Our computations show that the most stable conformation for

trimer 2 occurs in the presence of calcium ions and disulfide linkages at pH 8 and corresponds

to the packing angles (23.58 and 40.78), see Table 1. Such a g2 value is very close to that of the

medium-size particle (g angle 43.78). The (23.58 and 40.78) conformation could therefore be an

intermediate structure in the assembly of the medium size particle, or an irregular aggregate of

a similar size. This is in agreement with the observation that assembly at pH 8.5, in the absence

of chelating and reducing agents, results in medium-sized particles and irregular aggregates

[34]. Trimer 2 was also predicted by VTT to form small-sized particles [22], which have been

experimentally observed at high salt concentration (1M NH4Cl; [34]). However, the

corresponding conditions are outside the scope of our calculations (conducted at salt

concentration of 0.15M NaCl).

4. Concluding remarks

In this study, we have analysed assembly polymorphism via an energy landscape approach based

on the early stages of the assembly process. A calculation of the binding free energies of the

three different bonding environments in the X-ray structure of SV40, in a conformational space

defined by the two inter-pentamer packing angles, revealed that the observed polymorphic

behaviour of VP1 proteins can be explained via the different topologies of the binding free

energy landscapes of the three trimer environments. The formation of trimer 2 has been shown to

be pivotal for the polymorphic assembly of SV40, whilst the formation of the other two trimers is

not limiting for assembly.

An analysis of the topology of the energy landscape, in the presence or absence of bound

calcium ions and/or disulfide linkages at near physiological conditions, revealed interesting

results. The concurrent existence of calcium ions and disulfide linkages was found to be counter-

productive and could therefore lead to disruption of the progress of the assembly of VLPs. On

the other hand, in agreement with experimental results [17], we found that the existence of

calcium ions alone enhances the binding free energies of all three environments, with that of

trimer 2 almost doubled.

Changing the pH of the assembly medium proved to have a detrimental effect on the binding

free energies of all three environments: At pH 5, the most stable conformations of the three

environments suffered significant destabilization compared to pH 8. The magnitude of this

destabilization was found to be different for the three environments and affects in particular the

trimers necessary for the formation of the VLPs, which are not important for the formation of the

other aggregates. This explains in thermodynamic terms the experimentally observed formation

of aggregates other than VLP at pH 5.

Our results are in good agreement with the experimentally observed scenarios and provide a

framework for quantifying how favourable the different intermediates are from an energy

landscape perspective. Moreover, they provide new insights into the role of disulfide linkages

and bound calcium ions in dictating the pathway of the assembly process. We hope that this

analysis may assist in determining optimal conditions for virus assembly, that may be exploited
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if viral capsids are assembled under laboratory conditions, for example as gene vectors in gene

therapy [26].
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