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A number of idealized models have been proposed to explain the long range organization of
the DNA in bacteriophages. However, none of these models can account for the distributions
of complex knots found when examining DNA extracted from bacteriophage P4 capsids.
Furthermore, these models do not consider possible chirality biases in the arrangement of the
DNA molecule inside the capsid. In this paper, we address these two issues by proposing
a randomized version of one of the most popular models: the coaxially spooled model.
We present analytical and numerical results for the properties of the random polygons (knots)
generated using this model. We show that such model can easily generate complex knotted
conformations and although it accounts for some chirality of the organization of the DNA
molecules inside bacteriophage capsids does not fully explain the experimental data.
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1. Introduction

All icosahedral bacteriophages with double-stranded DNA genomes pack their chromosomes in

a similar manner [13] and are believed to hold similar DNA arrangements as those found in

herpes viruses [8] as well as in lipo-DNA complexes used in gene therapy [34]. Most

bacteriophages consist of an icosahedral capsid that contains the nucleic acid (i.e. DNA or

RNA), a tail with tail fibres, and a connector that allows the assembly of the capsid and the tail

[33]. During phage morphogenesis a proteinic procapsid is first assembled (e.g. [43]). This is

followed by the transfer of one copy of the viral genome inside the capsid through the connector

(e.g. [36]). At the end of the packing process the volume of the DNA molecule is reduced 102

times [18] reaching concentration levels of 800mg/ml [19] and an osmotic pressure of 70 atm

[14,40]. A number of models have been proposed to explain the global organization of DNA

inside phage capsids. These include the ball of string model [32], the coaxial and concentric

spooling models [2,9,13,32,35], the spiral-fold model [7], the folded toroidal model [17], the

twisted toroidal model [30] and liquid crystalline models (e.g. [21]). Spooling and toroidal

models are the most accepted in the biological community [2,9,13,32,33,35] however, liquid

crystalline models are somewhat more consistent with local properties of the DNA molecule

under extreme conditions of pressure [37] and have been proposed for chromosome organization

in other viruses [8]. Here, we investigate if spooling like conformations are consistent with data

obtained from bacteriophage P4 capsids.
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Bacteriophage P4 has an icosahedral capsid (T ¼ 4, [12]) and its genome is a double-

stranded DNA genome, 10–11.5 Kb in length, flanked by 16 bp single-stranded ends that are

complementary in sequence [42]. The packaged genome is preserved as a linear molecule [31] by

keeping at least one of its ends attached to the connector region [10]. However, a high percentage

of DNA molecules artificially extracted from bacteriophage P4 are closed circular knots.

Furthermore, most of these knots have an elevated knot complexity. This phenomenon is further

magnified in P4 tailless mutants [3,22,23] and in naturally occurring deletion mutants [44].

In Ref. [3] it was shown that the majority of the knots are formed inside the viral capsid and

therefore may be used as reporters for the DNA organization inside the capsid. In fact, analysis of

knots of up to seven crossings revealed a very distinct distribution of knots. Some of the

characteristics include the absence of the four crossing knot (called the figure eight knot in knot

theory) and a prevalence of toroidal knots (i.e. knots that can be constructed on the surface of a

torus) over twist knots [4,39]. These findings suggested a chiral 3D organization of the viral

genome [4].

Current idealized models have rarely been confronted with these data and, if so they have

been unable to reproduce such knot distributions. For instance in Refs. [2,20] molecular

dynamics simulations of the coaxially and concentrically spooling models were unsuccessful in

obtaining knotted conformations. On the other hand, models that explain knotting under these

conditions of confinement [3–5,26,27] show very unrealistic conformations for the viral genome

and are far from those models proposed by other groups. This discrepancy between DNA

packing models and knotting of DNA in P4 phages motivates this study.

In this paper, we present a randomized spooling model and investigate the knotting and

chirality of the generated configurations. First, we introduce the essential mathematical concepts

needed for understanding this paper and briefly describe the previously published experimental

results. Second, we describe the spooling random polygon. Next, we provide some analytical

estimates of the complexity and of the relationship between the spooling of a random polygon

with its knotting probability. Finally, we perform numerical studies to compute the knotting

probability and complexity.

2. Methods

In this section, we will first provide some basic mathematical background on knot theory.

We will then give a detailed description of our model. After that, we will talk about what

mathematical quantities we would like to estimate and how we will carry out our simulations to

compute these quantities.

2.1 Basic mathematical background

The most relevant topological concepts used in this paper are given in this subsection. For a

more detailed exposition of the basics of knot theory please refer to a standard text such as

[1,24].

A knot K is a simple closed curve in R 3. In this paper, we assume that such a curve is a piece-

wise smooth curve (this includes a space polygon without self-intersections). For a fixed knot K,

a regular projection of K is a projection of the simple closed curve onto a plane, such that not

more than two segments of K cross at the same point in the projection. If the over/under

information of the strands at each intersection is kept, then the projection is called a knot

diagram. A fundamental theorem in knot theory states that two knots K1 and K2 are topologically

equivalent, if and only if any regular diagram of K1 can be changed to a regular diagram of K2

through a sequence of Reidemeister moves, as illustrated in Figure 1. An intersection in a knot

diagram is called a crossing. The minimum number of crossings among all possible knot
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diagrams that are topologically equivalent to K is called the crossing number of K and is denoted

by Cr(K). The average number of crossings over all possible regular projections of K (as a fixed

space curve) is called the average crossing number (ACN) of K and is denoted by ACN(K). Note

that Cr(K) is a knot invariant, since it is the minimum number of crossings among all possible

knot diagrams that are topologically equivalent to K, but not ACN(K), as it is a quantity that

would be affected by a geometric (not topological) change of K.

An important concept in this paper is that of chirality. A knot K is said to be achiral, if it is

topologically equivalent to its mirror image, otherwise, it is said to be chiral. For example, the

right-handed trefoil is topologically distinct from its mirror image (which is the left-handed

trefoil). On the other hand, the only four crossing knot 41 (also called the figure eight knot) is

achiral. If each crossing in a diagram of K is assigned aþ1 or21, following the sign convention

shown in Figure 2, then the summation of these ^1’s is called the writhe of this diagram. For

example, the writhe of the minimum projection of the knot 41 is zero, whereas the writhe of the

minimum projection of the right-handed trefoil is þ3 (see Figure 2). The average writhe of the

knot K (as a space curve), on the other hand, is the average of the writhe over all its regular

projection diagrams. In the literature, the average writhe is often just called writhe. However, in

this paper, we will make a distinction to avoid the possible confusion. Therefore, the writhe

always refers to a single knot projection and the average writhe of K is the average of the writhe

over all regular diagrams of K. If the writhe were a knot invariant, one would easily conclude

that the writhe of an achiral knot projection must be zero since the writhe of a knot diagram

changes sign upon reflection. Unfortunately, this is not the case. For example the trivial knot can

have a writhe as high as one wants, since a simple super-coil is an unknot and can have as many

twists as one wants (which gives a writhe as high as one wants). However, the writhe still

provides a measure for the chirality of a knot in the average sense: if two random knots were to

be generated by the same generating method, but with fixed knot types, so that one of them is

chiral and the other is achiral, then the mean of the average writhe of the achiral random knots

would tend to be closer to zero. In this sense, one may argue that the chirality of a (random) knot

can be quantified by its writhe. Furthermore, the impact of writhe on the chirality of a knot is

more visible for knots with certain structure, as we shall see from Theorem 3.3 and its

consequences. An important concept connecting the writhe with the knottedness of K (which is

used in Theorem 3.3) is that of Seifert circles. If every crossing in a knot diagram is split as

shown at the left side of Figure 3, then the result is a collection of disjoint (topological) circles

called the Seifert circles of the knot diagram, see Figure 3.

Figure 1. Reidemeister moves.

Figure 2. The crossing sign convention and the projections of the right-handed, left-handed trefoils and
the figure eight knot whose writhes are 3, 23 and 0, respectively.
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2.2 Existing experimental data

This study is motivated by the data previously published in Refs. [3,4,22,23,38,39,44]. In these

experiments, bacteriophages were grown in Escherichia coli cells lysogenic for P2. Tailless

mutants were grown on a second strain, also lysogenic for P2, deficient for the genes encoding

for the tail and tail fibres. Tailless mutants were purified and DNA was phenol extracted and

chloroform purified. DNA samples were run in high resolution 2D gel electrophoresis revealing

a large quantities of knots (<95%). Quantification of the knot populations of up to seven

crossings revealed the absence of four crossings knots, as well as a (yet unidentified) population

of six and seven crossing knots. The data also showed a prevalence of toroidal knots for five and

seven crossing knots, and the absence of five crossing twist knots.

2.3 Definition of the coaxially spooled random polygon model

In this model, the DNA is modelled as an equilateral random polygon and the capsid is modelled

by a sphere S of radius R (in bond length units). In this sphere, there is a cylinder of radius r

running through the centre. Vertices of the polygon are not allowed to enter the cylinder.

The addition of this cylinder in our model is motivated by the predictions of Odijk [29] and by

the spaced occupied by the core proteins in the capsid (e.g. [30]); it is also used as an ad hoc

parameter to control the rigidity of the polygons when generating spooling conformations.

In order to generate spooling conformations, two spherical caps of height

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 2 ðr þ 1Þ2

q
;

are also defined. Polygons are not allowed to enter these caps. See Figure 4 for an illustration of

the model and of the spherical caps. In order to generate a random polygon satisfying the above

conditions these steps are followed. A coordinate system is set so that the original point is the

center of S and the z-axis is the axis of T. For simplicity, we may always choose the starting point

whose projection is on the x-axis; and without loss of generality, we will use anticlockwise spin

Figure 3. Splitting a knot diagram into Seifert circles.

Figure 4. Left: A random spooling DNA packing model. Right: The cap to be avoided by the vertices of
the random polygon.
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packing. Name the vertices of the polygon to be X0, X1, X2, . . . , Xn. Once Xk has been generated,

we will follow the following procedure to generate Xkþ1. Let the z-coordinate of Xk be zk and

consider the plane parallel to the xy-plane. It intersects S at a circle Ck whose radius r
0 is at least

r þ 1. Let

rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k

q
;

where Xk ¼ (xk, yk, zk). Let us try to determine

rkþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2kþ1 þ y2kþ1

q
;

first. Here, we will introduce the third parameter h, which is a small positive number. For the

time being, let us assume that it is a number set between 0.1 and 0.5. Basically, a larger h allows

more variation in the polygon in its distance to the centre of the cylinder, as well as in the

difference of the z-coordinates between the end points of each edge. We consider the following

three cases.

Case 1. r þ h # rk # r 0 2 h. In this case, we will choose rkþ1 from the interval [rk 2 h,

rk þ h ] uniformly.

Case 2. rk , r þ h. In this case, we will choose rkþ1 from the interval [r, r þ 2h ] uniformly.

Case 3. rk . r 0 2 h. In this case, we will choose rkþ1 from the interval [r 0 2 2 h, r 0]

uniformly.

Once rkþ1 is determined, we will go ahead to determine zkþ1. This is done similarly to the

above in three different cases. First set

tk ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 2 ðr þ 1Þ2

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 2 r2k

q� �
:

Case 10. – tk þ h # zk # tk 2 h. In this case, we will choose zkþ1 from the interval [zk 2 h,

zk þ h ] uniformly.

Case 20. zk . tk 2 h. In this case, we will choose zkþ1 from the interval [tk 2 2 h, tk]

uniformly.

Case 30. zk , 2 tk þ h. In this case, we will choose rkþ1 from the interval [2 tk, 2 tk þ 2h ]

uniformly.

Now, we just need to find how much rotation we need to take from the ray OkXk

!

(where

Ok ¼ (0, 0, zk)) in the anticlockwise direction (which will then completely determine the

coordinates of Xkþ1). Under the condition that jXkXkþ1j ¼ 1, that angle is given by

uk ¼ cos21 r2k þ r2kþ1 þ z2 2 1

2rkrkþ1

� �
;

where z ¼ zkþ1 2 zk. See Figure 5 for an illustration of this process.

And, we have

xkþ1 ¼ rkþ1cos
X
1#j#k

uj

 !
; ykþ1 ¼ rkþ1sin

X
1#j#k

uj

 !
:
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(Keep in mind that X1 started on the x-axis). Figure 6 shows a random polygon generated by this

algorithm. A polygon with a few segments is shown to illustrate the natural entanglement of such

configurations.

We call the polygons generated in the above process spooling random polygons. A spooling

random polygon with n edges is denoted by Ps
n.

2.4 Determination of the rounding number

In this model, we can easily control the number of times the polygon will go around the z-axis

(the rounding number). Say, we want to generate a random polygon that goes around the z-axism

times, then we will stop the generating process at the first n such that
P

1#j # nuj $ 2mp and

replace that last generated point Xnþ1 with X1, resulting therefore in a polygon. The last edge of

the polygon is no longer of unit length. Although it is conceivable that for a large polygon this

probably won’t affect its topological property that much, a biologically meaningful way to close

the two open ends may still be needed for a more in depth study in the future. In this paper, we

will trade off this imperfection for simplicity and speed.

2.5 Computation of the knotting probability and complexity

Each polygon is projected along the z-axis. The Dowker code of the resulting diagram is

computed and it is simplified using Reidemeister I and II moves. From the simplified Dowker

code the unknotted trajectories are identified by computing the Alexander polynomial evaluated

at t ¼ 21 (denoted by D(21)). This identification is based on the fact that the trivial knot has

D(21) ¼ 1. Doing so can cause some error: it is known that D(21) does not identify all knotted

polygons (i.e. D(21) ¼ 1 for some non-trivial knots). However, this error is not large since

relatively few knots have the property D(21) ¼ 1. The advantage of using D(21) (or more

Figure 5. Generating Xkþ1 given Xk.

Figure 6. Left: A coaxially spooled equilateral random walk. Right: A forced closure of the random walk
at left by a straight-line segment. This figure was generated by R. Scharein using Knot plot. Available in
colour online.
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generally, the Alexander polynomial D(t) itself) is that the computation of the polynomial is

equivalent to the computation of the determinant of a certain matrix, which can be done in

polynomial time on the number of crossings. Identification of the knots with low crossing

number was done by calculating D(22).

2.6 Computation of the average writhe and ACN

The average writhe is a geometric measure of self-entanglement which measures non-planarity

of a spatial conformation. The average writhe of a closed curve C can be defined using the Gauss

double integral

1

4p

ðL
0

ðL
0

ð _gðtÞ; _gðsÞ; gðtÞ2 gðsÞÞ

jgðtÞ2 gðsÞj
3

dt ds; ð1Þ

where g is an equation of C parameterized by arclength, L is the length of C and

ð _gðtÞ; _gðsÞ; gðtÞ2 gðsÞÞ is the triple scalar product of _gðtÞ, _gðsÞ, and g(t) 2 g(s). For a given

projection, the sign of the crossing is determined using the convention illustrated in Figure 2.

At a positive crossing, one can think of the integrand as the measure of the solid angle created by

those projections from which the tangent vectors appear to cross. If the crossing is a negative

one, the integrand is equal to the measure of this solid angle multiplied by 21. This

interpretation of the integrand allows for an easy calculation of the writhe when C is a polygon of

n segments of unit length. In this case, the Gauss integral in (1) can be written as a double sum

over the segments of the polygon:

X
1#i–j#n

1

4p

ð1
0

ð1
0

ð _giðtÞ; _gjðsÞ; giðtÞ2 gjðsÞÞ

jgiðtÞ2 gjðsÞj
3

dt ds; ð2Þ

where gi and gj are expressions for the edges li and lj of C parameterized by arclengths.

Similarly, the ACN of C is given by Ref. [15]

1

4p

ðL
0

ðL
0

jð _gðtÞ; _gðsÞ; gðtÞ2 gðsÞÞj

jgðtÞ2 gðsÞj
3

dt ds: ð3Þ

And again, in the case thatC is a polygon of n segments of unit length, its ACN can be expressed as

X
1#i–j#n

1

4p

ð1
0

ð1
0

jð _giðtÞ; _gjðsÞ; giðtÞ2 gjðsÞÞj

jgiðtÞ2 gjðsÞj
3

dt ds: ð4Þ

3. Theoretical results

The following theorem concerns the mean crossing number of a spooling random polygon.

Theorem 3.1. Let Ps
n be a spooled random polygon of n edges, then the average number of

crossings in its projection to the xy-plane perpendicular to its centre axis is of the order of O(n 2).

Proof. Here is an outline of the proof of this lemma. Let l1, l2, . . . , ln be the consecutive edges
of Ps

n and let aij ¼ aðli; ljÞ be the ACN between li and lj, then the ACN of Pn (written as xn) is

simply the sum of the a(li, lj)’s: xn ¼
P

1#i , j # naij ¼ 1/2
P

1#i, j # naij, and E(xn) ¼

(xn) ¼
P

1#i , j # nE(aij) ¼ 1/2
P

1#i, j # nE(aij), where aij/2 has the integral form as given
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in (4). For any j . i þ 1 and any fixed li, there is a positive probability that the starting point of
lj is of a small (constant) distance away from li due to the way lj is generated. Since li and lj are
confined in the same sphere of radius R, lj cannot be too far away from li either. So, the
denominator in the integrand of (4) is bounded above by a constant. Since the end point of lj is
independent of the position of li, there is a positive probability that the numerator of the

integrand of (4) is bigger than a constant (however small it may be). It follows that E(aij) $ b for

some positive constant b as long as li and lj are not adjacent edges. This implies that

E(xn) ¼ 1/2
P

1#i, j # nE(aij) $ bn(n 2 3)/2 ¼ O(n 2). A

Remark. It must be pointed out that the positive constant bmentioned in the above proof can vary

greatly depending on the parameters of the model as it is shown in Figure 9. However, the O(n 2)

behaviour is clearly seen in the numerical study as shown in Figure 9.

Let us now concentrate on the projection of Ps
n onto the xy-plane. Call this projection Dn.

Essentially, Dn is treated as a knot diagram and we can compute w(Dn), the writhe of Dn.

Because of the special structure of Ps
n, we have the following result as well. The proof of this is

elementary. An interested reader can convince him/her self by working out a few examples.

Theorem 3.2. Let Dn be the projection of a Ps
n onto the xy-plane and let sðPs

nÞ be the rounding

number of Ps
n (namely the number of times wraps around its central axis), then the number of

Seifert circles in Dn is exactly sðPs
nÞ.

The following important theorem is due to Morton. The original theorem was stated for a

general diagram using the number of Seifert circles in the place of sðPs
nÞ. For the original version

of the theorem and a proof of it, please refer to Ref. [28].

Theorem 3.3. [28] Let w(Dn) be the writhe of Dn, e be the smallest power of v in the HOMFLY

polynomial PDn
(v, z) of Dn (which is the same as the HOMFLY polynomial of Ps

n, of course) and

E be the largest power of v in PDn
(v, z), then, we have wðDnÞ2 ðsðPs

nÞ2 1Þ # e # E #

wðDnÞ þ ðsðPs
nÞ2 1Þ.

An immediate consequence of this theorem is the following important corollary. It reveals a

very nice relation between the writhe of Dn and the chirality of Ps
n.

Corollary 3.4. [28] If jwðDnÞj $ sðPs
nÞ, then P

s
n is a non-trivial knot. Furthermore, in this case

Ps
n cannot be an achiral knot.

Proof. We have e ¼ 0 ¼ E for the unknot (by the definition of the HOMFLY polynomial). Yet

if jwðDnÞj $ sðPs
nÞ, then either e $ 1 or E # 2 1. On the other hand, if Ps

n is an achiral knot,

then it is equivalent to its mirror image. Since PK(v, z) ¼ PK0(v 21, z) when K0 is the mirror image

of K, it follows that PDn
(v, z) ¼ PDn

(v 21, z). Therefore, e ¼ 2E so, we must have e # 0 # E.

But again, if wðDnÞ $ sðPs
nÞ, we have 1 # e and if wðDnÞ # 2sðPs

nÞ, we have E # 2 1, leading

to contradictions in both cases. Thus, Ps
n has to be a chiral knot. A

This corollary clearly shows that if Ps
n is knotted because of its high writhe (as initially

proposed in Ref. [4]), then it simply cannot be an achiral knot. So, if the DNA in a bacteriophage

capsid is packed in a coaxially spooled way with certain writhe bias, then one would observe
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a large proportion of knots and none of these knots would be achiral. In extreme cases one would

expect the Figure 8 knot to be missing.

Theorem 3.3 can be strengthened to the following theorem, which relates the writhe of Dn to

the complexity of Ps
n.

Theorem 3.5. Let w(Dn) be the writhe of Dn such that jwðDnÞj2 sðPs
nÞ ¼ q $ 0, then Ps

n is a

non-trivial knot with minimum crossing number at least (q þ 2)/2.

Proof. Let us consider the case wðDnÞ $ sðPs
nÞ þ q. In this case, Ps

n must be a non-trivial knot by

Corollary 3.4. Let us look a minimum diagram D (which of course is likely to be different from

Dn). It is obvious that w(D) # Cr(D). Furthermore, we must have s(D) # Cr(D) where s(D) is

the number of Seifert circles of D. Otherwise, D would be a simple diagram with only twists that

can be untwisted using Reidemeister I move repeatedly. Applying Theorem 3 to Dn and D

separately, we have wðDnÞ2 sðPs
nÞ þ 1 # e # E # wðDÞ þ sðDÞ2 1. It follows that

q þ 1 # 2Cr(D) 2 1. That is, Cr(D) $ (q þ 2)/2 where Cr(D) is the minimum crossing

number of Ps
n since D is a minimal projection of Ps

n by our choice. The case of

w(Dn) # 2 (n þ q) can be similarly handled and is left to the reader as an exercise. A

Remark. It is important for us to point out here, that the writhe we talked about in the above

discussion refers to the writhe of the diagram of the random polygon (which is the projection of

the polygon along the z-axis), not the average writhe of that polygon. Theorem 3.3 does not

apply, if we use the average writhe instead, because if we project the polygon into a plane that is

not parallel to the xy-plane, then the number of Seifert circles in that diagram may no longer be

the same as the rounding number of the polygon. Therefore, in our simulation study, we would

only study the mean of the writhe of the diagram of the polygons into the xy-plane, not the mean

average writhe. But our result for the crossing number is for the mean ACN.

4. Numerical results

As mentioned in the methods section our model has three parameters R, r and h, where R and r

are the radii of the confining sphere and cylinder, respectively, and h is the parameter that

controls the degree of randomness of the polygon at each step and therefore the rigidity of the

chain. In order to illustrate the results of the simulations, two values of h are used (i.e. h ¼ 0.1

and 0.3). The values of R and r are also fixed and results for R ¼ 10 and r ¼ 1 are shown. For

simplicity the starting point for all polygons is set to be (1.5, 0, 0). These studies are only our

initial efforts to try to understand the model and how the parameters affect our results. Routine

studies with systematic testings on these parameters will be performed in the future.

4.1 The mean radius of gyration of the spooling random polygons: The interplay
between h and R

In order to test the effects of the parameter h (as defined in Section 2.3) on the dimensions of the

knot, we calculated the mean radius of gyration of spooling random polygons. Figure 7 below

shows our results. Not surprisingly, polygons generated with h ¼ 0.1, have conformations

tighter than those generated with h ¼ 0.3. More importantly even for n ¼ 200, the mean radius

of gyration for the h ¼ 0.1 case is still far away from R ¼ 10 (below 3), indicating that most of

these polygons are still tightly wrapped around the central cylinder and that the confining sphere

did not really play an important role here. However, in the case of h ¼ 0.3 the mean radius
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of gyration is more than 8.5 when n ¼ 200, indicating that the polygons could have gone beyond

R ¼ 10 if not confined by the sphere.

4.2 The knotting probability of the spooling random polygons

As expected from the tighter structures found for h ¼ 0.1, the knotting probability increased

faster in the case h ¼ 0.1, than in the case h ¼ 0.3. Remarkably and in high contrast with other

random polygon models the knotting probability rapidly saturates (as it is observed

experimentally). However, in contrast with the results published in Refs. [7,44] larger polygons

show higher knotting probability than shorter ones. When w(Dn) is large, but not over sðP
s
nÞ,

how does it affect the knotting probability of Ps
n? We suspect that the knotting probability would

be much higher for a spooling random polygon Ps
n with a fixed large writhe w(Dn). A detailed

numerical study on this is planned for the future.

4.3 The mean ACN of Ps
n

The mean ACN helps to estimate the complexity of the knots in the average sense [41]. Knots

extracted from bacteriophage P4 have been estimated to have an average of 30 crossings [3].

Here, we computed the mean of the ACN before Reidemeister moves were removed, therefore, a

much higher number is expected. Figure 9 shows the result of our numerical study on the mean

crossing number of Ps
n (as a function of n). Polynomials of degree two are fitted to the data as it is

suggested in Theorem 3. Interestingly, the mean ACN is heavily dependent on the parameter h,

suggesting that more complex knots are found for smaller h, when the rest of the parameters are

held fixed. This is consistent with our numerical result on knotting probability shown in Figure 8.

4.4 Knot distribution of the spooling random polygons

Next, we estimated the distribution of knots for up to six crossings. The result for chains of 50

segments and h ¼ 0.1 are shown in Table 1. Interestingly and in contrast with completely

random polygons the distribution shows an elevated number of five crossing knots with respect

Figure 7. The mean radius of gyration of the spooling random polygons: The bottom curve is for h ¼ 0.1
and the top one is for h ¼ 0.3.
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to the four crossing knots. It is also important to highlight that (also in contrast with random

models) the toroidal knot with five crossings 51, is more probable than its twist counterpart.

Therefore, the spooling model presents features that are observed experimentally. However, the

match between these results and the results observed experimentally is not perfect. For example,

figure eight knots do occur (although, with a relatively low percentage). But this should not

surprise us, since we did not take out the polygons with small writhe values and Corollary 3 only

Figure 8. Knot probability of the random spooling model.

Figure 9. The mean ACN of Pn
s with n up to 200.
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guarantees us that there will be no achiral knots (such as the figure eight knot) if the absolute

writhe of the polygon is large than its rounding number. In our case, the mean absolute writhe is

calculated to be about 1.6 which is much smaller than the mean rounding number, which is larger

than 5.

5. Conclusions

In this paper, we have introduced a new computational model to investigate DNA knots

extracted from bacteriophage P4. This model assumes an initial biased conformation suggested

by current models of DNA packing in bacteriophages, and it incorporates a degree of

randomness. How much randomness there is in the packing of the genome is a matter of

discussion [11,25]. This is an effort to bring together two highly deviated approaches: total

randomness or complete organization. As we pointed out in the introduction section, although,

both types of idealized models (total randomness or complete organization) have their own

merit, they fail to produce numerical results that accurately reflect all aspects of DNA knots

extracted from bacteriophage P4. Therefore, it is important for us to explore new models such as

the one proposed here.

Our preliminary study of the random spooling polygons showed that this model can indeed

produce numerical results that can partially describe the knotting probability and the knot

distribution observed experimentally. Furthermore, because of the special structure of these

polygons we are able to carry out some rigorous mathematical analysis. These analytical results

give an important support and meaningful interpretation of our numerical results.

Further explorations of the random spooling polygon model will be needed in order for us to

understand it better. In particular, more in depth numerical studies will be needed. As we pointed

out earlier, we will need to explore the effects of the parameters used in the model in more detail.

A big task will be to determine the effect of excessive writhe on the knotting probability.

Additionally, it may also be important for us to impose further conditions on the model due

to new geometric or topological restrictions observed experimentally. For example, our current

model lacks volume exclusion, however, a number of studies have shown that electrostatics of

the DNA chain play an important role in the packing reaction and in the organization of the

chromosome (e.g. [16]). Also, in this study, we made several assumptions that will need to be

investigated in the future. First, we have introduced an internal cylinder as an ad hoc parameter

and also as a model for the core proteins. Second, our polygons are obtained by (artificially)

adding a new segment to close the open equilateral chains generated by our method, which may

produce artifacts. More realistic rejoining of the chain ends should be investigated.

While some existing theoretical results in knot theory can be nicely applied to the random

spooling polygon model as we have demonstrated in Section 3, the model remains a challenge

for further mathematical analysis. For instance, if we remove the requirement that the random

polygons spool around a central cylinder in the confining capsid, then how can we generalize

Theorem 3 and its corollaries (in Section 3)? On the other hand, can we use the average writhe of

the polygon instead of the writhe of a particular projection? The reason is that in practice, it is

hard to determine what projection plane is the one we need. These are the mathematical issues

that we will explore in the future.

Table 1. Knot distribution up to six crossings in the case of h ¼ 0.1, n ¼ 50 on a random sample of size
150,000.

Knot 01 31 41 51 52 61 62 63 $7

Probability 0.64 0.157 0.012 0.017 0.016 0.001 0.002 0.001 0.07
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