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A new theoretical foundation for the discrete dynamics of physicochemical systems is
presented. Based on the analogy between the r-theorem of the theory of dimensionality,
the second law of thermodynamics and the stoichiometry of complex physicochemical
reactions, basic dynamic equations and an extreme principle were formulated. The
meaning of discrete time and space in the proposed equations is discussed. Some results
of numerical calculations are presented to demonstrate the potential of the proposed
approach to the mathematical simulation of spatiotemporal physicochemical reaction
dynamics.
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INTRODUCTION

Since Lorenz’s discovery of chaotic solutions of
differential equations [1], Haken’s analysis of
self-organized systems [2], Prigogine’s discussion
about chaos and order, time and space in com-
plex non-equilibrium systems [3], and Chua’s
chaotic electrical circuits [4], there have been so
many important contributions to the field of
complex non-linear chaotic system dynamics that
it is impossible to do them all justice. There is no
other field in science that could compete with
such an interest and activity. More than two
hundred books with the word chaos in the title
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have been published, seven new journals devoted
to chaos studies have been launched in the last
few years...
"What is good in chaos?... Chaos has already

been applied to increase the power of lasers, syn-
chronize the output of electronic circuits, control
oscillations in chemical reactions, stabilize the er-
ratic beat of unhealthy animal hearts and encode
electronic messages for secure communications.
We anticipate that in the near future engineers
will no longer shun chaos but will embrace it."
(Scientific American, p. 78, August 1993).

"Fractals are an effort to simulate nature’s
complexity. Those computer representations are
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tiny, intricate patterns from which models of vir- differential equations, are extremely sensitive to

tually anything, from snowflakes to mountains, infinitesimal changes-bringing into question the
can be created. The insights from this exercise main postulate of the correct use of differential
can be so exciting that Wall Street firms are equations. Remembering the fact that chaotic so-

funding extensive research into fractals and its lutions can be obtained only by computer, we

sister field, chaos theory, to see if they can pre- must ask whether they reflect the dynamic laws
dict stock market behavior." (Business Week, of nature (written in the form of differential

p. 169, October 12, 1992). equations before chaotic regimes were proposed),
"Motile cells of Escherichia coli aggregate to or whether they are solely the result of an ex-

form stable patterns of remarkable regularity treme sensitivity to numerical procedures and
when grown from a single point on certain sub- computer errors [5]. How can the continuous
strates. Central to .this self-organization is chemo- time and space of differential equations reflect
taxis, the motion of bacteria along gradients of a catastrophic changes in behavior in chaotic sys-
chemical attractant that the cells themselves ex- terns, and how can we combine the determinism
crete... Formation of spatial patterns from a mass and predictability of differential equations and
of initially identical cells is one of the central the unpredictability of chaotic solutions? What is

problems of developmental biology." (Nature, the new role of computers (which have become
v. 376, no. 6535, 6 July 1995). an essential part of our solutions of differential

"The discipline of chaos has created a universal equations through the accuracy of numerical pro-
paradigm, a scientific parlance, and a mathemati- cedures) when chaos appears and changes in
cal tool for grappling with nonlinear phenomena, accuracy can strongly affect the results of cal-
In every field of the applied sciences (astronomy, culation? It is obvious that computing errors

atmospheric sciences, biology, chemistry, eco- never can be made "as small as necessary"- one

nomics, geophysics, life and medical sciences, of the main postulates of all existing numerical
physics, social sciences, zoology, etc.) and engi- methods and the ideology of using computers-
neering (aerospace, chemical, electronic, civil, if chaotic solutions are expected. The old contra-

computer, information, mechanical, software, tele- diction between continuality and discreteness is

communication, etc.), the local and global mani- thus once again clamoring for an answer. The
festations of Chaos and Bifurcation have burst traditional chain of differential equations-numer-
forth in an unprecedented universality, linking ical solution has thus been broken by the simple
scientists heretofore unfamiliar with one an- fact that chaotic solutions depend not only on

other’s fields, and offering an opportunity to re- differential equations but strongly on numerical
shape our grasp of reality." (Aims and Scope, algorithms and computer errors. A new link be-
International Journal of Bifurcation and Chaos. tween classical mathematical models and their

World Scientific). solutions should be put into the chain. This link
It is obvious that we are faced with a new should include the accuracy of numerical meth-

dynamic paradigm demanding explanation and ods, computer accuracy, etc.
much better understanding. How this new para- There are a minimum of two ways of solving
digm of chaos exists alongside with the classical these problems. The first one is to make a careful

dynamics, based on the use of differential equa- analysis of the numerical accuracy of integration
tions for which infinitesimal changes of initial of differential equations (which is very hard,
conditions and parameters result in infinitesimal and not always possible, to do). The second one

changes in solutions? Chaotic solutions, which is to seek other methods (calculus) different from
in opposition to the conventional solutions of differential equations and free of the problems
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connected with their use. The question whether
systems of ordinary or partial differential equa-
tions are the single mathematical language for
describing all kinds of dynamics derived from
first principles of physics is not new. Can itera-
tional maps or systems of difference equations be
used instead of or in parallel with differential
equations? What type of postulates do we need
to accept in order to put a sound physicochemi-
cal meaning to this new calculus- calculus of
iterations? If we succeed with this program, we
not only overcome many contradictions that re-
sult from the use of differential equations, but we
also take a step towards the better understanding
of the meaning of discrete time and space, self-
organization and complexity. Of course, any ac-
tivity in finding the required principles should be
based on the traditional procedure of verification:
equations derived from the new principles should
not only describe existing experimental results,
should not contradict solutions of differential
equation for non-chaotic regimes, and should
predict a wide. range of future experimental re-
suits. This is the program that we intend to un-
dertake, and with this publication, which
presents one of the possible approaches, we open
the discussion.

Starting from classical chemical thermodynamics
for closed systems, we have found an analogy
between the second law of thermodynamics and
the 7r-theorem of the theory of dimensionality,
which bring us to the formulation of a new ex-

treme principle for chemical reaction kinetics
[6,7] and dynamics [8].

BACKGROUND

The formalism of using the notations of chemical
reactions is a very common and effective applica-
tion to the description of different complex multi-
component systems. The principle of a minimum
of free energy for closed multicomponent systems
and following mass action law of thermody-

namics provides us with the necessary mathema-
tical models in a form of algebraic equations for
the case of equilibrium:

N

1--I Yli Kl,
i-1

and differential equations of the kinetic mass ac-
tion law for the non-equilibrium case:

(2)

where KI- the equilibrium constant for the /th

reaction, and k-, k- rate constants for the lth
reaction, uli matrix of stoichiomeric coefficients,
Di- difflusion constants. Despite the absence of
a variational principle for the rate equations (2),
they are considered as fundamental equations
that have been verified by numerous experiments
in chemistry, physics, biology. In the case that
Eq. (2) is applied to simulations of chaotic pro-
cesses, the same questions that were put forward
in the Introduction must be raised.
To initiate the procedure of constructing a new

mathematical model, we need to start by defining
the mechanism of chemical reactions, expressed
by matrix of stoichiometrical coefficients lli. For
all types of constituents Ai (atoms, molecules,
radicals, ions, clusters, cells, etc.), the mechanism
of interaction can be written in the following
form:

N

Z uliAi
i=1

i-- 1,2,...,N, l= 1,2,...,N-M. (3)

When lli is given as an initial hypothesis, all the
necessary equations for simulation can be auto-
matically written according to Eqs. (1) or Eqs.
(2). By adding the equations of the law of mass
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conservation:

N

aiXi bj, j 1,2,..., M, (4)
i=1

we will complete the system of algebraic equa-
tions in the case of equilibrium (1) and the sys-
tem of differential equations (2) in the case of
chemical kinetics. Here aij- "molecular" matrix,
defining the number of components of type "j"
in the ith constituent; and Xi- concentration of
ith constituent of the system. According to the
stoichiometrical rules of chemical transforma-
tions, for any matrixes uli and a the following
relationship should be satisfied:

N

v’liaij 0 (5)
i=1

This relation can be used in order to calculate
matrix aO. from l/li or matrix lli when matrix a
is given.
Now let us turn to the foundation of the

theory of dimensionality. According to the claims
of this theory, all the variables used to identify
the physicochemical systems should have a di-
mension expressed with the aid of the so-called
main units- meters, seconds, kilograms, etc.
Variables such as velocity, energy, pressure, etc.
have well-defined dimensions, which are ob-
viously dependent on the choice of the main
units. To overcome the dependence of an arbi-
trary choice of the main units, we need, and
recommend, to construct invariants (i.e., dimen-
sionless variables). Invariants are constructed by
using the 7r-theorem of the theory of dimension-
ality and are more conveniently expressed by the
general form of matrix operation [9].

Suppose we have N variables qi with the di-
mensions defined by use of matrix Qo, where
j--1,2,..., and M- number of main units; for
example, ql =s- distance, q2--t- time, q3 u-

velocity, q4 a- acceleration, variables defining
the kinematics of an arbitrary mechanical system

with main units: Ul sec (s), and U2 meter (rn).
In this case, matrix Q can be written in the form

m s
0

0

-1

-2

(6)

Now to define the invariants according to the
r-theorem, we need to present matrix Q0 in the
following form:

R
(7)

where R is non-degenerate matrix of dimensions
M xM, and P is a matrix of dimensions

(N-M) x M. Then, the determinant matrix li
for L=N-M invariants r take the following
form:

)i=l_pR-1 ii, (8)

where I is the unit matrix (N-M) x (N-M).
For our example we will get matrix

-1 0
-1 2 0 (9)

and two invariants:

7r --s-1 l/1 a- ut/s,

7r2 S- t2 l/0 al atZ/s.
(10)

The general expression for N-M invariants rz is
given by the 7r-theorem:

N

7r, H q,i. (10a)
i=1

Now let us transport this formalism to the stoi-
chiometry of chemical reactions. Again, to make
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things clear, let us use a simple example of a
chemical system with four constituents X A,
X2 B, X3 =AB, X4 =AB2 and as the compo-
nents of the system, let us choose A and B. In
this case, the molecular matrix aO. takes the fol-
lowing form:

A
B
AB

AB2

A B
0

0

2

(11)

and the chemical "invariants" are easy to define
in the same way used in Eq. (8). As a result we
will get the following expressions for the two "in-
variants":

xk x4
x4/x 

(12)

Now, the analogy between the equations of the
thermodynamic mass action law (1) and the
theorem (10a) is obvious: the matrixes aij and Q0
and uti and li are mathematically equivalent, as
well as Eqs. (1) and (10a). Of course, there is a
vast difference in the meaning of the dimension-
less invariants 7rt and the "chemical invariants"
1-It, which have a dimension in the sense of the
theory of dimensionality, but nonetheless we in-
tend to use some similarities and the analogies.
As is known, Eqs. (1) were derived in classical

thermodynamics from the principle of a mini-
mum of free energy (or maximum entropy) for a
mixture of ideal gases. This assumption serves as
a strong constraint for the use of these equations
for a condensed system. If we view this from the
position of the theory of dimensionality and sup-
pose that the dimensionless character of the "che-
mical invariants" reflects the independence of the
thermodynamic constants Kt (mathematical ana-
log to 7rt) on the concentrations of M compo-
nents of the system, we can apply Eqs. (1) to any

systems with chemical reactions, without con-
straints, based on ideal gases assumptions. If the
initial system of chemical reactions does not give
an adequate description, according to the theory
of dimensionality, we need to change our initial
hypothesis about the mechanism and add some
more components and constituents, or change
the type of chemical reaction.
Another recommendation that can be taken

from the theory of dimensionality is the claim for
an invariant to be constant (not dependent on

time, initial concentrations, or concentrations of
constituents) for similar systems. If a new situa-
tion arises (for example, from simulation of a
kinematic system, we are going to analyze the
dynamics), we need to add a new component and
variables in the matrix li (kg as a main unit in
this particular case, and force, energy, as new
variables etc.). Following this rule for moving to
the description of the dynamics of the physico-
chemical systems, we need to add a new "time
component" in the molecular matrix ao., when
going to dynamic simulations from thermo-
dynamic equilibrium. The details of such an ap-
proach can be found in Ref. [10]. If we do this
for a closed system, we will get, after simple op-
erations of the matrixes, the time-dependent
functions IIt(tq)= Kt exp[Wt/tq] on the right side
of Eqs. (1), where q 1,2...:

N

H Xi’i(tq K exp[-W/tq], (13)
1-1

which together with Eqs. (4) represent a complete
system of N non-linear algebraic equations for N
variables Xi(tq). The reasons for our choice of an
exponential function can be found in the asymp-
totic behavior of chemical systems [10]. Eqs. (4),
(13) have a unit solution for all Xi(tq) > 0. This
is the way in which we can construct a system of
algebraic equations for mathematical simulation
of the dynamics of N concentrations Xi(tq) with-
out using differential equations (2) for any
mechanisms of chemical reactions given by
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matrix l/li. Numerous numerical calculations have
been made to compare the solutions that have
come out of the ordinary differential equations
(without diffusion) of the kinetic mass action law
and the proposed equations for the same me-
chanisms of chemical reactions, and good quali-
tative agreement was obtained [6]. System
(13), (4) is far more simple from a computational
point of view (no problems with the stiffness of
differential equations) and can serve as good ap-
proximation to the solutions of differential equa-
tions.

Continuing to the mathematical simulations of
open catalytic systems, we intend to include in
our molecular matrix a/ a new component re-

flecting time delay interaction, which after simple
transformations [10], will bring us to a system of
difference equations. In this case, IIl becomes a
function of all concentrations Xi, calculated at
previous moments of time tq-s, s--1,2,... For
an open system, when tq changes from to to tc-
a constant (characteristic time for any specific
system, when the steady state is reached), system
(13),(4) transforms from algebraic equations to a
set of non-linear difference equations. In the
same conceptional way, we insert space coordi-
nate r through dependence Xi(r(R)) in our matrix

aij, and the final function for IIl can be written in
the form

IIl(X(tq),r) Klexp{- N

Z Oli i(tq-s)
i=1

+Z tli Xi(r@) ’c (14)
i=1

where Oli /li are empirical parameters, character-
izing the intensity of feedbacks in time and the
intensity influences of the space-distributed con-
centrations of the neighbors Xi(r(R))- on the /th

chemical reaction.
We have now constructed a full system of basic

equations for simulations of all types of complex
chemical reaction dynamics, starting with the initial

hypotheses of the mechanism given by matrix b’li.

Using the fact that Eqs. (1) express the mini-
mization of free energy, we would like to general-
ize this principle and formulate a new extreme

principle for chemical reaction dynamics: Reac-
tions in multicomponent physicochemical systems
proceed in such a way that at each instant of
time tq (q--1,2...) and at every point of consid-
ered space r(rl,r2, r3) the function:

N

F(tq, r)- Z Xi(tq, r){ln Xi(tq, r)-f.- 1},
i=l

i= 1, 2,...,N, (15)

reaches its minimum in the concentration space
Xi, subject to the to the law of mass conservation

(4).
Here

fl- {0,In 1-Ii,

i= 1, 2,...,M,

i=M+I,M/2,...,N,

where 1-Ii is defined by Eq. (14).

RESULTS OF NUMERICAL
CALCULATIONS

Some results of numerical calculations can now
be presented to demonstrate possible applications
of our approach to the mathematical simulation
of the spatial dynamics of pattern formation and
time series. Let us consider the following me-

chanism of chemical transformations:

A +-+B- &, (16)
T

where A X1, B X2, C X3 and X3 affects re-
action A -- B and X1 affects reaction B-+ C.
We constrain ourselves with the case, in

which only the previous moment of time is in-
cluded in the consideration s= 1. According to
the mechanism (15), we have the following
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stoichiometric and molecular matrixes"

0

the concentration of Xi(tq, r). Calculations were
performed on a PC-486 computer.

DISCUSSION AND CONCLUSIONS

and Eqs. (13), (4):

r)

X3(tq, r)
Xl(tq, r)

Kl{[al3X3(tq-1)q-/llXl(tq-l,r@)

--/122(tq-1, r@) -I-/13z3(/q-1, r@)]/tc},

g2{[OZllXl (tq-1) +/21)(l(tq-l,r@)

-k- f122X2(tq-l, r@) -+-/23X3(tq-l,r@)]/tc},
Xl tq, r) -]- X2(tq, r) -t- X3 lq, r) b.

(17)

Concerning spatiotemporal dynamics, we con-
strain ourselves in this publication to the plane
r--r(rl,r2) represented by a square lattice with
9t,9t elements with coordinates r(rl,r2). In each
cell, we calculate Xi(tq, rO) according to Eqs.
(17), which reflect the influence of the concentra-
tions of the neighbors Xi(tq_l,r(R)) on the reac-
tion rate in each cell with coordinates r(rl,r2).
The initial conditions are: Xi(tq, r) b, Xz(tq, r)
X3(tq, r) --0. The boundary conditions reflect the
fact of the absence of neighbors for all cells with
coordinates Ir[ 9t.
Our intention with this mathematical model

(17) was to demonstrate the ability of the pro-
posed theoretical approach to generate different
types of complex chemical oscillations behavior
and to simulate pattern formation dynamics. In
Fig. 1, we present different time series obtained
from Eq. (17). Figures 2 and 3 present a process
of creation of patterns that are growing and
moving in space. Figure 4 demonstrates the crea-
tion of two patterns and their interaction. Figure
5 demonstrates the evolution of chemical spiral
waves. In Fig. 6 we present some symmetrical
patterns. All patterns were obtained in a square
lattice with 160 x 160 cells, except Fig. 4:70 x 70
cells. The color of each cell reflects the value of

We have presented a brief description of a new
theoretical approach to physicochemical reaction
dynamics. We consider this approach to be the
basis for constructing a solid theoretical founda-
tion for the application of a system of algebraic
and difference equations, instead of, or in parallel
to, the commonly used system of differential
equations. The advantages of difference equa-
tions from the computational point of view are
obvious (the dynamics of pattern formation pre-
sented here takes about 10min for 300 iterations
on a PC-486). Now let us clarify the meaning of
time and space that we face in our approach and
equations. We think that there is a general pro-
blem of defining the meaning of the so-called
"discrete time and space" appearing when itera-
tional maps or difference equations are used. The
questions arise when we try to make a link be-
tween the continuous time and space of differen-
tial equations and discrete nature of our

numerical calculations. As a precondition, for
sampling, we suppose the existence of a "small-
as-necessary" time interval At. This concept fails
when chaotic solutions can be obtained from dif-
ferential equations. When problems of computer
accuracy and error diffusion problems are also
considered, an analysis of the real meaning and
quality of the obtained solutions becomes extre-
-mely complicated.

Our approach from the very beginning was
directed towards constructing algebraic equations
and then difference equations which are, by

definition, free of the above-mentioned problem.
For a closed system, Eq. (13) demonstrate a new
time tq. Trajectories Xi(tq) are defined by the so-
lutions of the system of non-linear algebraic
equations (4), (13). Despite the close similarity of
these solutions to the solutions of differential
equations, the meaning of time tq and that of



38 V. GONTAR

N
IO0 200 3OO

15
114
13
12
I1

100
9O

40

|0 JO 1H 110 10 130 140,,,. ,. ,," ,oo ’,,o ’,,o ’,o ’,o ’,. ’,. ’,;, ,,,,, -’,,0’o

3O

2O

100 110 120 1:30 40 150 160 170 O0 190 200 210 220 230 240 250 350 45O

14
13
12
11

100 110’120 130 140 150 160 170 180 190 200 210220 230 240

!6

:3

O0 290

FIGURE Different oscillatory curves, obtained using new basic equations (4), (13), (14).
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2 3

4 5 6

FIGURE 2 Dynamics of pattern formation, obtained using new basic equations for the chemical reaction mechanism: A
B--, C. represents the 50th iteration; 2 the 100th; etc.

2 3

4 5 6

FIGURE 3 Dynamics of pattern formation for the same chemical reaction mcchanism as in Fig. 2, but using different para-
meters in the mathematical model.
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FIGURE 4 Dynamics of pattern formation and their interaction.
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2 3

4 5 6

FIGURE 5 Evolution of spiral chemical waves, obtained using new basic equations for B-Z reaction: corresponds to the
300th iteration; 2 to the 400th; 6 to the 800th.

FIGURE 6

,,

Symmetrical patterns obtained using new basic equations.

continuous time in (2) is different from the
calculation point of view, and tv can be consid-
ered as discrete time by virtue of the way that
this time appears. The continuality of time in
differential equations is connected to the exis-

tence of lira dX/dt and dt --+ O, in contrast to tq,
which runs in arbitrary way from to in any order
we need.
The next step in the proposed theory is the

description of chemical reactions with feedbacks,
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when the parameters of the initial mathematical
model get the dependence of the concentration

Xi calculated at the previous "moment of time

tq_". In this case, the algebraic equations trans-
form into a system of difference equations, and
for an open system our discrete time tq becomes
a constant or in other words disappears as a

dynamic variable. Difference equations, being dy-
namic or evolutionary equations by their very
origin, have no time in the sense of time of the
systems of differential equations (2) (through de-
rivatives dX/dt) or even in the sense of the dis-
crete time tq in Eqs. (13), (1), (4). Astronomic
continuous time commonly used for interpreta-
tion of all types of dynamic behavior has disap-
peared from our difference equations, being
transformed in the set of internal times resulting
from our calculations. The initial scale of time is
not important for difference equations and can
be easily attached to the astronomic time in our

experiments by normalization of parameters of
the model when trajectory X is calculated. This
means, in other words, that the system is "self-
organizing in our physical time and space", and
only the character of the interactions is responsi-
ble for any time intervals appearing in the sys-
tem’s dynamics. The smallest time interval At, as
well as all the other intervals, can be calculated
by spectrum analysis of trajectories X. The fact
that the smallest interval no longer depends on
the limitations of the numerical procedure of in-
tegrating differential equations is very important
for practical computer calculations.
The situation with simulation of spatial dy-

namics by our system of difference equations is
also different from use of partial differential equa-
tions (2). Spatial coordinates are not included in
the basic equations, and are present only through
dependence of parameters IIt from concentrations

Xi(tq, r). The absence of derivatives in our basic

equations frees us from the necessity of existence of
continuous curves, as happened in the case of
solutions of partial differential equations (2).

If we look at Fig. 2, at the early stages of
distribution of the concentration we see that con-

centrations are not organized in any specific
form. But later, due solely to chemical transfor-
mations going in each cell of the square lattice
we can see some process of concentration organi-
zation in a form that reminds us of spiral and
ring curves. In fact, these are not curves in the
sense of continuous curves that can be obtained
from partial differential equations. What we ob-
tain from the new basic equations is the direct
concentration distribution of particular constitu-
ent X in space according to our extreme principle
and initial hypothesis of the chemical reaction
mechanism. This principle is self-sufficient for the
simulation of different types of spatiotemporal
behavior of chemical waves and other pattern
formations, which was previously the only partial
differential equations [11] or "cellular automata"
method with very little physicochemical back-
ground [12].
We should also relate to the stochastic process

of mathematical simulation. Because chaotic re-

gimes are present in the proposed basic difference
equations, there is no special need to add a "ran-
dom number generator", as should be done with
the differential equations. The random number
generator and chaotic regimes are the same in
their mathematical nature.

In summary, we have demonstrated the exis-
tence of other theoretical and mathematical foun-
dations to chemical reaction dynamics than the
differential equations of the kinetic mass action
law.
We are perched at the beginning of the devel-

opment of this new paradigm for discrete dy-
namics and see as our goal for future studies the
development of a calculus of difference equations
in the same manner as it was done with the cal-
culus of the infinitesimal for differential equa-
tions. The results already coming out from
proposed approach prove the tremendous poten-
tial of the proposed mathematical model that can
be effectively used in real-time control systems,
neural networks, and in signal processing as practi-
cally unlimited source of different types of oscilla-
tory and spatiotemporal behavior simulations.
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These approaches can be effectively used for
mathematical simulations of living systems. We
are sure that the application of the concept of
proposed discrete dynamics and the new basic
equations will find applications in economics,
medicine, computer science and many other theo-
retical and practical areas for which extensive
computing time is required, without losing the
physicochemical sense and theoretical back-
ground of mathematical models.
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