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The objective of this research is the elaboration of elements of linear bifurcation analysis
for the description the qualitative properties of orbits of the discrete autonomous itera-
tion processes on the basis of linear approximation of the processes. The basic element
of this analysis is the geometrical and numerical modification and application of the
classical Routhian formalism, which is giving the description of the behavior of the
iteration processes near the boundaries of the stability domains of equilibria. The use of
the Routhian formalism is leading to the mapping of the domain of stability of equilibria
from the space of control bifurcation parameters into the space of orbits of iteration
processes. The study of the behavior of the iteration processes near the boundaries of
stability domains can be achieved by the converting of coordinates of equilibria into
control bifurcation parameters and by the movement of equilibria in the space of orbits.
The crossing the boundaries of the stability domain reveals the plethora of the possible
ways from stability, periodicity, the Arnold mode-locking tongues and quasi-periodicity
to chaos. The numerical procedure of the description of such phenomena includes the
spatial bifurcation diagrams in which the bifurcation parameter is the equilibrium itself.
In this way the central problem of control of bifurcation can be solved: for each autono-
mous iteration process with big enough number of external parameters construct
the realization of this iteration process with a preset combination of qualitative proper-
ties of equilibria. In this study the two-dimensional geometrical and numerical realiza-
tions of linear bifurcation analysis is presented in such a form which can be easily
extended to multi-dimensional case. Further, a newly developed class of the discrete
relative m-population]n-location Socio-Spatial dynamics is described. The proposed al-
gorithm of linear bifurcation analyses is used for the detail analysis of the log-log-linear
model of the one population]three location discrete relative dynamics.

Keywords." Control of bifurcations, Discrete non-linear dynamics, Discrete relative m-population/
n-location socio-spatial dynamics

INTRODUCTION

In recent decades a new paradigm of bifurcations
in behavior of non-linear systems appeared as a
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scientific approach and as a method to deal with
manifestations of chaos and turbulence in
different sciences. At present the essence of scien-
tific efforts is shifted to further elaboration of
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conceptual framework of bifurcation analysis, to
standardization of numerical methods and to the
detailed description of the new important do-
mains of applications. The central problem of the
linear bifurcation analysis is the problem of con-
trol of bifurcations: to construct for each itera-
tion process with a big enough number of the
control bifurcation parameters the realization of
this iteration process with a preset combination
of qualitative properties of orbits. In the solution
of this problem three main aspects are inter-
wined: analytical and numerical aspects and the
aspect of geometrical visualization.
The main objective of this research is two

folded: to present the linear bifurcation analysis
of the behavior of autonomous finite-dimensional
discrete iteration processes and to apply the cor-
responding algorithm of analysis to the study of
a new branch of non-linear dynamic systems stu-
dies: the Discrete Relative m-population/n-loca-
tion Socio-Spatial Dynamics.

1 LINEAR BIFURCATION ANALYSIS

Let us start from the explicit form of the n-di-
mensional discrete time autonomous iteration
processes (other explicit and implicit forms of the
iteration processes can be considered also):

xi(t + 1) Fi(A; x(t)),
i= 1,2,...,n; t= 0,1,2,...,

where the vectors x(t)=(Xl(t),xz(t),...,xn(t))
represent the components of the iteration process
in the time points 0, 1,2,..., A is the set of
external constants (control bifurcation para-
meters) and the functions Fi(A; y), i-- 1,2,... ,n,
are the differentiable functions of all their com-
ponents y (Yl, y2,..., yn).

All possible equilibria x*-(X*l,X,...,xn) of
the iteration process (1) are given by the system
of equations

x/*-Fi(A;x*), i- 1,2,...,n. (2)

In this paper we are presenting the analytical
and numerial procedure of the bifurcation analy-
sis in the following way: the essence of this pro-
cedure is the exchange of a part A of control
bifurcation parameters from the set A by compo-
nents of the equilibrium x* (X’l, x2,... Xn) with
the help of Eqs. (2). In such a way the compo-
nents of equilibria became control bifurcation
parameters themselves.
As it will be shown further, the remaining part

of parameters A2 A\A give the description of
the boundaries of the domain of stability of equi-
libria within the space of orbits. This means that
it is possible to move the equilibrium without of
movement of domain of its stability. The move-
ment of equilibrium points can be placed on the
segments of straight lines. This allows the com-
plete computerized description of the appearance
of different bifurcation phenomena in the space
of orbits.

Thus, the geometrical content of the proposed
bifurcation analysis includes the travels of equili-
bria in the space of orbits which reveal the quali-
tative features of the behavior of the trajectories
of the iteration process near the boundaries of
domain of stability of equilibria.
The linear bifurcation analysis is based on the

construction of the Jacobi matrix of the linear
approximation of the iteration process

(3)

where

so.( + t) Oxi( + 1)
OX/(t)

i,j-- 1,2,...,n. (4)

The following analytical expressions are of use:

1. the value of Jacobi matrix J*-Ils/{I at the
equilibrium x* (x, x2, x) and

2. the characteristic polynomial of the Jacobi
matrix J*:

p(#) #n + al#n-1 +... _+_ an_llt q_ an.
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As is well known the construction of the ana-
lytical forms of the coefficients of the charac-
teristic polynomial .P(#) can be done with the
help of the principal minors of the Jacobi ma-
trix J*. Thus, the following analytical objects
should be computed:

3. Principal minors of the Jacobi matrix J*.

By the well-known theorem of von Neumann
the equilibrium x* is asymptotically stable iff for
all its eigenvalues # the following condition
holds:

l# l< 1. (5)

Consider the space P of all coefficients of the
characteristic polynomials of the order n. Condi-
tion (5) defines in this space the geometrical do-
main of asymptotical stability. The analytical
description of this stability domain can be con-
structed with the help of the classical Routh--
Hurwitz procedure in the form of the non-linear
inequalities. This procedure can be described as
follows (see, Samuelson, 1983, pp. 435-437).

First of all, construct the parameters

bo ai;
i=0

bl ai(n 2i),
i=0

where a0 l;

br aiZ(_l)k
i=0 k=O

where
i!/(k!(i- k)!), >_ k; k >_ O,

0, k<0,

bn al -t-- a2 -+- (--1)n-lan-1 -I- (-1)nan.

(6)

Further, construct the matrix

bl b3 bs
bo b2 b4
0 bl b3
0 bo b2 (7)

and its principal minors A1, A2, An.

The conditions of asymptotical stability are:

bo>0; Ar>0, r= 1,2,...,n (8)

and the boundaries of the stability domain in the
space P determined with the help of described
above Routhian procedure by the non-linear
equalities:

bo--0; At=0, r= 1,2,...,n. (9)

On the boundaries (9) the absolute values of
some eigenvalues of the Jacobi matrix are equal
and the plethora of different bifurcation phe-

nomena exist.
In two- and three-dimensional cases the do-

mains of stability can be visualized in the follow-
ing form: for n 2

b0 + a + a2; bl 2 2a2;
(10)

b2 a q- a2;

and the stability domain in the space of para-
meters al, a2 is defined by the linear inequalities

:tza <a2 < 1. (11)

Geometrically, these inequalities represent a tri-
angle of stability with the vertices [-2], [], [_Ol]"
For n 3:

bo + al + a2 -+- a3;

b, 3 + al a2 3a3;

b2 3 a a2 -1- 3a3;

b3 al + a2 a3;

(12)
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and the stability domain is defined by the linear
and quadratic inequalities:

+ al if- a2 q- a3 > 0;

al + a2 a3 > 0;

a2 -ff ala3 a23 > O.
(3)

In the three-dimensional space of the coeffi-
cients al,a2, a3 this domain has three boundary
surfaces: two planes and a saddle (parabolic
hyperboloid). More precisely, the plane + al-k-
a2 q-a3--0 touches the domain of stability of
equilibria by the triangle ABC with the vertices

A= B-- -1 C- 3

the plane a + a2 a3 0 touches the do-
main of stability of equilibria by the triangle
ABD with the vertices

A- B= -1 D-

The straight lines generated by segments AC,
BC, AD, BD lie on the saddle 1- a2 q-ala3-

a32 -0o
Next, because the components of the Jacobi

matrix J* are the functions of the coordinates of
the equlibrium x*-(x, x2, xn), it is possi-
ble to construct the analytical and geometrical
images of the boundaries of the domain of stabi-
lity in the space of orbits. It is important to
underline, that because the parameters from A
can be analytically presented with the help of the
coordinates of the fixed points, the boundaries of
the domain of stability in the space of orbits
depend only on the parameters from A2. There-
fore, it is possible to move an equilibrium to the
preset given point of the boundary with known
bifurcation effect.

In conclusion, the mapping of the domain of
stability of equilibria from the space P of all co-
efficients of the characteristic polynomials eigen-
values into the space of orbits together with the
immovability of the boundaries of the domain of
stability in the space of orbits give the possibility
to describe all admissible qualitative features of
the behavior of the iteration process near the
boundaries of the stability domain. The travels
of the equilibrium in the space of orbits on
the segments of straight lines and the crossing
the boundaries of the stability domain reveal the
plethora of the possible ways from stability, peri-
odicity, Arnold horns and quasi-periodicity to
chaos. It is important to stress that the travels of
equilibria also reveal geometrically and numeri-
cally the mechanism by which the mode-locking
areas of periodic resonances destroy quasi-peri-
odic orbits without using the elaborate analytical
techniques. The numerical procedure of the de-
scription of such phenomena includes the con-
struction of spatial bifurcation diagrams in which
the bifurcation parameter is the equilibrium it-
self.
The organization of the travels of equilibria in

the space of orbits on the segments of straight
lines can be done in the following way: it is pos-
sible to parametrize the segment of the straight
line between the equilibria x and y as

x(j)-x(1-)+y, j-0,1,...,T, (14)

where j is a bifurcation parameter and T is a
number of bifurcation steps. In such a way a pla-
nar bifurcation diagram can be constructed. The
usual (linear or one-dimensional) bifurcation dia-
gram can be obtained from (14) by the fixation
of some coordinate of the vectors x(j).

Thus, for each iteration process with a big en-
ough number of the control bifurcation para-
meters it is possible to construct the realization
of this iteration process with a preset combina-
tion of qualitative properties of orbits (cf. Sonis,
1990; 1993; 1994).
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REALIZATION OF THE LINEAR
BIFURCATION ANALYSIS FOR
TWO-DIMENSIONAL AUTONOMOUS
ITERATION PROCESSES

In this section we present in brief a two-dimen-
sional realization of the linear bifurcation analy-
sis. The form of this realization can be extended
in the same manner to a multi-dimensional case.

Let us start with the iterations of the type

x(t + ) (x(t), y(t)),
y( + 1) H(x(t), y( t) ).

The standard linear stability analysis of the
general two-dimensional discrete map (15) is
based on the consideration of the general Jacobi
matrix

(see, for example, Hsu, 1977; Thompson and
Stewart, 1986, pp. 150-161; Sonis, 1990).
By the well-known yon Neumann theorem, the

equilibrium (x*, y*) is asymptotically stable if and
only if for all its eigenvalues #l, 2 the following
conditions hold:

I#ll < 1, 1#21 < 1. (20)

The outcome of the general Routh-Hurwitz
stability conditions (11) in the case n 2 for the
polynomial 12 q_ al# + a2 is

bo- + a + a2; b -2- 2a2;
(21)

b2 a + a2;

and the stability domain in the space P of para-
meters al, a2 is defined by the linear inequalities"

J(t+l t) I OG/Ox OG/Oy 1OH/Ox OH/Oy
(16)

and its value J* on the fixed point x*, y*

-lal <a2< 1. (22)

In the plane of the coefficients al, a2 the do-
main of stability defined by the conditions (22) is
the triangle ABC with the vertices (see Fig. 1):

j*-

OH*lax* OH*/Oy*
(17)

where G* G(x*, y* ), H* H(x* y*
The eigenvalues of the Jacobi matrix J* are

the solutions of the characteristic polynomial

/,2 at a# + a2 2 Tr J*# + det J* 0, (18)

where

-al
OG* OH*

Tr J*
Ox* Oy*’

a2 det J*
o6 /Ox o6 /o*
OH /Ox OH /Oy

(19)

Next we will summarize the qualitative proper-
ties of the behavior of discrete map which are the
results of the standard linear stability analysis

det

\ \ ’’-<<- -1 I/
\\ ou //

d-t J.* lJ E/_"-’,v- v- -,

Flip N l- / Divergence

ouna\ ! oun
Tr J* -(det *+1) I/< Tr J* det *+1

_.ea, -, 7s

FIGURE Domain of stability of discrete two-dimensional
non-linear dynamics.
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The parabola a2--1/4al2 divides the triangle into
two major domains: the eigenvalues are real
outside of the parabola and are complex conjugate
inside of this parabola. On the parabola itself the
eigenvalues are equal.
The sides of the triangle of stability are generated
by the following straight lines:

the divergence boundary under the equation

al + a2 0, (23)

the flip boundary under the equation

nt- al + a2 0, (24)

the flutter boundary under the equation

a2- 1. (25)

with f 1/2, f 1/4. Other rational fractions
f p/q represent points of weak resonance.
The same periodic behavior is also observed in

a small domain of f near p/q. This domain, the
mode-locking domain, is the image of the Arnold
tongue from the corresponding domain of change
in eigenvalues in the complex plane (Arnold,
1977). For strong resonance, the mode-locking
domain starts within the domain of stability
(Kogan, 1991).

If f is not rational, the quasi-periodic motion
of orbits appears.

Presenting al -Tr J* and a2 detJ* through
the coordinates x*, y* of the equilibrium one ob-
tains in the space of orbits the domain of stabi-
lity of equilibria; boundaries of this domain are
the following curves:

the divergence boundary with the equation

Tr J* A* + 1; (27)

the flip boundary with the equation

On the divergence boundary at least one of the
eigenvalues is equal to 1. Crossing of this bound-
ary allows for orbits to be repelled from the equi-
librium. Such divergence starts from within the
domain of stability; this domain is the diver-
gence-locking domain.
On the flip boundary at least one of the eigen-

values is equal to -1. Each point on the flip
boundary corresponds to a two-periodic cycle,
and movement outside the domain of stability
generates the Feigenbaum type period doubling
sequence, leading to chaos (Feigenbaum, 1978).
On the flutter boundary 1#11- 1#2]- 1. It is

easy to describe the type of bifurcations in all
points on the flutter boundary. The condition

al 121 means that #1 e i2fl, #2 e-i2fl,
0 _< ft <_ 1, and therefore,

al Tr J* 1 -4- #2 2 cos 27rf. (26)

If f is a rational fraction" f-p/q, then we
have q-periodic (resonance) fixed points; between
them there are fixed points of strong resonance

Tr J*--(A* + 1); (28)

the flutter boundary with the equation

det J* 1. (29)

(It should be mentioned that in three-dimen-
sional case we will have the divergence plane, the
flip plane and the flutter saddle. It is important
to note that for the higher dimensions the invar-
iant tori including periodic and quasi-periodic
motion appear. This issue will be considered else-
where.)

DISCRETE RELATIVE
m POPULATION/n LOCATION
SOCIO-SPATIAL DYNAMICS

In the next sections the ideas of bifurcation ana-
lysis will be applied for the specific cases of a
new general model of discrete relative multiple
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population/multiple location socio-spatial dyna-
mics (see Dendrinos and Sonis, 1990).
We will start from one population (stock)/n

locations case. Let the vector

x(t)=(xl(t),x2(t),...,xn(t)), t=O, 1,2,...

be the relative population size distribution at
time between n locations. Such a formulation
could be specified for any socio-economic quan-
tity, normalized over a regional or national total.
The one population/multiple location relative

discrete socio-spatial dynamics then is given by:

xi(t / 1) Fi(x(t))/ Fj(x(t)),
j=l

1, 2, n; t--0, 1, 2, ...;

Fi(x(t)) > O, i-- l, 2, n;

0 < xi(O < 1, i= 1, 2,..., n;

(30)

xj(O) 1. (31)
J

The expression Fi(x(t)) is the locational com-
parative advantages enjoyed by the population at
(i, t). Functions Fi depend on the relative distri-
bution of the population in all locations, and on
other environmental parameters.
A specific log-linear formulation for the func-

tions Fi with the universality properties may be
represented by the following:

Fi(x(t)) AiH xj(t)aij;
J

-oc<aij+oc; Ai>O, i= 1,2,...,n; (32)

where A1, A2,..., An are the composite loca-
tional advantages of the locations 1, 2, n,
and the matrix [[ai..[[ is the matrix of the compo-
site elasticities of relative population growth.
This iteration process can reproduce each preset
dynamic behavior including stability, periodic
motion, quasi-periodicity and various forms of
chaotic movement.

A specific log-log-linear formulation for the
functions Fi may be represented by the following
functions Fi(x(t)) of the exponential form:

Fi(x(t)) exp Wi H xj( t)aij
J (33)

-oe<aij<+oc; i= 1, 2, n;

where the matrix Ilaijll is the matrix of the spa-
tio-temporal composite elasticities.

It is important to stress that the relative dy-
namics (30) can be generated by the following
extreme principle (cf. Gontar, 1981; Sonis and
Gontar, 1992): the relative Socio-Spatial dy-
namics proceed in such a way that in the transfer
from time to time / the information func-
tional

i(t,t + 1) xi(t + 1)
i=1

x [lnxi(t + 1)- In f.(x(t))- 1] (34)

reaches its minimum in the space of vectors

x(t + 1) subject to the conservation condition:

xi(t / 1) 1.
i=1

This extreme principle defines a new law of
collective non-local population redistribution be-
havior which is a meso-level counterpart of the
utility optimization individual behavior.

Moreover, it is possible to formulate a more
general extreme principle which will generate the
multinomial relative socio-spatial dynamics as
well as an arbitrary iteration process with the
help of informational functionals of the universal
analytical form. Such a principle represents the
collective local and non-local synergetic interac-
tions between the constituencies of an arbitrary
autonomous iteration process (Sonis and Gontar,
1992). It should be mentioned that the informa-
tion minimization principle is the discrete analo-
gue of the problem stated and solved by Vito
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Volterra in 1939; to construct the Hamilton var-

iational principle for the logistic type system of
differential equations describing the "struggle for
existence". The analytical form of the informa-
tion minimization principle is similar to the gen-
eralization of the Volterra principle in modern
Innovation Diffusion theory (Sonis, 1992).
We now assume that there exist rn different

populations (stocks) located in n different loca-
tions. Examples of such populations (stocks)
could be rn distinct population (or labor) types;
distinct capital stocks (classified, for example, ac-

cording to vintage; stocks of financial capital
(currencies); different types of economic outputs
(products); or any other economic, social, politi-
cal and other types of socio-spatial variables, or
a combination of them. The general model of the
relative distribution of such stocks in space-time
can be presented in the following form:

i= 1,2,...,n; j-- 1,2,...,m;
t--0, 1, 2, ...;

Fji(Xj(t)) > 0

x (t)
t=0, 1,2,..., i-1,2,...,n;

j-- 1, 2, m;

(35)

such that 0 < xji(t) < 1,
2, m; and

i= 1,2,...,n; j=l,

(36)

Xl(t + 1) 1/[1 + A2exp(#23x3(t))
+ A3 exp(#31Xl (t))],

xz(t + 1) Azexp(#z3x3(t))/
[1 + A2 exp(#z3x3(t))
+ A3 exp(#31x, (t))],

x3(t / 1) A3exp(#31Xl(t))/
[1 + A2 exp(#23x3 (t))
+ A3 exp(#31xl (t))],

A2, A3 > 0, -oc <#23, #31 < +oc

(37)

describing the changes in relative population
shares xl (t), xz(t), x3(t) distributed between three
locations (or between three alternatives of choice).

First of all let us describe the space of orbits
of the dynamics (37). For this purpose the bary-
centric coordinates within the Moebius triangle
will be used.

1. A Moebius plane as a space of orbits Moebius
plane is the two-dimensional space (plane) de-
fined by three barycentric coordinates Xl, x2, x3,

Xl/Xz/x3=l, of each point within it. The
scale element of this plane is the Moebius equi-
lateral triangle with the unit scale on its sides.
This triangle is generated by three coordinate
axes (Fig. 2). It is possible to measure the bary-
centric coordinates of each point in Moebius
plane by projecting it (parallel to the sides) onto
the sides of the Moebius triangle. If the point P
lies within the Moebius triangle, then its bary-
centric coordinates xl, X2, X3 must be between 0
and 1:

Xl / X2 / X3 1; 0 Xl, x2, x3 1. (38)

APPLICATION OF THE CONTROL OF
BIFURCATIONS ALGORITHM
TO THE STUDY OF THE ONE
POPULATION]THREE LOCATION
RELATIVE DYNAMICS

Consider the following one population/three loca-
tion log-log-linear model:

If the point Q lies outside the Moebius tri-

angle, then one of the barycentric coordinates
must be negative and other to be greater than 1,
but the condition xl + x2 / X3 always hold.
The vertices of the Moebius triangle are:

X: X 1; x2 O; x3 O,
Y: x =0; x2= 1;x3=O,
Z: X O; X2 O; X3 1.

(39)
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FIGURE 2 Barycentric coordinates in Meobius plane.

For the dynamics (37) the Moebius triangle
gives the natural way to present the orbits of
dynamics and their fixed points. Moreover, be-
cause of conditions A2, A3 > 0 the orbits of the
relative dynamics occur within the Moebius tri-
angle itself.

2. Fixed points Now we will concentrate our-
selves on the graphical representation of the be-
havior of the non-periodic fixed point Xl, x2, x
of the dynamics (37) within the Moebius triangle
under arbitrary changes in the parameters A2,
A3 > 0 and -oc < 23, 31 < q-CX3.

Eqs. (37) and (38) imply that the coordinates
of the non-periodic fixed point x, x, x; satisfy
the system of equations:

x/x* A2 exp(#23x);
x/x* A3 exp(#31x);
X q- X2 q- X

This system implies that

(40)

x x exp[#23A3x’ exp(#31x)],
x XlA exp(#31xl),

(41)

and

x + xA2 exp[#23A3x exp(#31x)]

+ X*lA3 exp(#31x)- 1. (42)

The dynamics (37) have only one non-periodic
fixed point. For the proof consider a function

f(x*l)- x + xA2 exp[#23A3x exp(#31x)]

q-x*IA3 exp(#31x)- 1.

It is easy to see that the derivative of this function
is positive, and f(x*l) tends to -1 if x tends to
0 + 0, and f(x*) tends to some positive value C if

x tends to 0. Thus, the function f(x*l)
increases monotonically from -1 to C > 0, and,
therefore, there is only one point x between 0 and
such thatf(x) 0.
This fixed point it is easy to calculate from

Eqs. (41), (42) with the help of the computation
of the values of the left part of Eq. (42) in two
points of the xi-axis. Refinement of the mesh
size near suspected fixed point by dividing it in
two makes it possible to pin down the location
of any fixed point.

3. Changes in the model parameters and linear

bifurcation analysis Consider now all models
(37) with the fixed positive parameters Az, A3 and
changeable parameters #23, #31. It will be shown
further, that the position of the domain of stabi-
lity and the flip, flutter and divergence bound-
aries are prescribed by the values Az, A3 only,
while the position of the equilibrium depends on
all parameters A2, A3,#23,31. By changing the
appropriate parameters 23,#31 one can put the
non-periodic equilibrium into an arbitrary place
within the domain of stability. Thus, the para-
meters #23, #31 are plying a role of external bifur-
cation parameters. Eqs. (40) give the following
dependence of these external bifurcation para-
meters on the coordinates of the fixed point:

#23 --(l/x;) ln(x/x*A2),

#31 --(1/x) ln(x;/xA).
(43)
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These relationships allow to convert the fixed
point of the dynamics (37) into the internal bifur-
cation parameters. The preset choice of the
movement of fixed point in the space of orbits
(for example, on the straight line between two
points of the Moebius triangle) can be converted
with the help of the formulas (43) into the
change of the external parameters 23,/z31 con-
trolling the model bifurcations.

4. The Jacobi matrix Consider the slope-response
functions

sij( / t) Oxi( / 1)
Oxj(t)

i,j= 1,2,3,

where

i=1

and

/x*- s s2 +

ll,23151,31XlX2X

/
$22

$32

,*

523
$33

(48)

Since detJ*- 0 then the non-zero eigenvalues
of the Jacobi matrix J* are the solutions of the
quadrate equation

which are the entries of the Jacobi slope-matrix /z
2 Tr J*/z + A* 0. (49)

J(t + 1, t)- Ilso.(t + 1, t)ll.

The direct calculation gives:

Sll (t / 1, t) --31 [Xl (t / 1) x3(t + 1)];
s2(t + 1, t)=-/z31[x2(t + 1) x3(t + 1)];
s31(t / 1, t)=/z31[1- X3(t / 1)] X3(t + 1);
s2(t + 1, t) s22(t + 1, t) s32(t + 1, t) O; (44)
S13(t / 1, t)=--/z23[Xl(t / 1) X2(t / 1)];
sz3(t / 1, t)= ]23[1- x2(t / 1)] x2(t /
$33(t / 1, t)----/23[X2(t / 1)X3(t / 1)].

Obviously the determinant of the Jacobi matrix
(Jacobian) is equal to zero: detJ(t + 1, t)= 0. At

the Jacobi slope-matrixthe fixed point xl, x2, x

J*-Ilsll has the form

--]31X{X; 0 --t23XX
--[t31XX 0 /23X(1 X)

31X (1 X) 0 --/23X2X3

(45)

such that the Jacobian at the fixed point detJ*
0.
The characteristic equation of the Jacobi

matrix:

#3 Tr j,/2 / A*/ det J* 0, (46)

5. Flip, flutter and divergence boundaries in the
space of orbits Substituting (43) into (48) and
(49) one obtains"

TrJ*- -x2*ln(x/x*lA2) x3* ln(x;/X*lA ),
A* x ln(x/xA2) ln(x;/xA3).

(50)

These formulas allow to construct in the space
of orbits the images of the triangle of stability
ABC and its sides- the flip, flutter and diver-
gence boundaries. The domain of stability, de-
fined by the inequalities -1 + TrJ* < A* < 1,
becomes:

+/- [x ln(x/X*lA2 + x; ln(x;/X*lA3)]
< x ln(x/x*A2)ln(x;/x*A3)< 1. (51)

The equation of the flip boundary TrJ*=
-(A* + 1) becomes:

x ln(x/X*lA2 x; ln(x;/xA3)
+ x ln(x/xA2)ln(x;/x*A3) O. (52)

The equation of the flutter boundary A*-
becomes"

x ln(x/xA2) ln(x/x*A3)- 1, (53)
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and the equation of the divergence boundary
Tr J* /V q- becomes:

+ x ln(x/X*lA2 + x; ln(x;/x*A3)
+ x ln(x/x*A2)ln(x;/x*A3) O. (54)

Furthermore, the positions of resonances on a
flutter boundary are the solutions of the follow-
ing system of equations:

-x ln(x/x*A2)- x; ln(x;./xA3)
-2cos27rf, 0<_f_< 1,

x ln(x/x*a2) ln(x*3/x*A3 1,

X ---X2 -t-X

(55)

Thus, the images of domain of stability and
flip, flutter and divergence boundaries clarify the
qualitative description of the local features of
dynamics within the vicinity of fixed points, and
also the global features of dynamics connected
with the existence of periodic doubling, reso-
nance invariant curves, strange attractors and
other types of chai.

6. Example of linear bifurcation analysis Consider
a set of models of the type (37) with the constant
parameters A2 A3 and the changeable ex-
ternal parameters #23, /z31. The inequalities (51)
define the same domain of stability of equilibria
for all these models (see Fig. 3 where this
domain is shadowed). Eqs. (52)-(53) correspond

x2

//.,,/" ,",.,. segil]ent of
of equilibria

.,,’- d’ "// .:.!/’ flip ""’..,,
:ib ry’",,

/"’ ’/" ’" d"........ .
:.’,, boundary

FIGURE 3 Domain of stability and flip, flutter and diver-
gence boundaries of one population/three location relative
dynamics.

to the flip, flutter and divergence boundaries. The
travel of equilibria along the straight line be-
tween the points (0.1,0.1,0.8) and (0.1,0.85, 0.05)
is chosen with the purpose to show the transfer
from stability to flutter and to flip bifurcations

(see Fig. 3). Figure 4 presents the usual bifurca-
tion diagram for the first coordinates x(t) of
the orbits. This diagram shows the following
sequence of qualitative phenomena: stable two-

periodic cycle, stable attractor, series of resonances

flutter

flutter
flip invariant

boundary

flutter
invariant flip

boundary

two-periodic
cycles

(0.1, 0.1, 0.8)

Arnold’s tongue
for three-periodic
strong

stability

..............................
stability

two-periodic
cycles

(0,1.0.85, 0.05)

FIGURE 4 Bifurcation diagram for the population share Xl.
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flutter
invariant

..,f,::’ ’,,, ’/"
flutter ,. u,/..

boundary .......
/’ ../

,.::" /’

/’ i:;’ x.,, segment of movement

,/" ’::.,: f",;’ of equilibria

/" .. "’.,.

DOMAIN OF
STABILITY

FIGURE 5 Planar bifurcation diagram: one population/
three location relative dynamics.

including the Arnold tongue for three-period
strong resonance, stable attractor and the mode-
locking tongue for two-periodic cycle starting
within the domain of stability. The corresponding
planar bifurcation diagram is presented in Fig. 5
where the two locuses of invariant curves are

clearly visible.
The reader can find other examples of the ap-

plications of linear bifurcation analysis to the
labor-capital core-periphery relative discrete
dynamics and to the analysis of new bifurcation
phenomena in the classical Henon map in Sonis
(1993; 1994; 1996).

7 CONCLUSIONS

This study presents three-tier vision of the recent
developments in the discrete non-linear dynamics:
the level of new mathematical models of the dis-
crete non-linear dynamics recently developed in
different social and natural fields of inquiry;
the level of unified conceptual framework of the
information minimizing or entropy maximizing
principles for discrete non-linear dynamics and
the level of linear bifurcation analysis defining

the domains of structural stability and bound-
aries of structural changes in the qualitative
properties of orbits. The development of the spe-
cific "calculus of bifurcations" obtains at present
the theoretical and practical importance espe-
cially in connection with the new emerging inter-
est to the analysis of the sustainability properties
of economic, social and societal dynamics.
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