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On mollusc shells one can find famous patterns. Some of them show a great resemblance
to the soliton patterns in one-dimensional systems. Other look like Sierpinsky triangles
or exhibit very irregtflar patterns. Meinhardt has shown that those patterns can be well
described by reaction-diffusion systems [1]. However, such a description neglects the
discrete character of the cell system at the growth front of the mollusc shell.
We have therefore developed a one-dimensional cellular vector automaton model

which takes into account the cellular behaviour of the system [2]. The state of the
mathematical cell is defined by a vector with two components. We looked for the most
simple transformation rules in order to develop quite different types of waves: classical
waves, chemical waves and different types of solitons. Our attention was focussed on the
properties of the system created through the collision of two waves.
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A INTRODUCTION

One example is the sea shell pattern of the Amor-
ia dampiera (Fig. 1), which seems to be very sim-
ple. Stripes perpendicular to the direction of
growth look like waves. One gets the impression
that all the cells at the growing edge (the lip of
the shell) are oscillating in synchrony. The ques-
tion that arises is how are they synchronized?

Meinhardt modelled this pattern using his fa-
mous activator-inhibitor model of two coupled
partial differential equations of the reaction diffu-
sion type [1]. Here a denotes the activator and b

the inhibitor concentration.

ot
s + ba raa +Da
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The constants ba and bb are the permanent
activator and inhibitor productions, while s is the
so-called "source density" of the activator pro-
duction. For a given set of parameters this sys-
tem of differential equations will exhibit stripes
perpendicular to the direction of growth. But
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58 P.J. PLATH et al.

As usual, one can rewrite the Laplacian term
by the well known spatial discretisation

V2c c(x 1,7-) 2c(x, 7-) + c(x + 1,7-).

So Fick’s law can be formulated by the itera-
tive equation, where is the discrete time now
and c the concentration. Let us call this discrete
formulation of Fick’s second law the Laplacian
diffusion:

FIGURE Pattern of the sea shell of Amoria damperia (with
the kind permission of Meinhardt [1]). See Color Plate I.

models of this type of spatially non-restricted ki-
netic reaction-diffusion equations totally neglect
the cellular character of the biological system.
During the "13. Winterseminar on Zeinisjoch

(March 1996)", G. Baier presented a system com-

prising a large number of linearly arranged diffu-
sively coupled chemical oscillators. It is very
large-scaled to handle such a system, but seems
to permit the description of pattern formation in
the biological system of the sea shells as well.
However, our basic question is, "Can we con-

struct a cellular automaton model, discrete in
space and time, which is able to show the pat-
terns being observed in the animals?"

B AVERAGING AND DIFFUSION

To answer this question, we first have to ask
"What does diffusion mean in a cellular system?"
Moreover, we have to ask whether random
events are necessary in order to understand diffu-
sion. Let us give a very first and rough answer to
both questions. In the linear case, one does not
need randomness to describe isotropic diffusion
processes, due to the fact that the linear space is

isotropic by definition. So diffusion becomes any
kind of spatial averaging. For example, let us
take Fick’s second law

OC 02C
07-- De ON2

c(x, + 1) c(x, t) + Dc[c(x 1, t) 2c(x, t)
+ c(x + l,t)], xEZ;tEN’.

Figure 2 shows an example of how this itera-
tive equation works.
On the other hand, there is the well-known

binomial smoothing procedure of a discrete func-
tion Z(i) with N’:

Z(i,n + 1) 1/4(Z(i- 1,n) + 2Z(i,n)
+Z(i+ l,n)), n-0,1,2...,

where n is the number of smoothing generation.
Interpreting this number n as discrete time t,

this smoothing procedure formally represents a

temporal averaging. One can easily rewrite this
smoothing procedure in terms of the diffusion
equation, replacing Z(i, n) by c(x,t):

c(x, + 1) (c(x 1, t) + 2c(x, t) + c(x + 1, t))

c(x, t) + 1/4 (c(x 1, t) 2c(x, t) + c(x + 1, t))
c(x, t) + Dc(c(x- 1, t) 2c(x, t) + c(x + 1, t))

with the diffusion coefficient Dc- 1/4. Let us call
this special procedure the binomial diffusion
(Fig. 3). We can now state that, in the case of a
linear cellular automaton, diffusion means any
kind of a spatial averaging of the states of the
cells over time. In order to deal with natural
numbers only, we define integral states z(i, t) by
means of the Gaussian-brackets notation [u]:

z(i, + 1) [2(i, t)]
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FIGURE 2 Graphs of the iterative formulation of Fick’s second law in one-dimensional space.

FIGURE 3 Graphs of the binomial diffusion of a sharp concentration profile at the beginning.
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with TABLE I

(i, t) 1/4 (z(i 1, t) + 2z(i, t) + z(i + 1, t)),

where [u] is the largest natural number that is less
or equal to u: [u] < u and [u] + > u.

Again, this expression represents a kind of dif-
fusion, for which reason we call it a Gaussian
diffusion. In contrast to the binomial diffusion,
however, it does not spread out the quantities all
over the space. If we set a very sharp initial con-
centration profile, it does not run but stays in a
restricted domain, although it shrinks over time.
(see Fig. 4)
One can easily express this iterative equation in

the form of a transformation rule of a cellular auto-
maton with the abbreviation: E g_lz(i- 1, t)+
goz(i,t) +g+iz(i+ 1, t); with the weights g_--
g+l 1, go 2 as shown in Table I:

E 0 2 3 4 5 6

z(i,t/l) 0 0 0 0

E 7 8 9 10 11 12

z(i,t+l) 2 2 2 2 3

Introducing an additive term b in the equation
z(i, + 1) [(i, t)] leads to the expression:

zb(i, t+ 1) [2(i, t) + b].

This iterative equation describes a spatially re-

stricted diffusion as well, but the parameter b can
now be interpreted chemically. For b > 0 one may
think of a production and for b < 0 a destruction,
which is added to the diffusion. For example if
b 0.25 diffusion will be stopped after some time

FIGURE 4 Graph of the spatially restricted Gaussian diffusion.
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FIGURE 5 Development of the productive Gaussian diffusion with the limitation of the state growth if z(i, t)= 0 and E _< L.

by the production (Fig. 5). One obtains a station-
ary spatial distribution of states: z(i,t+ 1)=
z(i,t) for all cells i. Let us call G the sum of
weights of states of the neighbouring cells:

+1
G- Zgk.

Increasing b, the stationary state is reached if b
becomes larger or equal to 1/G" 1/G < b < 1.

Setting b-1 it generally means a shift of the
z(i, + 1)-row of Table I to the left by four digits:

Introducing a lower limit L for opening the
state growth of a cell:

t+l)- f0 if z(i, t) 0 and N <_ L,
[2(i, t) + b] otherwise,

the states of those cells start to grow which have
an appropriate neighbourhood (see Fig. 5). As a

result, Gaussian diffusion is not spatially re-
stricted anywhere.

If b equals minus one: b----1 the future states
become

z,(i, t+ 1) [2(i, t) + 1] [1/4 + 1]" z_l(i,t + 1)= [(i, t)- 1]

TABLE II

?2 0 2 3 4 5 6

z(i,t+l) 0 2 2 2

2 7 8 9 10 11 12

z(i,t+l) 2 3 3 3 3 4

The production now exceeds the diffusion and the
states will grow anywhere, even if z(i, t)--O.

and the lower row of the transformation rule
(Table I) is shifted to the right.

TABLE III

E 0 2 3 4 5 6

z(i,t+l) 0 0 0 0 0 0 0

7 8 9 10 11 12

z(i,t+l) 0 2
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This value of b causes a destruction which is
added to the normal Gaussian diffusion.

Now the state 5’(i,t) of a cell at time is
represented by two different quantities: the integral
concentration z(i, t) and the phases p(i, t)"

C THE VECTOR AUTOMATON MODEL 2’(i, t) (z(i,t))p(i,t)

Both look-up tables (Tables II and III) realize
classical cellular automata. One can combine
these automata with each other, constructing a
new type of automata- cellular vector automata
[2-5]. The advantage of such cellular vector
automata is that one can select different rules
within one expression by selecting different va-
lues of b.

Let us assume that a biological cell possesses
two different phases of activity: an active phase
with p-0 and a passive phase p-1. The beha-
viour of the biological cells in these two phases
should be characterized by a production (p-0;
b > 0) in the active state, and a destruction (p- 1;
b_< 0) in the passive state. So the phases may be
used to construct a switch between the different
rules. But it should be an internal switch, the
position of which should again depend on the
states of the neighbouring cells.
For example, if p(i, t)-0 then"

TABLE IV

E; 0 2 3 4 5 6

p(i,t/l) 0 0 0 0 0 0 0

7 8 9 10 11 12

p(i,t/l) 0

which are now the components of the state vector
Y. The first rule means that the production rule
(Table IV) works up to < 7, whereas the
destruction rule (Table V) governs the region for
E; > 8. But if the cell is in the phase p(i, t)- and
the concentration sum E of the neighbours exceeds
3" > 4, the destruction rule is responsible for the
development of the vector state. Only if _< 3
does the production rule start to work again. This
means that the cellular vector automaton displays
a hysteresis loop.

D DISSIPATION

The system of coupled differential equations,
used by Meinhardt [1] is essentially dissipative, as
can be shown by the non-vanishing trace of the
Jacobian. In cellular automata there is no explicit
expression for this proof of the dissipative char-
acter of the transformation rule. But looking at
the maps one can decide whether the system is
conservative or dissipative. For example, if there
is a one-to-one map the system is conservative
[6]. But in our case the map

F 5’(i, t) -- 5’(i, + 1)

and if p(i, t)-

TABLE V

0 2 3 4 5 6

p(i,t/l) 0 0 0 0

7 8 9 10 11 12

p(i,t+l)

is not unique. The graph of this map is com-
posed of two tent-like staircases, which are
shifted against each other. So we have a many-
to-one map which is essentially dissipative.

Since the general transformation rule of the
vector state 5’(i, t) realizes a dissipative map, the
cellular vector automaton becomes a powerful
tool for llaodelling the patterns of a natural sys-
tem such as mollusc shells.
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For example, using the transformation rule

TABLE VI

N 0 2 3 4 5

0 2 2 2

p(i,t)= z(i,t+l) 0 0 0 0 0 0

p(i,t)=O p(i,t+l) 0 0 0 0 0 0

p(i,t)= p(i,t+l) 0 0 0 0 0 0

N 6 7 8 9 l0

p(i,t)=O z(i,t+l) 3 3 3 4 4

p(i,t)= z(i,t+l) 2 2

p(i,t)=O p(i,t+l) 0 0 0 0 0

p(i,t)= p(i,t+l) 0 0 0 0 0

11

4

2

0

5 12 63 64

p(i,t)=O z(i,t+l) 5 21 22

p(i,t) z(i,t+l) 3 19 20

p(i,t)=O p(i,t/l) 0 0

p(i,t)= p(i,t+l)

and starting with all cells being in the vector
state

0/- 0/\p(,,o)) (o)
except the cells j,k, 1,..., which are in the state,
for example

o) ( j’ o)

the automaton runs into a limit cycle after a long
time (Fig. 6). To construct this rule (Table VI),
we used a weight vector -(g
(1,1,1), and a vector " (z( t), z( i, t),
z(i+ 1, t)) of the neighboured concentrations so

that N becomes the scalar product --gff and
the averaging procedure of the first row in the
rule (Table VI) becomes" z, (i, t+ 1)- [_ q + 1]-
[.geff + 1]. This row represents a diffusion process

FIGURE 6 Spatio-temporal development of the automaton
Table VI starting with one cell. The time axis runs from top
to bottom.

as well,
1.is D--

the diffusion coefficient of which

z(i, + 1) z(i, t) + (z(i 1, t) 2z(i, t)

+ z(i + 1, t)).

In particular, if we use a finite number of 599
linearly arranged cells of the automaton and cyc-
lic boundary conditions, the periodic state of the
automaton is structured as riffled waves perpen-
dicular to the direction of time (Fig. 7), which is
also the direction of growth of the mollusc shell
lip. Figure 8 shows that there are indeed mollusc
shells which exhibit precisely such riffled
patterns.

Rather than starting with only one cell, but
instead with many cells./" in the states 5’(j, 0)-()
distributed randomly, one obtains very plane
waves, perpendicular to the direction of growth
(Fig. 9). There are also sea shells which display
precisely such patterns; (see Fig. 1).
The other very simple shell pattern Meinhardt

discussed [1] involves stripes parallel to the
direction of growth (Fig. 10). Using the vector

if- (1, 1, 1) and a very strong production rule

z(i,t+l)-[2+3] with the transformation
matrix:
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FIGURE 7 Spatio-temporal development of the automaton Table VI after long period of time. Ritfled waves perpendicular to
the direction of growth develop under cyclic boundary conditions.

TABLE VII

52 0 2 3 4 5 6

p(i,t)=O z(i,t+l) 0 3 3 4 4 4 5

p(i,t)= z(i,t+l) 0 0 0 0 0 0

p(i,t)=O p(i,t+l) 0 0 0 0 0 0

p(i,t)=l p(i,t+l)0 0

7 8 9 63 64

p(i,)--o (i,+) 5 5 6 2_ 25

p(i,t) z(i,t+ 1) 2 19 20

p(i,t)=o p(i,+) o o o o o
p(i,t)=l p(i,t+l)1

and a few (about 20) arbitrary cells, after some
time one obtains stripes parallel to the direction
of growth (Fig. 11). These stripes represent spa-
tially stable situations of the automaton. They

FIGURE 8 Pattern ot" riffled stripes (perpendicular to the
direction of growth) on the cone shell principles (with the
kind permission of Jerry G. Walls [7a]). See Color Plate II.

are created by cells which run into a non-vanish-
ing stable "fixed point". Finally this means that
one obtains a vector state distribution which is
stable in space and time.
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FIGURE 9 "Phase waves" in the automaton in Table VI with cyclic boundary conditions. They arise if one starts with
hundreds of randomly distributed cells in the state Z(./, 0) ().

But if one looks carefully at the origin of the
stripes, one can see that they are created by the
collision of solitary waves. If solitary waves col-
lide, a new, localized "collision state" emerges.
Such a state may be stable, as in the case of
stripes parallel to the direction of growth. How-
ever, other solitary waves might exist the ex-
cited collision state of which is unstable and
vanishes or it decomposes after a while. In the
first case one should obtain "chemical waves",
while in the second case "solitons" should be
observed.

FIGURE 10 The pattern of the cone shell Hirasei (44.2For example, there is a very simple automaton
ram) from Taiwan shows stripes parallel to the direction of

rule which results a chemical wave: growth (with the kind permission of Jerry G. Walls [7b]). See
Color Plate III.

TABLE VIII

0 2 3 4

p(i,t) =0 z(i,t+l) 0 2 0

p(i,t)= z(i,t+l) 0 0 0 0 0

p(i,t)=O p(i,t+l)0
o

The excited state which is created by the colli-
sion vanishes after a few time steps. The zero
state of the cells will form the only stable fixed
point of the dynamics of the collision sys-
tem (Fig. 12). This simple rule is nothing other
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FIGURE 11 Development of the automaton in Table VII, causing stripes parallel to the direction of growth.

FIGURE 12 The spatio-temporal development of a "chemical wave" in the one-dimensional space of the automaton according
to Table VIII.
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than a reformulation of the famous Wiener-
Rosenblueth automaton for a one-dimensional
cellular automaton. It therefore comes as no sur-
prise that some mollusc shells exhibit patterns
which resemble the annihilation of colliding soli-
tary waves (Fig. 13).
A closer look at such mollusc patterns reveals

that this collision behaviour of chemical waves is
often accompanied by soliton-like behaviour. If
solitons collide, they pass each other by a phase
shift. The following transformation matrix en-
ables the creation of such solitons (Fig. 14):

TABLE IX

0 2 3

p(i,t)=O z(i,t/l) 0 2

p(i,t)= z(i,t+l) 0 0 0 0

p(i, t) O p(i, / 0 0 0

p(i,t)= p(i,t+l) 0 0

5 6 7

p(i,t)=O z(i,t+l) 0 0 0

p(i, t) O z(i, / 0 0

p(i, t) O z(i, /

p(i,t)=O z(i,t+l)

These two different kinds of solitary waves are
not the only ones, however. There is a variety of

solitary waves the collision states of which differ
considerably. In the case of the chemical and the
soliton waves respectively, one can classify the
solitary waves purely in terms of their collision
behaviour. Classifying waves in this way is very
fundamental [11]. For example, there are solitary
waves which cross each other without any phase
shift (Fig. 15). They can generated by the trans-
fomation matrix:

TABLE X

}2 0 2 3 4

p(i,t)=0 z(i,t/l) 0 3 0 0

p(i,t)=l z(i,t/l) 0 0 3 0

p(i,t)=O p(i,t+l) 0 0 0 0

p(i,t)= p(i,t+l)0 0

5 6 7

p(i, t) z(i, + 0 0 0

p( i, t) z( i, + 0 0 0

p( i, t) O z( i, + 0 0

p(i,j) O z(i,t / 0 0 0

In this respect they behave like classical waves.
In this case the collision state is very unstable. Its
lifetime tends to zero.

E STRUCTURES OF COLLISION

FIGURE 13 The cone shell Conus textile from the Great
Barrier Reef (with the kind permission of Jerry G. Walls [7c]).
See Color Plate IV.

As has been demonstrated, there are many struc-
tures for the collision states of solitary waves.
The question arises as to whether one can create
chaotic collision patterns as well. To answer this
question, one should investigate the automata
under consideration in greater detail. The proce-
dure of averaging does not enable the creation of
waves, even in the case of integral numbers, for
example: z(i, + 1) [1/2 ]. However, taking a

productive diffusion z(i, + 1) [1/2 E + 1] and in
addition if E(i, t) 0 z(i, + 1) 0, one may
obtain an automaton which will create a chemi-
cal wave with a saw-tooth profile.
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FIGURE 14 The automaton in Table IX, which creates solitons in the one-dimensional space.

FIGURE 15 Solitary waves crossing each other without any phase shift similar to "classical" waves according to Table X
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TABLE XI

E 0 2 3 4 5 6

p(i,t)-O z(i,t+l) 0 2 2 2 3

E 7 8 9 10 11

p(i,t)-0 z(i, t4-1) 3 3 4 4 4

182 183 184 185 186

p(i,t)--0 z(i, t4-1) 61 62 62 62 0

dependent on the state z0 z(i, t) of the cell under
consideration. Meinhardt [1] used such linear terms

raa and rbb in his system of differential equations
mentioned in the Introduction.

For example, if D=1/2 and B-2 respectively,
this leads to a transformation rule

z=[DE]=[1/2]; b=O

of the cellular automaton"

In the examples mentioned above, the diffusion
coefficient D was either D 1/4 or D 1/2. But what
happens if smaller diffusion coefficients are chosen?
Let D be written in the form D 1/B with B >_ 3, so
that for any Laplacian diffusion equation

(z(i- 1, t) 2z(i, t)2(i,t + 1) z(i,t) +-
+ z(i + l,t)); [2]-z10,

one can find a transformation into the averaging
procedure. Let us take the abbreviations z
z(i,t+l), z0--z(i,t), z_ z (i l, t) and z+
z(i+ 1, t). The .diffusion equation can now be
written in the form

(z__ 2z0 4- z+)

and the averaging procedure is described by

-1 (z_ + (B- 2)z0 + z+).

But if B becomes smaller than three: B < 3, and
D > 1/2 respectively, the Laplace diffusion takes the
form:

(z_ 2z0 + z+),o 3Dzo + -(z_ 2zo + z+) + (3D 1)zo.z0 +5
Formally, this means that the classic diffusion is
superimposed by a production which is linearly

TABLE XII

E 0 2 3 4 5 6

z(i, t4-1) 0 0 2 2 3

7 8 9 10 11 12

z(i, t4-1) 3 4 4 5 5 6

This produces a solitary wave with a step-like
profile. The temporal development of this pro-
file posseses a complex but periodic structure
(see Fig. 16).

Starting a more sophisticated cellular vector
automaton with such a period two sequence

0,0,1,1,2,2,3,3,

periodic string of pearls are generated in the in-
terval between the leading front waves (Fig. 17):

TABLE XIII

E 0 2

p(i,t)=0 z(i, t4-1) 0 0

p(i,t)= z(i, t4-1) 0 0

p(i,t)=O p(i,t+l) 0 0

p(i, t) p(i, + o o

3 4 5 6

2 2 3

47 48 49

p(i,t)=O z(i,t+l)... 23 24 24

p(i,t)= z(i, t4-1)
p(i,t)=0 p(i, t4-1) 0

p(i, t) p(i, + l)
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FIGURE 16 Periodic structure of the front according to Table XlI. The automaton was started with one cell in the state
(.., 0) (o4).

TABLE XIV

0 2

p(;,)=0 (i,+) 0 0

p(i,t) z(i,t + l) 0 0

p(i,t)=O p(i,t+l) 0 0

p(i, t) p(i, + 0 0

3 4 5 6

2 2 3

FIGURE 17 Part of the spatio-temporal development of the
automaton in Table XIII with a periodic "string of pearls"
pattern.

whereas a later switch from p(i,t)-:O to
p(i, + 1)= creates chaotic strings of pearls if
one starts with one cell j in the state
5’(j, 0) () and 5’(i t-.j, 0) ())) (Fig. 18)"

p(i, ) o (i, +
p(i,t) z(i,t + l)
p(i, t) o p(i, +
p(i, t) p(i, +

54 55 56 57

27 27 28 28

0

Furthermore, changing the "diffusion" by
increasing D and hence the state-dependent
production (3D-1)zo, for example, one obtains

z-{E]-l] andz-0 if N-0.
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FIGURE 18 Chaotic "string of pearls" generated by the
automaton in Table XIV.

TABLE XV

0 2 3 4 5 6

z(i,t+l) 0 0 2 3 4 5

7 8 9 10 ll 12

z(i,t/l) 6 7 8 9 10 11

Since z_ + z0 / z+, this transformation rule
is equivalent to the reaction diffusion equation

z 3Dzo + D(z_ 2z0 / z+)

and for D

z z0 + D(z_ 2z0 + z+) + 2z0

respectively. The corresponding automaton cre-
ates a step-like solitary wave, the temporal devel-
opment of which seems to be chaotic. By
introducing this rule into the vector automaton
model

TABLE XVI

0

p(i, t) O z(i, + 0 0

p(i, t) z(i, + 0 0

p(i,t) O p(i,t + l) 0 0

p(i, p(i, + o o

2 3 4 5

2 3 4

p( i, t) O z( i, +
p(i, t) z(i, +
p( i, t) O p( i, +
p(i, t) p(i, +

6 49 50 51
5 48 49 0

0 ...
and starting with one cell j in the state

5’(j, 0) (), and 5’(i - j, 0) (), the pattern in
the inner part of the triangle in the two-dimen-
sional space-time becomes turbulent (Fig. 19). We
have chosen this term with reference to the work of
Mikhailow et al. [8] who observed similar patterns
when investigating the complex Ginzburg-Landau
equation.

Playing around with the transformation rules
one may ask what happens if one uses an inverse

sequence like

IO-E; ifO<E< 10,Y(i,t+l)- 0 ifP-OorE>_ 10.

TABLE XVII

N 0

p(i,t)=0 z(i,t+l) 0 9

p(i,t) z(i,t / l) 0

p(i, t) =0 p(i, / 0

p(i, t) p(i, / 0

6 7

z(i,t+l) 4 3

z(i,t/l) 0

p(i,t) =0
p(i,t)
p(i, t) O p(i, + l)
p(i, t) p(i, +

2 3 4 5

8 7 6 5

This means that for larger states there is a strong
diffusion but almost no production, whereas for
smaller states there is a strong production but
diffusion can be neglected. This transformation
rule simulates the competition between an

inhibition for higher concentrations and a strong
autocatalysis for low concentrations (see Fig. 20).
The patterns, produced by this automaton are

very sophisticated even if one starts with only
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FIGURE 19 "Turbulent" pattern in the temporal development of the one-dimensional automaton according to Table XVI
(see [8] ).

FIGURE 20 Pattern of the "inverse" automaton rule in Table XVII. This pattern resembles the pattern of the spatio-temporal
intermittency discussed by Miguel [9].
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FIGURE 21 "Turbulent" pattern created by the collision of solitary waves according to Table XVIII.

one cell. The patterns resemble very much the
patterns which are known for spatio-temporal
intermittency [9] in coupled complex Ginzburg-
Laudau equations in the one-dimensional
space [10].
We set out to elaborate an automaton produ-

cing solitary waves which will create all the fan-
tastic spatio-temporal phenomena if they collide.
We now have all the ingredients for its con-
struction. If the concentration states of the cells
are small, they should diffuse classically, with
the diffusion coefficient D_<1/2. However, if the
concentration states of the cells are large en-

ough, an autocatalytic production should govern
the behaviour of the system. Through the colli-
sion of the low-state solitary waves, states be-
come neigbouring thus throwing the system into
the autocatalytic regime. The following transfor-
mation rule will create such a behaviour
(Fig. 21):

TABLE XVIII

E 0

p(i,t)--0 z(i,t+l) 0

p(i,t) z(i,t+l) 0

p(i, t) O p(i, + 0

p(i, t) p(i, + l) 0

p(i,t) --0

p(i,t)

E

z(i,t+ 1)
z(i,t+ 1)

p(i, t) O p(i, + l)
p(i, t) p(i, +

p(i,t) -0
p(i, t)

E

z(i,t+ 1)
z(i,t+ 1)

p(i, t) O p(i, + l)
p(i, t) p(i, +

6 7

3 3

12

5

12

0

0

2 3 4 5

2 2 2

0

8 9 10 11

3 4 4 4

0

0 0

0

13 14 15 16

5 5 6 17

17

17
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N 18 19

p(i,t)=O z(i,t+l) 17 18

p(i,t)-- z(i,t/l) 0

p(i, t) O p(i, / 0

p(i, t) p(i, + 0

20 21 22

19 20 21

If the low-state solitary waves collide, they create a

turbulent system in the inner part of the spreading
"reflected" waves. Moreover, there are transfor-
mation rules (Table XIX), constructed in a similar
manner, which create turbulent areas spreading
with half the velocity of the original solitary waves
(Fig. 22):

TABLE XIX

E 0 2 3 4 5

p(i,t)=O z(i,t+l) 0 2 2 2

p( i, t) z( i, + 0

p( i, t) O p( i, + 0

p(i,t)--1 p(i,t+l)

E 6 7 8 9 10

p(i,t)=O z(i,t/l) 3 3 3 4 4

p(i,t)--1 z(i,t+l) 0

p(i,t)=0 p(i,t+l) 0

p(i,t)=l p(i,t/l)

11 12 13 14

p(i,t)=0 z(i,t/l) 5 5 6 6

p(i,t)= z(i,t/l) 0 8 0

p(i,t) =0 p(i,t+l)
p(i,t) p(i,t+l) 0

45 46

p(i,t)=0 z(i,t/l) 22 22

p(i,t) z(i,t+l)
p(i,t)=O p(i,t+l)
p( i, t) p( i, +

Even the "strings of pearls" (Fig. 23) can be
generated in a similar way by the automaton

(Table XX):

FIGURE 22 Spreading of the "turbulent" interval with half the velocity of the original colliding solitary waves according to
Table XIX.
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TABILE XX

p(i, t) O z(i, +

p(i, ) 0 p(i, +
p(i, t) p(i, +

p(i, ) 0 (i, +
p(i, ) (i, +
p(i, ) o p(i, +
p( i, ) p( i, +

p(i, ) o
p(i, t)

2 3 4 5

2 2 2

7 8 9 10

3 3 4 5

?2 11 12 13

z(i, + ) 5 6 6

z(i,t + 1) 0 20 0

p(i,t) =0 p(i,t+ l)

F CONCLUSION

We have shown only a very few examples in
order to demonstrate the power of our vector
automaton model for simulating a high variety
of collision patterns of solitary waves. Our aim
was neither to present a complete classification of
the possible patterns which can be achieved by
this type of automata, nor to simulate all natural
sea shell patterns.
We pursued the idea that the natural patterns

among biological populations of neighbouring in-
dividual cells can be understood by means of
discrete mathematical tools such as cellular vec-
tor automata. The classical ideas of diffusion and
production can easily be induced using these
automata models.
As we have shown, a new idea was generated

in the process. The dynamics of localized excita-
tions created by the collision of solitary waves
can be described in terms similar to those of

FIGURE 23 "String of pearls" generated by the collision of solitary waves according to Table XX.
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FIGURE 24 A localized oscillating pattern of the cone-shell
Glaucus, Solomon Is (with the kind permission of Jerry G.
Walls [7d]). See Color Plate V.

terns are classically described by solitons moving
in excitable systems.

Between these systems and the spatially and
temporally stable systems there exist pulsating
systems. If these systems are always pushing out
new pairs of solitary waves, they are commonly
known as reverberators. But again, this class of
automata embraces more behaviour patterns
than only the classical ones.

This article provides an initial insight into this
fascinating area. Much more work has to be
done in the future. We have not investigated the
reflection behaviour of the different solitary
waves, which will bring us to a much better
understanding of natural sea-shell patterns. But
this is certainly not the only question we have
left aside for the future.
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FIGURE 25 A "pearl string" pattern on the cone shell
Genuanes, Dhakar, Senegal (with the kind permission of Jerry
G. Walls [Te]). See Color Plate VI.

ordinary dynamic systems. There are localized
stable stationary states which give rise to the for-
mation of stripes in the 2D- space-time parallel
to the direction of growth, as can be observed on

the sea shells (Figs. 10, 11).
There also exist localized oscillating patterns

(Fig. 24) and localized chaotic patterns (Fig. 25)
similar to the pearl string patterns.
A new class of patterns has been found: delo-

calized states. This means an excitation spreads
over the automaton leaving all cells in an excited
state. Examples include not only the well known
front wave, but many other phenomena as well,
such as the spreading of turbulent or spatially
intermittent patterns.

Furthermore, there are colliding systems which
are spatially and temporally instable. Such sys-
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