Discrete Dynamics in Nature and Society, Vol. 1, pp. 99-110
Reprints available directly from the publisher
Photocopying permitted by license only

© 1997 OPA (Overseas Publishers Association)
Amsterdam B.V. Published in The Netherlands

under license by Gordon and Breach Science Publishers
Printed in India

Universality of Oscillation Theory Laws. Types and
Role of Mathematical Models

POLINA S. LANDA

Department of Physics, Moscow State University, Moscow 119899, Russia

(Received 6 December 1996)

The universality of oscillation theory laws is discussed. It is suggested that all models of
concrete systems be separated into four categories: models — “portraits” of investigated
systems, models of the type of “black box”, aggregating models, and models of certain
phenomena which can occur in real systems. As an example of the model of the fourth
type, the equation of oscillations of a pendulum with a randomly vibrating suspension
axis is considered for the purpose of clarifying the mechanism of the transition to

turbulence.
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INTRODUCTION

The theory of oscillations is the science that stu-
dies oscillatory motions irrespective of their phy-
sical nature. By oscillatory motions are meant
any limited changes of body state taking place in
a long time interval. Then, because these changes
are limited, they must necessarily be “hither and
thither” [1]. Such a definition of the theory of
oscillations is very common. We know that other
sciences study changes of state of bodies too.
How does the theory of oscillations differ from
them? An answer to this question has been given
by Mandelshtam [1]. Contrary to other sciences
for which the prime interest is in what happens
to a body at a given instant, the theory of oscilla-

99

tions concerns “the general character of a process
taken as a whole over a long interval of time”.

1 THE UNIVERSALITY OF OSCILLATION
THEORY LAWS

In common with any other science the theory of
oscillations has laws of its own. It is essentially
that these laws are general and not depending on
the concrete type of the system studied. Unfortu-
nately, these general laws up till now are not
well-formulated. However, many of the specia-
lists in the oscillation theory use, sometimes in-
tuitively, these laws in their studies. By using the
knowledge of the general laws one can profitably
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predict different phenomena from diversified areas
of science. The discovery of light combination
scattering effect' by Mandelshtam [2] is a typical
example of such a prediction. As for the analogy
between light combination scattering and the
usual objects of oscillation theory, Mandelshtam
wrote [3], “From the point of view of the theory
of oscillations, wireless telephony and light com-
bination scattering are the same. It is modula-
tion. Sound—in radio, and atomic oscillations—in
combination scattering”. Thus, one of the general
laws of the oscillation theory, which implies that
in any nonlinear system modulation is possible,
was the basis for Mandelshtam’s prediction. An-
other example of the general laws of the oscilla-
tion theory is the possibility of synchronization
of any self-oscillatory system by means of the
corresponding external action with different me-
chanisms of the synchronization in the cases of
slight and strong actions [4—6]. As a further ex-
ample we can point to the possible routes for the
appearance of chaos and stochasticity in any self-
oscillatory systems [7].

The knowledge of the general laws of the oscil-
lation theory is also important in that for study
of any oscillatory phenomena one can use simple
models and be sure that in concrete more compli-
cated systems these phenomena will be also of
the same character. This fact is used tacitly by all
researchers.

It is evident that the general laws of the oscil-
lation theory must manifest themselves identically
in systems of diversified physical nature. Regard-
ing this, Mandelshtam told students in one of his
lectures on the theory of oscillations, “All of you
know such systems as a pendulum and an oscilla-
tory circuit, and also know that from the oscilla-
tory point of view they are similar. Now all this
is trivial, but it is wonderful that this is trivial.”
These ideas have not yet become fashionable. In
the paper “L.I. Mandelshtam and the theory
of non-linear oscillations” Andronov [8] wrote
of the lectures and seminars of Mandelshtam,

“Lectures and seminars of Mandelshtam have
sometimes contained new scientific results which
were not published. But, perhaps the greatest sig-
nificance of these lectures lies in the methodical
inculcating of habits of oscillatory thinking, in the
general rise of the oscillatory culture”. Unfortu-
nately, many even prominent scientists, studying
concrete problems, are still lacking in “oscillatory
culture”. This is the main cause of the fact that
up to the present the scientific works, which are
absolutely erroneous from the point of view of
the general laws of the oscillation theory, occur
from time to time.

There is much speculation that the generality
of the laws of the oscillation theory is based on
the similarity of the equations describing oscilla-
tory processes in different systems. Every so often
this is so indeed. However, the laws mentioned
above (and many other ones) are independent of
the concrete form of the equations. It is only
sufficient that the equations belong to a certain
class, which in common is moderately broad.

2 TYPES OF MATHEMATICAL MODELS
AND THEIR ROLE

The availability of analogies between oscillatory
processes in systems of diversified physical nature
is why the theory of oscillations got its subject of
investigation, and thereby took the status of an
original science. A dynamical system is such a
subject [9,10]. A dynamical system is a system
whose behavior is predetermined by a set of rules
(algorithm). In particular, and most frequently,
the behavior of a dynamical system is described
by differential, integral or finite-difference equa-
tions. Obviously, a dynamical system is a model
of a real system. So we can say that the theory
of oscillations studies abstract models, but not
concrete systems. These models can be conven-
tionally separated into four categories: models —
“portraits” of investigated systems, models of the

!'In western literature this effect is usually called the Raman effect.
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type of “black box”, aggregating models, and
models of certain phenomena which can occur in
real systems.

The models of the first type are constructed on
the basis of the description, as more detailed as
possible, of all elements of the system studied.
Such models, e.g., are studied in physics. An ex-
ample is the Navier—Stokes equations and their
finite-difference approximations describing fluid
motion with a high degree of accuracy. As an-
other example we can point to certain models of
heart activity or breathing [11]. These models, as
a rule, are very complicated and cumbersome for
detailed analysis and revealing principal features
of system’s behavior.

When the models of the second type are con-
structed, the system studied is considered as a
certain “black box” with given inputs and the out-
puts which are able to be measured. Further, a
model, as simpler as possible, is chosen. The free
parameters of this model are determined from the
conditions of the minimum, according to a given
criterion, of the difference between the model and
the system outputs for identical inputs. A number
of examples of such models for chemical reactions
is given in [12]. The same approach is concep-
tually used for reconstruction a model from ex-
perimental data (see, for example, [13]).

The models of the third type are constructed
on the basis of the analysis of aggregate behavior
of individual elements of the system studied. A
classical example of the models of this type is
the model “prey-predator” by Lotka—Volterra
[14,15]. The other interesting examples are the
model of an immune reaction illustrating an
oscillatory course of some chronic diseases [16,10]
and the model of the economic progress of hu-
man society [17,10].

Finally, the models of the fourth type are con-
structed for analysis of a certain phenomenon no
matter in what system it occurs. For example,
the phenomenon of self-excitation of self-
oscillations can be modeled by the van der Pol
equation; the phenomenon of synchronization of
periodic self-oscillations can be also modeled by

the van der Pol equation but with an external
force; oscillatory character certain chemical reac-
tions is demonstrated by the models “brussela-
tor” and “oregonator”; the transition to chaos
via an infinite period-doubling bifurcation se-
quence can be modeled by a logistic map [18];
the transition to chaos via intermittency can be
modeled by a map of the form [7]

— z
Xnt1 = Xp +ax,

where z is an even number, a is the parameter;
some processes in continuous media can be mod-
eled by coupled map lattices [19]. Similar exam-
ples can be given in abundance. It should be
particularly emphasized that the mere possibility
and utility of such models are based on the uni-
versality of the oscillation theory laws.

3 THE TRANSITION TO TURBULENCE
AND OSCILLATIONS OF A PENDULUM
CAUSED BY RANDOM VIBRATION OF
ITS SUSPENSION AXIS

In this section we dwell more closely on a model
of the transition to turbulence in the form of the
equation of oscillations of a pendulum with a
randomly vibrating suspension axis [20]. In [21,
22,10] we hypothesized that turbulent processes
in nonclosed fluid flows are not self-oscillations
but are caused by fluctuations both internal (nat-
ural) and external (technical). This hypothesis is
based on the fact that instability of nonclosed
laminar flows is convective. By this is meant that
a small disturbance being given at some point
of the flow will not indefinitely increase with
time but will drift downstream. It follows from this
property of convectively unstable systems that
they are not self-oscillatory systems, but only
amplifiers of disturbances. To make these sys-
tems self-oscillatory it is necessary to form feed-
back. However, in nonclosed flows such feedback
is absent, i.e. for sufficiently large Reynolds’ num-
bers such flows are amplifiers of fluctuations.
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Because the turbulent processes closely resem-
ble self-oscillations in appearance, we further
suggested that owing to the amplified fluctuations
a certain phase transition can occur in the fluid
flow and, as a result, the flow transforms into a
qualitatively new state associated with the excita-
tion of noise-induced self-oscillations. It can be
believed that the onset of turbulence, which is
characterized by presence of large-scale, com-
paratively regular, structures against a back-
ground of fine-scale random motions, is just such
a transition. To make sure that such a transition
is possible in principle, we studied, both analyti-
cally and numerically, a simple model in the form
of the equation for oscillations of a pendulum

with a randomly vibrating suspension axis
[23,24].

3.1 Noise-Induced Oscillations of a Pendulum
with a Vibrating Suspension Axis

The equation studied is
¢ +28(1 + ap?)p +wi(1 +£(1)sinp =0, (1)

where ¢ is the pendulum’s angular deviation
from the equilibrium position, 26(1 + a¢?) ¢ is
the value proportional to the moment of the
friction force which is assumed to be nonlinear,
wp is the natural frequency of small pendulum’s
oscillations, and &(¢) is the acceleration of the
suspension axis that is a comparatively wide-
band random process with nonzero power spec-
trum density (w) at the frequency w=_2wy.

Setting p =~ A cos(wy? + ¢) andsolving Eq. (1) ap-
proximately by the Krylov—Bogolyubov method
we obtain the following truncated equations for
the amplitude 4 and phase ¢ of the oscillations
[23,24]:

P U)zKl 3ﬂ’? wo
4="22 - AP A+ AG (1),

¢ = woM — 3wy A* + wola(1),

where
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n=1-

is the parameter characterizing the extent to
which the noise intensity is in excess of its critical
value for which the phase transition arises,
J=v+awi, v is the coefficient of the first
nonlinear term in the expansion of siny, K; =
k(2wp)/2 is the parameter characterizing the
intensity of suspension axis’ vibration, {;(¢) is a
random process with zero mean value and the
intensity K;, M = (£ cos? 1), and (,(#), much like
to ¢1(¢), is a random process with zero mean value
and the intensity K, = (k(0) + K;)/4.

The Fokker—Planck equation associated with
Egs. (2) is

ow(4, $)

ot
2
= — (9% ((w04K1 n-— %ﬁ’?A2> Aw(A, ¢)>

Kwg 9% , , Kawg 9*w(4, ¢)
2 6—A—2(A w(d,$)) + 7 97 (3)

Finding from this equation the steady-state
probability density for the amplitude 4, we can
calculate the mean value of the steady-state am-

plitude. It is
wiKi T(n+1/2) "
3y T(n+1)

0 for n <0.

forn >0,

(4) =

It follows from this that for >0 the parametric
excitation of pendulum’s oscillations occurs un-
der the effect of noise. This manifests itself in the
fact that the mean value of the amplitude be-
comes different from zero.

Numerical simulation of Eq. (1) showed that,
as one would expect from the theoretical results,
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when the intensity of the suspension axis vibration,
characterized by the value of «(2wy), is in excess
of a certain critical value k. proportional to the
friction factor (3, the excitation of pendulum’s
oscillations occurs that makes itself evident in the
fact that the variance of the pendulum’s angular
deviation becomes nonzero. This phenomenon
can be considered as a noise-induced phase tran-
sition and the birth of an induced attractor. The
latter follows from the fact that the correlation
dimension of the attractor constructed from the
data obtained by the numerical simulation with
using Takens’ technique turns out to be finite
[23,24]. However this attractor is very noisy. This
is evidenced by the fact that the embedding di-
mension calculated by both well-adapted basis
technique [25] and the method of Broomhead-—
King [26] is very large.

Examples of the noise-induced oscillations and
the dependence of the variance of the pendulum’s
angular deviation on the relative power spectrum
density x(2wg)/k < found by numerical simulation
of Eq. (1) are depicted in Fig. 1. It is seen from
this figure that close to the excitation threshold
the pendulum’s oscillations possess the property
of a peculiar kind of intermittency,” i.e. over pro-
longed periods the pendulum oscillates in the
immediate vicinity of its equilibrium position (so-
called “laminar” phases); these slight oscillations
alternate with short strong bursts (“turbulent”
phases). Away from the threshold the duration
of laminar phases decreases and of turbulent in-
creases, and laminar phases ultimately disappear.
The variance of the pendulum’s angular devia-
tion increases in the process. We emphasize that
turbulence for transient Reynolds numbers exhi-
bit also this property [29-31]. It is no chance
that the first theoretical works concerning the
intermittency phenomenon were made by the spe-
cialists in the field of turbulence [32].

Interestingly enough that in the case of the
pendulum the intermittency observed is different

2The intermittency is described, for example, in [27,7,28].
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FIGURE 1 The dependencies () and ¢(¢) for wp=1,
B=0.1, a=100 (a) K(2)/ker=1.01, (b) K(2)/ker=1.2, and (c)

K(2)/ker=5.6; (d) the dependence of 2 on K(2)/ke (the

straight line @? = 0.01151 (k(2)/ker — 1) is shown as a solid
line).

from all types of the intermittency described in
[27,7,28], although they are similar in their exter-
nal manifestations. It is so called “on-off-inter-

mittency”.> The term “on—off-intermittency” was

3 Author is indebted to S.P. Kuznetsov and A. Cenys for calling his attention to this fact.
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recently introduced by Platt et al. [33], though a
map associated with the similar type of intermit-
tent behavior was first considered by Pikovsky
[34]. It is essential that this type of intermittency
can occur not only in dynamical systems but in
stochastic systems as well [35]. In [35] the statisti-
cal properties of on—off intermittency were found
from the analysis of the map

Xpt1 = d(l + Zn)xn +f(xn) )

where z, is either a certain deterministic chaotic
process or a random process, a is the bifurcation
parameter, f(x,) is a nonlinear function. It was
obtained that the mean duration of laminar
phase has to be proportional to a~!.

Let us calculate the mean duration of laminar
phase using Eqs. (2) and the Fokker—Planck
equation (3) associated with them. We shall as-
sume that the pendulum oscillates in laminar
phase if the oscillation amplitude A4 is no more
than a certain value e. Then the mean duration
of the laminar phase 7. will be determined by the
mean duration of random walk of the representa-
tive point inside the circle of radius ¢ on the
plane ¢, . This duration can be calculated (see
[7]) using the steady-state solution of Eq. (3) with
the boundary condition

W(A’ ¢)|A=e =0. (4)

Because the value of € is assumed to be small, we
can neglect the term (3/4)34542 in Eq. (3). In so
doing the solution of Eq. (3) with the boundary
condition (4) is

w(A,(j)) = 2K1 3Gy (€1~211A217—1 _ 1)’ (5)

wiKi(1—2m)4
where Gy is the value of the probability flow

2
_LUOK] _ld 2
4 ("AW 234 W))

across any circumference inside the circle of radius
€. The value Gy is determined from the normal-

G

ization condition by integrating the expression (5)
over the circle of radius e. Using this condition and
taking into account that 7. = 2 Gy [36] we obtain

167e

UL 6
=2y (6)

It follows from this that for small n the mean
duration of the laminar phase is inversely propor-
tional to n. This result agrees with [35].

If the intensity of the suspension axis random
vibration is under its threshold value then the
excitation of pendulum’s oscillations can be in-
itiated by small additional low-frequency vibra-
tion of the suspension axis. The inclusion of this
vibration can be carried out by substitution into
Eq. (1) of £+ a cos w,t in place of & where a
and w, are, respectively, the amplitude and fre-
quency of the additional vibration of the suspen-
sion axis. The results of numerical simulation of
Eq. (1) for different values of a are represented
in Fig. 2. We see that the excitation of oscilla-
tions, as the amplitude a increases, is of a thresh-
old character. For w, = 0.318, k (2wp)/ker = 0.51
the threshold value of a is equal to 1.1. The
dependence of the pendulum’s angular deviation
mean square on the difference between the ampli-
tude a and its threshold value is found to be
close to linear (see Fig. 3(a)). For a>a. the
oscillations excited are not distinguished from
those excited due to random vibration only. The
oscillation intensity is greater, the larger the a.
By this is meant that the low-frequency vibration
initiates the noise-induced phase transition and
the birth of the induced attractor. In the case
when the intensity of the suspension axis random
vibration is in excess of its threshold value addi-
tional low-frequency vibration contributes signifi-
cantly to the intensification of noise-induced
oscillations. The dependence of g_oil on a for
K(2)/ker(2) = 2.23, w, = 1.5 is given in Fig. 3(b).

Let us consider now a possibility of suppres-
sing noise-induced pendulum’s oscillations by
high-frequency harmonic action. Numerical simu-
lation of Eq. (1) with £ + a cos w,t in place of &,
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FIGURE 2 The dependencies ¢(f) and ¢(¢) for we=1,
B=0.1, a=100, K(2wp)/ker=0.51, w,=0.318 (a) a=1.12, (b)
a=1.2,and (c) a=1.5.

where w,>2wy, shows that such suppression
does occur. The results of the simulation for suf-
ficiently large value of w, are represented in
Fig. 4. It is seen from this figure that, for small
amplitudes of the high-frequency action, the ac-
tion has little or no effect on the noise-induced
oscillations existing (see Fig. 4(a). As the ampli-
tude increases the intensity of the noise-induced
oscillations decreases rapidly and the duration of
“laminar” phases increases in the process (see
Fig. 4(b—d). When the amplitude is in excess of
a certain critical value (for the case considered it
is equal to 42) the oscillations are suppressed
entirely. As the amplitude increases further the
oscillations arise again, but because the condi-
tions of the corresponding parametric resonance
come into play. If the frequency of the additional
action is not-too-high then the perfect suppres-
sion does not occur: as the action amplitude
increases the intensity of the noise-induced oscil-
lations first decreases to a certain minimal value,
which is smaller the greater the action frequency,
and then increases. True, this minimal value is
attained for the larger amplitudes of the action,
the higher its frequency. The aforesaid is illu-
strated in Fig. 5.

We emphasize that the initiation and suppres-
sion of noise-induced pendulum’s oscillations occur
by means not only of additional parametric ac-
tion, but of additional additive action as well.
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FIG}JRE 3 The dependencies of ;ﬁl/z on a for wy=1, f=0.1, a=100 (a) KQwp)/ker=0.51, w,=0.318 (the straight line
@? " =0.48(a— 1.1) is shown as a solid line), (b) k(2wp)/ker = 2.23, w,= 1.5.
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FIGURE 4 The dependencies of o(f) and ¢(f) for wp=1,
B=0.1, a=100, kKQRwp)/ker=15.6, w,=19.757 (a) a=5, (b)
a=15, (c) a=30, and (d) a=40.

3.2 The Comparison of the Results of the Study
of Pendulum’s Oscillations with a Number of
Numerical and Real Experiments Concerning
Turbulence in Pipes and Free Jets

A number of numerical and real experiments
concerning turbulence shows that there exist the
profound parallels between turbulent processes
and noise-induced pendulum’s oscillations. These
parallels reinforce our hypothesis about fluctua-
tional origin of turbulence.

One of the indications that turbulence is not a
self-oscillatory process is a numerical experiment
performed by Nikitin [37] which relate to the
simulation of turbulent flow in pipes of a finite
length. He studied fluid flow in a circular pipe of
radius R with a given velocity at the input cross-
section and with the so-called soft boundary con-
ditions at the output cross-section; these latter
are

A
Ox2  ax2  ox2°

where u is the longitudinal component of the flow
velocity, £ and 7 are, respectively, the radial and
azimuth components of the vorticity Q2=rot V,
V ={u,v,w} is the vector of the flow velocity in
cylindrical coordinates x,7,6. The components of
the flow velocity at the pipe input cross-section
were assigned in the form

2 .
u= u()(l - %) + ARe(u'(r)e™“")cos 6,

v = ARe(v'(r)e™")cos 0,
w = ARe(w'(r)e™)sin 6,

where u/(r), v'(r) and w'(r) are the eigenfunctions
for the Orr—Zommerfeld equation associated with
the given value of the disturbance frequency w, R is
the pipe radius, A4 is the disturbance amplitude.
The disturbance frequency w was chosen equal
to 0.36ug/R, and the velocity uy, and the pipe
radius R corresponded to the Reynolds number
equal to 4000. At initial instant the Poiseuille
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FIGURE 5 The dependencies of &71/2 on a for wy=1, =0.1, =100, k(2)/k(2)=5.6 (a) w,=3.5, (b) w,=6, (c) w,=11,

and (d) w,=19.75.

velocity profile was given for whole flow, i.e.

7'2
Viea= {1~ )00}

When the disturbance amplitude 4 stands out
above a certain critical value, after a short time,
random high-frequency pulsations appear in the
lower part of the pipe from a certain value x = xq
onward. The value x, depends only slightly on
the distance from the pipe axis r, and it is the
smaller, the greater is the disturbance amplitude
A. The occurrence of the turbulent pulsations is
accompanied by considerable change of the pro-
file of the mean flow velocity’s longitudinal com-
ponent: it decreases at the pipe axis and increases
nearby the pipe wall. The instantaneous distribu-
tions of the velocity’s longitudinal component in
steady regime are shown in Fig. 6 for A4/uy=0.04;
this figure is taken from [37]. If one diminishes
progressively the amplitude of the periodic dis-
turbance A4 then, from a certain its value onward,
the turbulence region drifts downstream and the
flow in the pipe becomes laminar. As is known

(see, for example, [38]), the Poiseuille flow in a
circular pipe, as differentiated from the Poiseuille
flow in a plane channel, is stable with respect to
infinitesimal disturbances for any Reynolds num-
bers. However, in the case of sufficiently large
Reynolds numbers such flow is unstable with re-
spect to disturbances having a finite value. If an
attractor associated with turbulence would exist
in the system as the disturbance is absent and
under the effect of the disturbance the phase tra-
jectory would only come into the attractive do-
main of this attractor, the turbulence should not
disappear when the disturbance resulting in it was
taken away. The fact that the turbulence disap-
pears implies that such an attractor is absent.
True, it is possible that an attractor comes into
existence under the effect of an asynchronous dis-
turbance in itself (see [39,40]). In this case it has
to disappear when the disturbance ceases. Against
this possibility are the following facts. Firstly, as
is known from the general theory of the asyn-
chronous excitation of oscillations in systems
with hard excitation [39,40] such an attractor can
appear only within a narrow range of system’s



108 P.S. LANDA
u
1.0
(a)
0'4 i ] 1 1 1
0.7+ (b)
0.1 1 ! 1 L
0 20 40 60 80 . 100

FIGURE 6 Instantaneous distributions of the steady longitudinal velocity component for A/uy=0.04: (a) close to the pipe axis

(for r/R=0.02) and (b) close to the pipe wall (for r/R=0.93).

parameters, whereas the transition to turbulence
was observed by Nikitin over a wide range of
Reynolds’ numbers. Secondly, asynchronous exci-
tation of self-oscillations, is equally possible both
for positive and negative mistunings between the
frequencies of the disturbance and self-oscilla-
tions, whereas the transition to turbulence was
observed only for low disturbance’s frequencies.
As is seen from the foregoing, such asymmetry is
intrinsic just to noise-induced oscillations.

So, the fact that the turbulence disappears,
when the disturbance is taken away, implies that
‘the turbulent pulsations resulting from the distur-
bance are more likely to be noise-induced oscilla-
tions than self-oscillations. Therefore it can be
conjectured that the turbulence development ob-
served for 4 > A, is a result of the noise-induced
phase transition bringing into existence an in-
duced attractor. The similarity of the characteris-
tics of turbulence arising in the pipe considered
above to the characteristics of turbulence in a
pipe with periodic boundary conditions [31],
when there is feedback and self-oscillations are
excited, counts in favor of this hypothesis. The

superficial similarity is illustrated by Fig.7 con-
structed from Nikitin’s data. If the conjecture
made is correct, the role of the periodic distur-
bance for the development of turbulence reduces
only, on the one hand, to ensuring necessary am-
plification of small fluctuations, which are always
present even in numerical experiments, and, on
the second hand, to initiating the phase transi-
tion, much as is demonstrated with the example
of the pendulum’s oscillations.

The parallels between turbulent processes and
noise-induced pendulum’s oscillations can be also
traced by the example of the turbulence develop-
ment and controlling this development in jet
flows. It is known [41-43,22] that large-scale tur-
bulence in subsonic jets arises at a certain dis-
tance from the nozzle inside the boundary layer
whose thickness increases almost linearly with
this distance. The onset of the turbulence is ac-
companied by change of the mean flow velocity.
It is also known [44,45,22] that acoustic action
upon a jet in the region of its outflow from the
nozzle, depending on the frequency, can either
initiate the turbulence development or suppress
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FIGURE 7 The form of turbulent pulsations in a pipe (a) with periodic boundary conditions and (b) with given harmonic
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FIGURE 8 The experimental dependence of ¢, on the rela-
tive amplitude of acoustic pressure j, measured in decibels
for St=2.35, x/D=8.

it. The initiation occurs at low frequencies of the
action, whereas the suppression occurs at high
frequencies of the action. Such phenomena were
observed experimentally by various investigators.
The experimental dependence of the relative
root-mean-square pulsation of the longitudinal
component of hydrodynamical velocity €, on the
acoustic pressure for St=2.35 is shown in Fig. 8
taken from [46]. Here St = f, D/U, is the Strou-
chal number, f, is the frequency of the acoustic
action, D is the nozzle diameter, U, is the mean
flow velocity at the jet axis. We see that the
turbulent pulsations first decrease as the ampli-
tude of acoustic wave increases and then they
increase. This experimental dependence closely
resembles one of the dependencies of ? on a
shown in Fig. 5 for a pendulum with an addi-

tional high-frequency vibration of its suspension
axis when the frequency of the action is not too
high.

CONCLUSIONS

The universality of the oscillation theory laws
makes it possible to use for the study of compli-
cated concrete systems not only models — “por-
traits” but far more simple models as well. An
example of such a simple model for the elucida-
tion of the character of the turbulent develop-
ment is considered. It turned out that the excita-
tion of noise-induced oscillations of a pendulum
with a randomly vibrating suspension axis and
the appearance of turbulent flow in pipes of a
finite length and in free subsonic jets have many
common features, in spite of perfect distinction
between the equations describing these processes.
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