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A new method to stabilize dynamical systems by forcing the system variables into the
desired unstable stationary point is proposed. The key conception of the method is based
on parametric perturbation. This means that the equations of motion are influenced by
continuous variation of some selected parameters. Thus- without using any external
forces- the motion of the system approaches the chosen unstable stationary point. The
variation of the parameters will vanish after the successful stabilization. Therefore, the
system and its parameters are changed during the control process only. The algorithm is
applied to an urban system within a metropolitan area obeying a Lorenz-type dynamics
as well as to the Hnon attractor as an example for a discrete scenario.
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1 INTRODUCTION

The stabilization of dynamic systems behaving
chaotically in the absence of an active control
provides a challenge for theoretical and experi-
mental research (Schuster, 1984; Weidlich and
Haag, 1983).

In general, for a wide class of dynamic sys-
tems, chaotic behaviour is undesired because of
its lack of predictability concerning the future
evolution of the system’s trajectory.

Especially in the field of economics and socio-
logy, the "costs" related to chaos have been fre-
quently discussed (Lorenz, 1989; Gabisch and

Lorenz, 1989). Those costs must be considered by
the economic agents. Hence, methods or algo-
rithms to avoid or control chaotic behaviour are

highly welcome (Shinbrot et al., 1990; Pyragas,
1992).
A few years ago, in 1990, Ott, Grebogi and

Yorke. (OGY) proposed a method (Ott et al.,
1990) to control chaotic systems. However, this
method allows to control a chaotic system by
varying at least one accessible parameter. Con-
cerning e.g. a chaotically behaving commodity
market the advertising budget of a commodity or

the price of the considered commodity are possible
influence parameters. Applying the OGY-method,
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the system can be stabilized on an unstable peri-
odic orbit embedded in the chaotic attractor.
The control is carried out by using a small

time-dependent change of the current parameter
value. A variation of only a few percent of the
corresponding parameter is sufficient in order to
prevent chaos and to lock in the system onto a

predictable dynamical mode. As there are always
several periodic orbits available, in the OGY-
method the system can be switched by appro-
priate market strategies between different types
of periodic motion (period one, period two,
etc.), and the optimal solution can be chosen.
Although the OGY-method proved its applic-

ability and reliability in several physical, biolo-
gical and chemistrial applications (Hunt, 1991;
Ditto et al., 1990; Garfinkel et al., 1992;
Parmanada et al., 1993) the method is still not
efficient for socio-economical applications since
one has to wait until the trajectory reaches the vici-
nity of the unstable periodic orbit. The "waiting-
time" could be inadequately long. Of course
this reduces the field of application to fast
evolving systems, which approach the unstable
periodic orbit frequently. For slowly evolving
systems the OGY-method cannot be recom-
mended.
The aim of this paper is to present a new con-

trol mechanism to achieve efficient control even
for slowly evolving systems. These systems will be
stabilized on an unstable fixed point by an active
adjustment of system parameters. As a conse-
quence the system’s trajectory is driven from a
chaotic to a stationary (time-independent) state.
The theoretical treatment of the method is de-

scribed in Section 2. In Section 3 the method is
applied to an urban system within a metropolitan
area. The system dynamics is described by the
mean output of the urban system, the number of
residents, the land rent, and it obeys a Lorenz-
type dynamics. Section 4 treats the application to
the discrete H6non attractor in an equivalent
manner.

Section 5 gives a brief summary of the results
as well as an outlook to further research.

2 THE METHOD

We consider a continuous-time chaotic system:

dx(t)
dt

a(x, p).

x is the state vector of the model now describing
our system, p is a set of model parameters. Model
(1) is assumed to possess at least one unstable
stationary point. If the system exhibits several
unstable stationary points, one can select the
point with the highest accordance to the desired
system properties. The chosen unstable stationary
point is denoted by Xu:

dx(t)
dt

0 R(xu, P0)- (2)

In order to get a relationship between the control
parameters p and the system’s dynamics x we

expand the model in a Taylor series with respect
to the parameters p around the initial parameter
values P0

OR
opk x,Po x,Po

02R
6pk q

20pkOpl

/...; k,/--I,2, ...,M,

(3)

where 6p-p-po. p-(p,...,pM)v is an M-
dimensional set of adjustable parameters with
M < N. The active control of the chaotic evolu-
tion is performed by appropriately changing one
or several control parameters pi of the system in
time.

In order to force the trajectory towards the
chosen stationary point we require

:11- Sx, (4)

where 3x x- Xu is the distance vector between
the system’s current state x and the unstable sta-

tionary point Xu. In other words is required
being parallel to -6x. Condition (4) guarantees
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that the system will approach the selected sta-

tionary point upon the shortest path. Condition

(4) can be rewritten in the form

k(p) -r.6x, r>0, (5)

where the scale factor r can be interpreted as a

measure of control velocity. The higher r the
faster the stationary point will be reached. Con-
sidering only the linear terms of (3) together with
(5) we obtain

OR
R/x, +

opk
6pk. (6)

X,Po

It is now convenient to introduce the matrix

Wik ORi/OPklx,po in ,(6) yielding

mik Pk --r(Xi Ri(x, P0)" (7)

In order to solve (7), one has to find a (M x N)-
matrix with the requirement

N

szi
i=1

Stk is the Kronecker symbol:

1; l- k, (9)lk 0; - k.

Having M-N one finds Sli--Wll, det(Wli)- 0. One finally obtains an equation for the de-
termination of the required change of the control
parameters

Pk mi- {-r(xi Ri(x, P0)}, (10)

where r is still of free choice. We want to stress
that Spk vanishes for x approaching xu.

Eq. (10) fully determines how one has to

change the parameters p0 in order to fulfill condi-
tion (5). Adjusting the parameter p= P0

according to (10) the trajectory sets course for

Xu. One can use r to minimize the relative para-
metrical perturbations:

H(r) -k=l

H(r) (r- rrnin) 2.
(11)

Of course there can occur that rmin is non-

positive, but this is in contradiction to (5) where
we presumed r being positive, which is the reason

for choosing r > 0, e.g. r E (0, 1]. This is done to

again guarantee small perturbations and a non-

vanishing control velocity r.

Adjusting the parameters in the above de-
scribed manner we come to the final equations of
motion

R(x, Po + 8P) (12)

for the system’s state vector.

3 APPLICATION TO AN URBAN SYSTEM

The method will be illustrated using an example
from the field of urban dynamics (Zhang, 1991).
An urban system within a metropolitan area is
considered. In comparison to the metropolitan
area the urban system is assumed to be very small
with respect to the economic variables. In other
words any change in economic conditions in the
urban system will not affect the metropolitan
area. Since the short-term dynamics of the urban
system is of interest, the metropolitan area can be
treated as a stationary environment. It is assumed
that locational characteristics of the urban area

can be described by the following variables:

X, deviation from the mean output of
the urban system,

Y, deviation from the mean number of
residents,

Z, land rent.

(13)
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The dynamics of the urban system is based on
the following reasonable assumptions:

The rate of change of the deviation from the
mean urban output dX/dt is proportional to
the deviation in excess demand (azY-a3X),
where a2 is the per capita demand of the ur-
ban output due to residents and a3 is the rate
at which the urban output is supplied to the
urban area.
The rate of change of the deviation from the
mean number of urban residents d Y/dt can

be separated into two parts. The first part
represents the firm’s additional demand for
labour to produce czX which is decreased by
the additional total supply of labour to the
urban labour market c3Y. The second part
-c4XZ stands for the effect of emigration due
to changes in the land rent Z. It also takes
into account that people prefer to live in
places where land rent is low.
The rate of change in the land rent dZ/dt is
related to the current rent level -dzZ as well
as to the output and the number of residents

dXY.

These assumptions finally yield the following set
of non-linear differential equations:

dX
dt* al (a2 Y- a3X),

dY
dt* 1 (c2X- 3 Y) 4XZ, (14)

dZ
dt* dXY- dzZ.

Appropriate scaling of the parameters

al a3 a2c2 d2S0-, R0=, B0-, (15)
C1173 a3173 3

the time

ClC3

and the variables

cv dlX
X--

ClC3

cc dl a2 Y
Y V-ll a3clc3

a2c4Z
Z--

a3 c c3

leads to the Lorenz system (Lorenz, 1963)

:- L(x; P0),

or

(16)

(17)

 x(X, Soy- Sox,
p(t) Rox y xz,

 z(X, - oz + xy.

Therefore the urban dynamics is described by the
trajectory x(t) (x(t), y(t), z(t)) for given initial
conditions x(t0) (x(to),y(to), z(to)). P0 (So,
Ro, Bo) in (17) represents three real positive
parameters introduced in (15). It can be shown
that for some parameter values the solution of the
Lorenz equations oscillates in a chaotic way,
apparently forever. In addition, for certain para-
meter values "perturbulence" occurs, a phenom-
enon characterized by chaotically oscillating
trajectories for long periods before finally settling
down in a stable stationary or stable periodic
orbit. Intermittent behaviour can also be identified
where trajectories alternate between chaotic and
apparently stable behaviour. In Fig. a plot of the
Lorenz attractor is provided where

So 10, R0 28, B0 .
Except the trivial solution (Xl =0, yl =0,

z 0) there exist two more stationary points in
the Lorenz system:

(X2,3, Y2,3, -72,3)
(+v/Bo(Ro 1), +/- v/Bo(Ro 1), Ro 1)
(-+-8.4853, +/- 8.4853, 27.0000). (19)
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FIGURE Projection of the chaotic attractor into the
(x, z)-plane. The asterisks mark the stationary points x2, x3.

Those two symmetric unstable foci are placed in
the centres of the two ’Lorenz lobes’ (see Fig. 1).

Suppose the maximization of the urban output
is used as a selection criterion, the stationary
point Xu (x2, y2, z2) will be selected. The stabi-
lization of the system’s trajectory on Xu provides
the considerable advantage of stable land rents
together with an increased urban output. Addi-
tional costs due to uncertain population numbers
of residents and related variations in land rent
can therefore be prevented.

Corresponding to (10), the necessary adapta-
tion of the parameters S, R and B can be calcu-
lated:
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FIGURE 2 Projection of a controlled trajectory into the
(x,z)-plane. The asterisk marks the stationary point xu. The
control radii p around xu is 5.5.

avoid too large parameter perturbations. After
several chaotic cycles the trajectory enters the
sphere and the control mechanism is switched on

(time ton). The computed time-dependent varia-
tion of the control parameters S,B, R force the
system’s trajectory towards the selected station-

ary point Xu.
Obviously the stabilizing procedure provides a

very efficient method to control deterministic
chaos in the field of non-linear dynamics.

In Fig. 3 the necessary relative parameter var-
iations in dependence of the radius p of the
sphere in space-state is depicted.

Therefore various control radius p are selected.
For each control radius p a set of (100-) random
initial conditions was chosen.

1 +  x(X, po)},
x

fir - {r6y / Ly(x, PO)},
x

6B
1
{r6z + Lz(x, P0)).

z

(20)

The stabilizing procedure can now be numerically
performed by applying the parameter perturba-
tions (20). In Fig. 2 the stabilization procedure is
illustrated. At time to the chaotic dynamics of
the Lorenz system starts on the attractor.
Although the parameters can be adjusted at any
time we decide to do this only within a sphere of
radius p centered at Xu. Apart from rendering a

better representation this is done in order to

0.6--

0.0
5.0 5.5 6.0 6.5 7.0 7.5 8.0

p

FIGURE 3 Mean values of relative maximum parametrical
perturbations 6R.
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FIGURE 4 Mean values of control time -.

The maximum parameter perturbation of each
run is ascertained and the mean values and stan-
dard deviations are plotted (see Fig. 3).
As one can easily see the mean maximum

parametrical perturbation decreases with a de-
creasing control radius p. This implies that it is
less expensive concerning the maximum parame-
trical perturbation to control the system being in
the proximity of Xu. However, one has to take
into account an increasing total control time

(ton- to).
In the same way the mean control time - in

dependence of the control radius p is shown in
Fig. 4.
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FIGURE 5 Time dependence of the z-component with noise
(c=O.1). The control was first activated at t=6.56 and xu
was finally reached at 7.6.

The slightly with p decreasing mean control
time has to be seen in relation to the increase of
the relative parameter variation necessary to
bring the trajectory to Xu.

It is a fundamental question whether or not
the stabilizing procedure also works in the pre-
sence of noise related, e.g. to uncertain environ-
mental conditions.

In Fig. 5 the performance of the method in the
presence of delta-correlated gaussian noise K

<gi(tm)Kj’(tn)> Oij(tn- tm)
<Ki> ---0 (21)

is investigated, where c is the strength of the
noise. For this aim the fluctuation force K is
added in (17).

Figure 5 shows that the method still works
very well for c=0.1. The system can be stabi-
lized even against this noise level. Of course the
deviation of the state vector (Xnoise) caused by
the strength of the noise c must be smaller than
the control radius p (see Fig. 6)

Xnoisel < C, (22)

where C depends on the noise spectrum and on
the required efficiency of the control mechanism.

FIGURE 6 The effect of noise on the stabilization proce-
dure.
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APPLICATION TO THE HI’NON
ATTRACTOR

The one-dimensional iterative equation (H6non,
1976)

Xn+l a- (Xn)2 + bxn_ (23)

with positive a, b is well known. It is the H6non
map. Figure 7 shows the corresponding strange
attractor with the numerical values a--1.29 and
b=0.3.
The proposed method is extended to the case

of discrete dynamics and is applied to the H6non
map. The H6non map possesses two fixed points

x*/2 which satisfy the relation

Xn+l Xn Xn_l (24)

They read

x*/ 1/2(b -+- V/(1 b)2 + 4a. (25)

For stabilization we choose without loss of gen-
erality x and call it xz. It is convenient to ex-
tend the system on two dimensions and to

rewrite (23):

Xn+ a (xn)2 .qt_ byn,
(26)

Yn+l Xn.

The discrete equations (26) correspond to the
continuous-time system (1). But in the discrete
case the demand

x,+l Xn Sx (27)

replaces (5). Eq. (27) inserted into (26) leads to

Sx a (Xn)2 xn -- byn (28)

By choosing b as parameter of control one ob-
tains in correspondence to (10) the determination
of the required change of the control parameter

(Sb ---((Xn)2 xn a boYn Sx). (29)
Yn

With this adaption of parameter b the stabilizing
procedure can now be performed.

In Fig. 8 a trajectory of the H6non system is
shown. The method starts working at n--1200.
The numerical value of the. control radius was
chosen as p= 0.001.
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FIGURE 7 The H6non attractor in two-dimensional mapping. One of the fixed points (x v) is marked.
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FIGURE 8 The projection of H6non attractor into one di-
mension. The mechanism of stabilization starts at n 1200.
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FIGURE 9
on n.

Parametrical perturbation 6b in dependence

As it can be seen in Fig. 9 the total control
time has only the length of a single iteration step.

5 CONCLUSION

The proposed method is rather general. It is ap-
plicable to time-continuous systems as well as to
time-discrete systems. It can be seen that. the
method is very efficient for controlling systems

either based on sets of differential equations or
on iterative maps. It has been shown that even in
the presence of noise a stabilization of chaotic
trajectories can be performed. The reliability of
the control mechanism depends on the noise
spectrum and the chosen control radius. In case
of an application to the H6non system the con-
trol parameter adaption had only once a non-
negligible value.
With increasing control radius the required

parameter variation also increases whereas the
control time decreases only slightly.
The method is exemplified on the one hand on

an urban system obeying a Lorenz dynamics and
on the other hand to the H6non system. The
urban output and the urban population could be
stabilized on the desired higher values.
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