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This study augments the traditional linear cobweb model with lower and upper bounds
for variations of output. Its purpose is to detect the relationship between the output
constraints and the dynamics of the modified model. Due to the upper and lower bounds,
a transitional function takes on a tilted z-profile having three piecewise segments with
two turning points. It prevents the price (or quantity) dynamics from explosive
oscillations. This study demonstrates, by presenting numerical examples, that the
modified cobweb model can generate various dynamics ranging from stable periodic
cycles to ergodic chaos if a product of the marginal propensity to consume and the
marginal product is greater than unity.
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1 INTRODUCTION

This study investigates the traditional cobweb
model with upper and lower bounds for output
variations. Its purpose is to consider implications
of the quantity constraints on dynamic behavior
of the agricultural economy. The traditional
cobweb model, which has naive expectations and
linear demand and supply curves, can produce
only three types of dynamics: convergence to an
equilibrium, convergence to period-2 cycles or

divergence. None of these types, however, is
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satisfactory to explain observed irregular fluctua-
tions of the agricultural goods. Neither the first
type nor the third is consistent with observed ups
and downs in real economic data, and the second,
which implies persistent oscillations in price and
quantity, depends on the unrealistic and shaky
condition (i.e., supply and demand have exactly
the same elasticities). To overcome those limita-
tions, the traditional cobweb model had been
modified to produce more realistic dynamics with
the help of new developments in non-linear
economic dynamics.
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Modifications fall into two groups. In the first
of these, we have endogenous non-linear cobweb
models in which the supply and/or demand curve
are non-linear. The resulting transition functions
are chaotic maps having either one turning point
or two. Several stability results have been estab-
lished, which show chaotic oscillations as well as
stable periodic cycles (see, Jensen and Urban,
1984; Chiarella, 1988; Finkenstidt and Kuhbier,
1992; Hommes, 1991; 1994). In the second, we find
the linear cobweb model taking account of upper
bound for variations of output. The upper bound
prevents the price (or quantity) dynamics from
explosive oscillations. The resulting one-dimen-
sional control map is similar to an expansive tent
map (i.e., its slopes are steeper than unity in
absolute value). Consequently, it can be shown
that the linear cobweb model with upper bound
generates not only topological (Li-Yorke) chaos
but also ergodic chaos (see, Cugno and
Montrucchio, 1980; Nusse and Hommes, 1990).
This model, however, has a possibility that almost
all trajectories escape from an economically mean-
ingful region for some parameter constellations. In
such a case, trajectories are un-bounded and thus
it is unable to track the price-quantity evolution.

This study extends the second approach. Re-
turning to the original spirits of "flexible const-
raints" in Day (1980), it constructs the linear
cobweb model augmented with the lower bound
for variations of output as well as the upper
bound. It purposes to detect the relationship bet-
ween the output constraints and the dynamics of
the model. In particular, by presenting numerical
examples, it demonstrates that the modified cob-
web model can generate a wide spectrum of dyna-
mic behavior ranging from stable periodic cycles
to ergodic chaos.

This study is organized as follows. Section 2
constructs the linear cobweb model with upper
and lower bounds for output variations. Section 3
simulates the model. Section 4 makes concluding
remarks.

THE COBWEB MODEL WITH FLEXIBLE
CONSTRAINTS

The traditional cobweb model is made up of the
following four equations in discrete time:

qa D(pt) Demand,
qS S(Pt), Supply,

qt- qdt q, Temporary equilibrium,
pe_ Pt-1, Naive expectation,

where pt, p, qdt and q are the actual price, the
expected price, the quantity demanded and the
quantity supplied, respectively, where all are taken
for period t. This model can be reduced to a one-
dimensional difference equation

qt+l S(D-l(qt)). (1)

In a simple version of the cobweb model, the
demand function as well as the supply function is
monotonic and thus the composite map, S(D-l

(qt)), is also monotonic. The slope of S(D-I(qt))
evaluated at the equilibrium point characterizes
dynamics, since it equals an eigenvalue of the
dynamic equation. As long as the slope lies
between 0 and -45, the eigenvalue in absolute
value is less than unity, and thus the equilibrium
point is stable. The stable trajectories of price or

quantity converge to a stationary state, which does
not go with the price or quantity dynamics
observed in the real-world. As the slope steepens
beyond -45, the eigenvalue in absolute value-is
greater than unity and thus the equilibrium point
is unstable. The unstable trajectories explosively
oscillate, which also contradicts the actual dy-
namic behavior. When the slope of S(D-l(q)) is
equal to -45, period-2 cycles can appear.
However, the regular cycles are unlike the irregular
nature of the actual cycles. Thus such a simple
cobweb model has difficulties to explain cyclical or
erratic movements observed in statistical data of
agricultural goods.

See, for example, the actual fluctuations in agricultural goods provided by Finkenstidt and Kuhbier (1992).
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In the real world, it is not surprising that a

competitive firm prevents output tomorrow from
changing drastically from output today, taking
account of capacity constraints, financial con-

straints, high costs for changing production
levels, demand uncertainty, etc. The intention of
this study is, in recognition of this fact, to look
for an alternative modeling of a firm’s behavior
that may explain the appearance of cobweb
fluctuations. Returning to the original spirits of
"flexible coefficient" in Day (1980),2 we incorpo-
rate cautious behavior of a competitive firm
which puts upper and lower bounds on its
growth rate. Our specification of the model is as
follows:

S(pt-1) -a + bpt-1, a > O, b > O,
D-1 (qt) c dqt, c > O, d > O,

u
qt+l <_ qt+l (1 + a)qt, a > O,

qt+l > qL (1 -/)qt-1, >/3 > O,

where the last two equations imply that the growth
rate constraints have the effect of preventing
output in period + from increasing by more
than 100a% or decreasing by less than 100/3%
from the output of period t. Alternatively put, the
upper bound and lower bound on the growth rate
are, respectively, a and /3. As a result of these
bounds, the dynamic system of qt becomes a
piecewise linear map:

(1 + a)qt
f(qt) bc- a- dbqt

(1 -/3)qt

for qt <_ QM,
for QM <_ qt <_ Qm,
for qt >_ Qm,

(2)

where QM and Qm are a local maximizer and a
local minimizer. These are calculated, respectively,
as

bc a bc a
Q + a + bd

and Qm
-/3 + bd"

Under the assumptions of positive parameters,
bd> O, bc-a > 0, a > 0, and/3 > 0, the map has the
tilted-z profile and its non-linearity becomes more
pronounced as bd gets larger.

Let q* be a stationary state satisfying
q* =/(q*) (i.e., q* (bc- a)/(1 + bd)). If bd> 1,
it is oscillatory unstable and forces trajectories to

move away in its neighborhood. But fluctuations
are bounded by the upper and/or lower con-
straints of output and thus perpetuated. In order
to explain the limiting behavior of bounded
fluctuations, we identify three cases that depend
on the relative magnitudes between a and/3: (1)
(l+a)(1-/3) 1; (2) (l+a)(1-/3)< 1; (3)
(1 + a)(1 -/3) > 1. The corresponding profiles of
f(qt) are depicted, respectively, in Figs. l(a)-(c)
where a cone spanned by the upper and lower
constraints is symmetric with respect to 45 line
in the first case and asymmetric in the second
and third cases. Considerable progress is found
in the study on a map with two piecewise linear
segments and a single kinked point like a tent
map. However, only the partial results are

q(g+l)

FIGURE (a) (1 + a) (1-/3) 1. Three profiles of the dyna-
mic equation, f(q).

See Day (1980, p. 197) who considers the symmetric upper and lower constraints.
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dynamic structure of the modified cobweb model
under each of these three parameter constella-

"’,,,,,,, // tions for a and/.

",, /

3 SIMULATION OF THE MODEL

To explore the dynamic behavior of q, we

simulate the model under different.values of bd
where b is the marginal propensity to consume
and d is the marginal product with respect to the

price. We focus on those cases in which oscilla-

tions are persistent (i.e., bd > 1). Since the

dynamic equation, f(q), has the upper and lower

q(t)
bounds, it induces any trajectories, which are

repelled by the unstable equilibrium, bounce back
FIGURE l(b) (I + a) (I- ) < I.

FIGURE l(c) (I +a)(l-3) > I.

to a neighborhood of the equilibrium point. As it

turns out, a combination of a and fl charac-
terizes asymptotic behavior of trajectories.

3.1 Symmetric Case

In this subsection, we deal with the symmetric
case in which (1 +a)(1-/3)--1 holds. It is

numerically and analytically verified that the
symmetric-constrained cobweb model can gener-
ate stable periodic orbit with period-2.
Two bifurcation diagrams are shown if Fig. 2.

Simulations are performed under the same initial

point, q0--0.1, and different combinations of a

and /3: a= and /3=0.5 in Fig. 2(a) and a=4
and /3-0.8 in Fig. 2(b). The bifurcation para-
meters 1/bd is varied in decrement of 0.025 from
one to zero (or bd increases from one to infinity).
For each values of 1/bd, f(qt) is iterated 200
times. Although the last 100 iterates are plotted
on the vertical axis, only two points are seen in

the bifurcation diagrams.
These numerical examples suggest that the

symmetric-constrained cobweb model generates
only period-2 cycles. This is analytically verified

and summarized as follows.

obtained in the study on a map with three
piecewise linear segments and two kinked points
like Eq. (2). 3 Here, simulating the model under
different values of bd(> 1), we investigate the

3See Day and Shafer (1987).



ERGODIC COBWEB CHAOS 139

FIGURE 2(a) a=0.1 and/3=0.5.

interval, [omin,oMAX] of q into two subintervals,
h0 :--[omin, QM] and A1 := [Om, QMAX]. Then it
can be checked that f(Ao) At, f(A1) A0.
Since f2(q) (1 + a)(1 -/3)q on 4 where
(1 + a)(1 fl) is assumed in the symmetric
case, a restriction of f2(q) to Ai is the identity
map on hi (i--0, 1). This means that an orbit {q,
f(g)} for any q E hi is a period-2 cycle. Since

f’= [-bd[> by (2), there is a finite k such
that the kth iteration, fk(qo) Ao t_J A for any
q0 (QM, Qm) {q* }. By the same token, there
is a k’ such that f k’ (q0) A0 t_J (QM, Qm) if q0

< Qmin or fk’(qo) hlt-J (QM, Qm) if q0 > QMAX.
Thus every trajectory emanating form a comple-
mentary interval of a union of Ao, A and
q*, A0 t_J A t3 {q* }, enters into Ao t3 A after finite
iterations. Therefore, we have stable period-2
cycles in the symmetric case.

FIGURE 2(b) a=4 and /=0.8. Bifurcation diagrams in
the symmetric case.

THEOREM 1. Given bd> 1, the symmetric-con-
stra&ed cobweb model generates only stable peri-
od-2 cycles.

Proof Let us denote a local minimum of q by
Qmin :--f(Qm) and a local maximum by
QMAX:=f(QM). Since omin < QM < Om < QMAX
holds in the symmetric case, we can divide an

3.2 Lower-Asymmetric Case

In this subsection, we deal with the asymmetric
case in which (1 + a)(1- fl)< holds. As seen
in Fig. l(b), the lower constraint line deviates
from the 45 line more than the upper constraint
line so that we call this case lower-asymmetric.
Both of the upper and lower bounds are not
necessarily effective in the lower-asymmetric case.
Only the upper bound is effective for smaller
deviations of bd from unity and so are both of
the bounds for larger deviations. The dynamics
generated by f(qt) which is constrained by the
upper-bound is qualitatively different from the
one by f(qt) which is by the upper and lower
bounds. We call the former the one-kinked
dynamics and the latter the two-kinked dynamics.
In Figs. 3(a) and (b) below, two numerical
simulations are performed for the lower-asym-
metric conditions; a 0.25 and/ =0.4 and a 2
and /3=0.8. In both bifurcation diagrams, com-
plex dynamics is observed. As is seen shortly
after, the vertical dot line in each of Fig. 3 passes
through a critical value of 1/bd that separates the
one-kinked dynamics from the two-kinked
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FIGURE 3(a) a=0.25 and/3=0.4.

FIGURE 3 a=2 and /3=0.8. Bifurcation diagrams in the
lower asymmetric case.

dynamics. In the following, we confine attention,
first, to a case of the one-kinked dynamics in
which oscillations are perpetuated due to the
upper bound, and then to a case of two-kinked
dynamics due to both of the upper- and lower-
bounds.

Since a trapping interval eventually traps all
trajectories, a restriction of f(q) to the trapping
interval governs the asymptotic behavior of q. In
the lower-asymmetric case, two distinct trapping
intervals can be identified which depend on the
relation between maximum QMAX and minimizer
Qm. One trapping interval is defined in a case

where QMAX <= Qm and the other where
QMAX> Qm. In particular, subtracting Qm from

QMAX yields

(bc a)aQMAX Qm
(1 + oz + or)(1 -/3 + or)

l+a ]5, (3)

where r := bd for notational simplicity. Since the
lower asymmetric condition, (1 + a)(1-/3)< 1, is

transformed into a/(1 + a) </3, there is a r > 1,
denoted by CrL, such that crL(a/(1--OZ))-/.4

Then Eq. (3) implies the following relations
between QMAX and Qm:

QMAX Qm for cr < CrL, (4)
QMAX > Qm for r > CrL.

Let Vl := [f(QMAX), QMAX] wheref(QMAX)
bc- a- oQMAX. It is the trapping interval for

< cr < rL. Namely, whichever point a trajectory
starts with, it will enter the interval, V, after
finite iterations and stay there afterwards.
Furthermore, trajectories inside V are con-
strained only by the upper bound. The asympto-
tic dynamics are governed by the restriction of
f(qt) to V:

fv(qt) min{(1 + a)qt, bc a- oq}. (S)

The conditions, + a > and a > 1, imply that
the restricted map fv, (qt) is expansive and thus

5has an absolutely continuous invariant measure.
In order to characterize the dynamics generated
by fv,(qt), we rewrite the dynamic Eq. (5) by
using two parameters, A:= (1 + a) and B:= or, in
such a way that

fv,(q)
Aq for q G V1L :--[f(QMAX), QM],
-Bq + QM(A + B)

for q VR [QM, QMAX].

4For O’--- o’L, QM is mapped exactly to Qrn.
5For an expansive map, see Theorem 3 in Day and Pianigiani (1991, p. 45). For dynamic behavior of the expansive map, see

Theorem 3 of Day and Schafer (1987, pp. 352-353) and (3) in Property 5 of Nusse and Hommes (1990, p. 13).
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tA

A+B=AB \ \ 1"

lIB

FIGURE 4 Regime classification of two parameters, A and B.

Then we will show in Lemma below that fvl (qt)
is equivalent to a unimodal linear map with two

parameters A and B, denoted by gA,B(q):

Aq + A+s-A.!
B fr 0 <q <1 B,

for -1B -<- q -<- 1.

LEMMA 1. fv(qt) is linearly conjugate
gA,B(Q).

Proof Let

q f(QMAX)
99(q) QMAX _f(QMAX)

to

It can be checked 99(q) is a linear isomorphism
from Vii (i L, R) onto the unit interval such that

99 0v o 99
-1 gA, B.

Lemma implies that fv, (q) generates qualita-
tively the same dynamics as gA.(q). Ito, Tanaka
and Nakada (1979) (ITN henceforth) and Day
and Schafer (1987) (DS henceforth) completely
characterize the structure of such a map with two

piecewise segments and one kinked point (i.e., a

map like g.e(q)). Thus with the aid of their
results, we can characterize the dynamic structure
of fv (q) in the lower-asymmetric case. Figure 4
below reflects the qualitative behavior of flv,(q)

for all parameter combinations leading to the
expansive map.6 Its horizontal axis is lIB and its
vertical axis is 1/A. The bifurcation diagram in
Fig. 3(a) is obtained by performing simulation
for a slice through the (1/A, 1/B) space of Fig. 4
for l/A-0.8. Since 0-L =2 in this example, the
switching of the dynamic system form the
subsystem with one-kinked point to the one with
two-kinked point occurs at 0-L

-1 --0.5 in Fig. 4.
The following theorem explains the dynamic
behavior observed in the bifurcation diagram of
Fig. 3(a) when 0- is increased from to 0-L.

THEOREM 2. Given a--0.25 and /3-0.4, there
exist parameter values, < 0-1 < 0-2 < 0"3 < 0"4 -- 0- L

such that the dynamic system qt+l-fvl (qt) has a

density function of an invariant measure and

(1) its attractor is the union of 2 3 disjoint intervals

for < 0- < 0-1 where 0-1 1.03,
(2) its attractor is the union of 22 disjoint intervals

for 1 < 0- < 0-2 where 0-2 1.16,
(3) its attractor is the union of 2 disjoint intervals

for 0-2 ( 0- ( 0-3 where 0-3 1.48,
(4) its attractor is an interval for 0-3<0-<0-4

where 0-4 1.8,
(5) its attractor is an interval for 0-4 ( 0- < O’L

where 0- L 2.

Proof See Theorem 5 for the proof of (1), (2)
and (3), and Theorem 6 for the proof of (4) and

(5) in Appendix.
According to Theorem 2, the bifurcation

scenario of this numerical example is as follows.
When 0- is increased from unity but less than 0-1,

23-periodic chaos appears. This means that there
are 23 disjoint intervals and every trajectory
starting outside these intervals eventually enters
into a union of these intervals. Furthermore, the
union is a support of an invariant measure of

fv (qt). Intuitively speaking, the trajectory peri-
odically travels one interval to another but
chaotically oscillates within each interval. As 0-

increased further, interval halving bifurcations

This is a lower part of Fig. 4 in ITN. Definitions of Do, D1 and D* are given in Appendix.
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occurs for (A, B) E D0(i.e., 23 --+ 22 -- 2).7 D and
D* are chaotic region in which the system exhibits
erratic behavior. Similarly, the bifurcation dia-
gram in Fig. 3(b) is obtained by performing
simulation for a slice through the (l/A, 1/B) space
for 1/A 1/2. The switching value of cr in this
example is crL- 1.2 (i.e., crL- 0.83 in Fig. 3(b)).

Next, we consider dynamics for r>r at
which there is a qualitative change in the
dynamics behavior of the system. Let
V2 :-[Qmin, QMAX]. It is, as indicated by the
second Eq. in (4), the trapping interval for
cr > re. Since the inequality relations, Qmin < QM
< Qm < QMAX, holds, V2 contains two kinked
points, QM and Qm, at each of which the
switching of the dynamic system from either
(1 + c)q or (1-/3)q to S(D-(q)) or vice versa takes
place. A restriction of f(qt) to V2 has a tilted z-

shape:

fv. (qt) max{(1 )qt,
min{(1 + a)qt, bc- a- bdqt}}.

(6)

Although DS (see Table I at p. 355) make some
characterizations for such a map with two kinked
points, only a little is known about its qualitative
behavior. We present numerical examples to
detect the influence of cr on the two-kinked
dynamics. The bifurcation diagrams left to the
vertical dot lines in Fig. 3 explore the two-kinked
dynamics generated by fly2. In both Figs. 3(a) and
(b), chaotic behavior still appears as cr is increased
from cr . If a is further increased, periodic chaos
with five intervals appears in the example of Fig.
3(b). Return maps for cr 2 and or--5 are given
in Fig. 5 where both of the upper and lower
bounds are effective (i.e., trajectories hit the

q(t+l)

FIGURE 5(a) a=2.

FIGURE 5 or=5. Return maps of f(q) for a=2 and
/=0.8.

Vlnterval halving bifurcations in Do proceed as follows. Let (A,B) E Do and let A0 [gA, n(0), 1] and A [0,g2A,B(0)]. Then
we have the following three results: (1) g,,n(Ai)= Ai, i,j=O,l,i C j; (2)g],Zl,; (j=0 or 1) is linearly conjugate to gn2,z;
(3) (A,B) D(o) implies (BZ, AB) D* where (1) and (2) are due to Lemma 1.1 of ITN and (3) to Theorem 1.2 (ii) of ITN.

gz2, an has an absolutely continuous invariant measure on [0,1] because it is expansive, and so does g,,tla.j on the interval Aj by
(2). By (1), there are two intervals in which irregular or unpredictable behavior occurs. We thus have period-2 chaos for

(A,B) D(01) by (3). If (A,B) D2), then Theorem 1.2 (ii) of ITN (B2,AB) D’) which then implies (AZBZ, AB3) D*. Thus
for (A, B) D2), there are 2 intervals on which the system is ergoic. By the same token, for (A, B) D(03), there are 2 intervals

on which the system is ergoic.
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bounds and are bounced back to an inside of the
trapping interval).

3.3 Upper-Asymmetric Case

In this subsection, we deal with the asymmetric
case in which (1 + a)(1-/3)> holds. As seen in
Fig. l(c), the upper constraint line deviates from
the 45 line more than the lower constraint line
so that we call this case upper-asymmetric. The
following analysis is analogous to that in the
lower-asymmetric case. The one-kinked dynamics
is considered and then the two-kinked dynamics
is followed. The dis-similarity is found in that the
dynamics system with one-kinked point is not
expansive. We, first, identify two trapping inter-
vals which depend on the relation between
minimum omin and maximizer QM: one where
QM < omin. the other where QM > omin. Subtract-
ing Qmin from QM yields

QM Qmin (bc-a)
(1 + c + or)(1 -/3 + r)

[_ I-/] (7)

Since the upper-asymmetric condition, (1 + a)
(1-/3) > 1, is written as /3/(1-/3) < a, there is a
or> 1, denoted by Cru, such that ru(/3/(1-/3))

a. Then the Eq. (7) implies the following
relations between QM and Qmin:

QM <- Qmin for r < ru,

QM > Qmin for r > cru.

Let U1 [omin, f(amin)] where
bc-a-o’Qmin. It is a trapping interval

< r < cru. A restriction off(q) to U,

f(Qmin)
for

fu, (q) max{bc a rqt, (1 )qt}, (8)

governs asymptotic dynamics of qt. Let us divide
the trapping interval, U1, into two subintervals,

U1L :___ [Qmin, Qm] and U1R := [Om, f(Qmin)]. The
restricted map, fu,, has a slope greater than
unity in absolute value on UL (i.e., I--al > 1)
and less than unity on U1R (i.e., 0 < 1-/3 < 1).
Namely, it is not expansive. It, however, can
exhibit complex dynamics involving chaos. As
shown in Lemma 2 below, fu, is linearly
conjugate to the unimodal map, gA,B(q). In
consequence, we can detect the dynamic behavior
by applying the results of ITN to JUl(q)" Let
A:= 1-/3 in the upper-asymmetric case while
B:-cr as in the lower-symmetric case. The
restricted map, fur (q), can be written as

-Bq + Qm(A + B)
fu, (q) for q E U1L --[Qmin, Qm],

Aq for q E UIR [Qm,f(Qmin)].

Then we have the following lemma.

LEMMA 2. fu (q) is linearly conjugate to gA,B(q).

Proof Let

q_ ominb(q) "-f(Omin) Omin"

For )-1 (q) UIR, OJU10 --1 (q) Aq A/B
which we denote by -(q). Let h (q)- 1-q. Then
h-lo.roh(q)-Aq+(A+B-AB)/B which is
gA,s(q) for q [1-l/B, 1]. Similarly, we can
show that for 4-l(q) Ulfu,(q) is equivalent
to gA,s(q) for q [0, 1- l/B].

Lemma 2 suggests that fv, (q) generates quali-
tatively the same dynamics as gA,(q) with A <
and B> 1. Figure 6 below, which is similar to
Fig. 4 in the lower-symmetric case, is a 2-
parameter bifurcation diagram where the horizo-
ntal axis is 1/B and the vertical axis is 1/A.8 In
Fig. 7, two numerical simulations are performed
along the straight line passing through 1/A 1.2
and one through I/A 1.8 in Fig. 6.9 Theorem 3
below summarizes the results for the dynamics
generated by the latter numerical example.

Figure 6 is an upper half of Fig. 4 in ITN.

Since A -/3,/3 in the former example and/3 in the latter example.
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2.:i

,.,[ \\ \, \\,

FIGURE 6 Regime classification of parameters (A,B).

1/B

FIGURE 7(a) a=0.5 and/3= 1/6.

THEOREM 3. Given c 3.2 and/3-- 4/9, there exist

parameter values, < 0-1 < 0-2 < 03 < 0"4 < 0"5 < 0"u
such that the dynamic system, qt+l --fu, (qt), has

(1) a period-2 cycle for < 0" < 0" where 0"1 1.8,
(2) 2m-periodic chaos 0"1 < 0" < 0"2 where 0"2 _2.25

and rn 1, 2,
(3) an ergodic chaos for 0"2 < 0" < 0"3 where

0"3=2.8,
(4) a stable period-3 cycle for 0"3 < 0" < 0"4 where

0"4---3.24,
(5) 6-periodic chaos and then 3-periodic chaos for

0"4 < 0" < 0"5 where 0"s 3.72,

(6) an ergodic chaos for 0"5 < 0" < 0"u where

0"u 4.0.

Proof The proof of (1): as B> and AB<
for < 0" < 0"1, it can be checked that there exists
a unique periodic orbit with period 2. The
proof of (2): as (A, B) E Do, see Theorem 4 in the
Appendix. The proof of (3): as (A,B) DI,
see Theorem 5. The proof of (4): as (A,B)
D), see Theorem 6. The proof of (5): as

(A, B) D2), see Theorem 7. The proof of (6):
as (A, B) D, see Theorem 5.

Figure 7(b) illustrates the dynamics described
by Theorem 3. Concerning the bifurcation sce-

nario with respect to 0", (1)-(3) imply that as 0" is
increased from unity, the stable period-2 cycle

FIGURE 7 a= 3.2 and 3=8/9. Two bifurcation diagrams
in the upper-symmetric case.

bifurcates to periodic chaos having the union of
2m disjoint intervals as its attactor and then to

ergodic chaos with one intervals. In the interval

(0"3,0"4), there exists a stable period-3 cycle to
which almost all trajectories converge. (5) implies
that in the interval (0"4, 0"5), fU, has an absolutely
continuous invariant measure. Its support is a
union of three disjoint intervals for 0" close to 0"5

(i.e., 3-periodic chaos) while it is a union of six

disjoint intervals for 0" close to 0"4.
l Finally the

ergodic chaos with one interval appears. If lIB is

decreased from unity to zero along the lower st-

raight line for 1/A 1.2 in Fig. 6, the bifurcation
scenario proceeds similar to one described by
Theorem 2: the equilibrium point bifurcates to

See Corollary 3.2 of ITN which gives all the details.
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stable period-2 cycles, periodic chaos with 23 from stable period-2 cycles, to periodic chaos
intervals, 22 intervals, 2 intervals and then one with 22 intervals, to one with 2 interval and then
interval, to truly chaos (i.e., chaos with interval), the last

If is further increased from Cru, Qmin < QM of which shrinks to zero as bd goes to infinity.
holds. Then the dynamic system is switched from What implications do the simulations have for

(8) to a restriction of f(qt) to a trapping interval the cobweb model with the upper and lower

U2 := [Qmin, Qmax]. It has three line segments and bounds? bd > is necessary for generations of
two kinked points, QM and Qm. The tilted z- chaos in the asymmetric case. Here b is the
shaped restricted map governs the quantity marginal propensity to consume which is the
evolution and, according to Fig. 7(a), generates decision variables of the demand side while d is

aperiodic fluctuations, the marginal product with respect to price which
is the decision variable of the supply side. Thus it
can be stated that one source of such complex

4 CONCLUDING REMARKS dynamics involving chaos is an interaction be-
tween the consumers and the producers. Further-

This study investigates the dynamic structure of a more, since the marginal propensity to consume

linear cobweb model with upper and lower is expected to satisfy condition 0<b<l, bd>
bounds for variations on output. Simulating the requires the strong production response to a

model under different values of bd, we have change in price (i.e., the large value of b). This

demonstrated that the modified cobweb model study, therefore, implies that agricultural econo-

may generate chaotic behavior if the-output mies with the strong production response tend to

constraints are asymmetric and that it can exhibit erratic dynamics of the agricultural goods
generate stable period-2 cycles whose amplitudes when the upper and lower bounds are imposed
depend on the prevailing parameter constellations on the growth rate.

(i.e., choice of initial point, values of bd, etc.) if
the output constraints are symmetric. Although Acknowledgement
the bifurcation diagrams in asymmetric cases
imply the chaotic behavior, the bifurcation sce-
nario to chaos is different according to whether
the constraints are upper- or lower-asymmetric.
In the lower-asymmetric case, the modified
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APPENDIX

In this Appendix, I recapitulate some results from
ITN and DS.

Define a region of parameters A and B:

D= {(A,B) IB> 1, AB> 1, A+B>_AB},
Do-- {(A, B) E D IgA B(O) >_ x*

where x* gA,B(X*) },

D1 { (A, B) D lx* > g., s(O) >_ y*
where y* is a maximizer of ga,

D* { (A, B) D ly* > ga, (0),
k-1Dk {(A, B) D lgka, s(O) > y* _> gA, n(O)},

DI)= {(A, B) Dk AkB 1},

and A + B AkB2}
DZ

THEOREM 4. (Theorem 1.2 and Corollary 3.1 of
ITN) For (A,B)Do, there exist disjoint 2
intervals, Ao, A, A2m-1 such that ga,B(Ai)
Ai+l for O <_ < 2m 2 and gA,s(A2m_l)=Ao.
gA, (’) has absolutely continuous invariant ergodic
measure whose support is equal to u2im=-1Ai.
THEOREM 5. (Theorem 3.1. oflTN) For (A, B)

too D*, density functionD1 tO k=2 Dk) tO there exists a

ofan invariant measurefor ga,s(.).
THEOREM 6. (Theorem 2.2. of ITN, the first part
of Theorem 5 of DS) For (A,B) D(k1), almost all
points of [0,1] are asymptotically periodic. When
the strict inequality holds, then almost all orbits
approach the periodic orbit.

THEOREM 7. (Theorem 2.3. and Corollary 3.2 of
ITN, the second part of Theorem 5 of DS) For
(AB) D(k2), there exist disjoint k intervals, Jo,
J1,..., Jk-! such that ga, B(Ji) Ji+l for 0 <_
<_ k- and ga,B(Jk-l) Jo.gA,s(’) has absolutely
continuous invariant ergodic measure whose sup-

kport is equal to Ui=oJi.


